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1. Observations are made on the numbers of caterpillars on commercially grown cabbages in J
plots. The number of observations in plot j is nij . Let the number of caterpillars on the ith

cabbage in plot j be Yij . Given the values of λ1, . . . , λJ , we have

Yij | λj ∼ Poisson(λj),

a Poisson distribution with mean λj , and Y11, . . . , YnJJ are conditionally independent.

Let ηj = log(λj). Given the values of µ and τ, we have

ηj | µ, τ ∼ N(µ, τ−1),

a normal distribution with mean µ and precision τ, and η1, . . . , ηJ are conditionally indepen-
dent.

We have independent prior distributions for µ and τ with µ ∼ N(m, v) and τ ∼ gamma(a, b).

We make observations Yij = yij and wish to use a Gibbs sampler to evaluate the posterior
distribution.

Find a function proportional to the density of the full conditional distribution of ηj .

Solution

In plot j we have

Yij | λj ∼ Poisson(λj),

for i = 1, . . . , n. So

Pr(Y1j = y1j , . . . , Ynjj = ynjj | λj) =

nj∏
i−1

e−λjλjλjyij
yij !

∝ e−njλjλ
sj
j

where

sj =

nj∑
i=1

yij .

However λj = eηj so

Pr(Y1j = y1j , . . . , Ynjj = ynjj | ηj) ∝ exp{−njeηj}eηjsj = exp{ηjsj − njeηj}.

The pdf of ηj | µ, τ is

(2π)−1/2τ1/2 exp
{
−τ

2
(ηj − µ)2

}
∝ exp

{
−τ

2
(ηj − µ)2

}
.
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Hence the fcd density of ηj is proportional to

exp
{
−τ

2
(ηj − µ)2

}
exp{ηjsj − njeηj} = exp

{
ηjsj − njeηj −

τ

2
(ηj − µ)2

}
.

2. A particular surgical operation performed on patients with a serious condition is hazardous
and a proportion of the patients die during surgery. Researchers wish to investigate the
relationship between the death rate and the age of the patient. We have the following model.
Let θx be the death rate for patients aged x years. That is, given θx, the probability of death
is θx. Let

ηx = log

(
θx

1− θx

)
.

We suppose that

ηx = a+ bx

for some unknown parameters a, b.

We develop a prior distribution as follows. Consider two ages, x = 50 and x = 70. Our
marginal prior distributions for η50 and η70 are η50 ∼ N(m50, v50) and η70 ∼ N(m70, v70).
The prior correlation of η50 and η70 is 0.8. We assess

Pr(θ50 < 0.05) = Pr(θ50 > 0.20) = Pr(θ70 < 0.1) = Pr(θ70 > 0.4) = 0.025.

(a) Find the values of m50, v50, m70, v70 and the covariance of η50, η70.

(b) Find the joint prior distribution of a, b.

Solution

(a) We have

Pr(θ50 < 0.05) = Pr(θ50 > 0.20) = Pr(θ70 < 0.1) = Pr(θ70 > 0.4) = 0.025

so

Pr(η50 < −2.944) = Pr(η50 > −1.386) = Pr(η70 < −2.197) = Pr(η70 > −0.405) = 0.025

since, for example,

log

(
0.05

1− 0.05

)
= −2.944.

The 0.975 point of N(0, 1) is 1.96 so

m50 − 1.96
√
v50 = −2.944,

m50 + 1.96
√
v50 = −1.386.

Hence

m50 =
−2.944− 1.386

2
= −2.165,

√
v50 =

−1.386− (−2.944)

2× 1.96
= 0.3974,

v50 = 0.1580.
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Similarly

m70 − 1.96
√
v70 = −2.197,

m70 + 1.96
√
v70 = −0.405.

Hence

m70 =
−2.197− 0.405

2
= −1.301,

√
v70 =

−0.405− (−2.197)

2× 1.96
= 0.4571,

v70 = 0.2090.

Now
Covar(η50, η70)
√
v50v70

= 0.8.

Hence
Covar(η50, η70) = 0.8

√
v50v70 = 0.8× 0.3974× 0.4571 = 0.1454.

(b) We have

η50 = a+ 50b,

η70 = a+ 70b.

Hence

b =
η70 − η50

20
,

a = η50 − 50b =
20η50 − 50η70 + 50η50

20
=

70η50 − 50η70
20

.

Hence (
a
b

)
=

1

20

(
70 −50
−1 1

)(
η50
η70

)
.

If (a, b)T = M(η50, η70)T and the mean of (η50, η70)T is m and the variance of (η50, η70)T

is V then the mean of (a, b)T is Mm and the variance of (a, b)T is MVMT .

The distribution of (a, b)T is bivariate normal with mean vector

E

(
a
b

)
=

1

20

(
70 −50
−1 1

)(
−2.165
−1.301

)
=

(
−4.3250
0.0432

)
and covariance matrix

Var

(
a
b

)
=

1

400

(
70 −50
−1 1

)(
0.1580 0.1454
0.1454 0.2090

)(
70 −1
−50 1

)
=

(
0.69725 −0.010155
−0.010155 0.0001905

)
.

3. In an experiment on student learning, randomly selected students are assigned to groups
which are given different amounts of tuition. Suppose group i has ni students who are given
ti + 30 hours of tuition.

At the end of the experiment the students are given a test. Suppose that a student’s per-
centage mark is Z. Let X = ln(Z). Suppose that, for a student in group i, we assume
X ∼ N(α + βti, σ

2), where σ = 0.1. Instead of the actual percentage marks, all that is
recorded is whether each student passes or fails the test. A student passes if Z ≥ 40, that is
X ≥ ln 40.

Let yi be the number of students in group i who pass the test.
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(a) Express this model as a generalised linear model.

(b) State the link function and error function.

(c) Find the linear predictor.

(d) Use BRugs to evaluate the posterior distributions of α and β. You may use independent
priors for α and β with

α∗ ∼ N(0.1, 0.01), α = α∗ + ln 40 and β ∼ N(0.0, 0.0004).

The data are as follows.

ti ni yi
-10 30 19

0 40 30
10 30 27

(e) What happens if we do not assume that σ = 0.1 but allow σ2 to be unknown?

Solution

(In an assignment, you should start by giving the background to the problem, the model and
the prior as given in the question).

Given the model parameters, the probability of passing with ti + 30 hours of tuition is

Pr(Z ≥ 40) = Pr(X ≥ ln 40) = Pr

(
X − α− βti

σ
≥ ln 40− α− βti

σ

)
= 1− Φ

(
ln 40− α− βti

σ

)
= Φ

(
α+ βti − ln 40

σ

)
where Φ() is the standard normal distribution function.

Thus our model is a generalised linear model.

• The error distribution is binomial.

• The linear predictor is

ηi =
α

σ
+
β

σ
ti −

ln 40

σ
.

• The link function is the probit link with ηi = Φ−1(pi) where pi is the probability of a
pass with ti + 30 hours of tution and Φ−1() is the inverse of Φ().

• Note that the known term ln(40)/σ in the linear predictor is known as an offset.

4



We can evaluate the posterior distribution using the BRugs software to implement a Gibbs
sampler. The following is a suitable model specification.

model tuition

{

for (i in 1:3)

{y[i]~dbin(p[i],n[i])

probit(p[i])<-10*(alphastar+beta*t[i])

}

alphastar~dnorm(0.1, 100)

alpha<-alphastar+log(40)

beta~dnorm(0, 2500)

}

Convergence of the sampler was checked by using two parallel chains, using the commands
in the following session listing.

> modelCheck("tuitionbug.txt")

model is syntactically correct

> modelData("tuitiondata.txt")

data loaded

> modelCompile(2)

model compiled

> modelInits("inits1.txt")

Initializing chain 1: model is initialized

> modelInits("inits2.txt")

Initializing chain 2: model is initialized

> samplesSet(c("alpha","beta"))

monitor set for variable ’alpha’

monitor set for variable ’beta’

> modelUpdate(1000)

The two initial value files, inits1.txt and inits2.txt were as follows.

“inits1”:

list(alphastar=0.15,beta=0.00)

“inits2”:

list(alphastar=0.02,beta=0.01)

Figure 1 shows plots of sampled values against iteration number for a burn-in of 1000 samples
for both α and β for the two chains. Chain 1 is shown as a blue line. Chain 2 is shown as a
red line. Although mixing is a little slow, suggesting that a large number of samples should
be collected, there seems to be no problem with convergence. We could try more widely
separated initial values.

To compute the posterior distribution, 20000 samples were collected from a single chain after
a burn-in of 1000 iterations. These gave the following summaries of the posterior distribution.

mean sd MC_error val2.5pc median val97.5pc start sample

alpha 3.765000 0.014200 2.251e-04 3.7380000 3.765000 3.794000 1001 20000

beta 0.004568 0.001881 3.855e-05 0.0009511 0.004531 0.008238 1001 20000
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Figure 1: History plots for α and β in a burn-in of 1000 samples.
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Figure 2: Posterior marginal densities of α and β.
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Thus, for α, we have a posterior mean of 3.765 and a posterior standard deviation of 0.0142,
compared to the prior mean of 0.1+ln 40 = 3.789 and prior standard deviation of 0.1. For β,
we have a posterior mean of 0.00457 and a posterior standard deviation of 0.00188, compared
to the prior mean of 0.0 and prior standard deviation of 0.02.

Figure 2 shows the posterior marginal densities of α and β. These were obtained by first
using samplesSample to extract the sampled values of the parameters and then using the
following R commands.

> adens<-density(alpha,adjust=1.5)

> bdens<-density(beta,adjust=1.5)

> pdf("densitiesex2.pdf",height=7)

> par(mfrow=c(2,1))

> plot(adens$x,adens$y,type="l",xlab=expression(alpha),ylab="Density")

> plot(bdens$x,bdens$y,type="l",xlab=expression(beta),ylab="Density")

> par(mfrow=c(1,1))

> dev.off()

There is evidence that increasing tuition time increases the probability of passing since most
of the probability for β is for values where β > 0.

Recall that the linear predictor is

ηi =
α− ln 40

σ
+
β

σ
ti.

Suppose that we replace σ by some other value σ̃. Then, by replacing α by

α̃ =
σ̃

σ
(α− ln 40) + ln 40 so

α̃− ln 40

σ̃
=
α− ln 40

σ

and replacing β by

β̃ =
σ̃

σ
β so

β̃

σ̃
=
β

σ
,

we obtain the same value of ηi as before. Therefore σ is not identified by the data and there
is no point in treating it as an unknown parameter.
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