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• Beta Beta(α, β) distribution. It has density function

f(x|α, β) =
xα−1(1− x)β−1

B(α, β)
, 0 < x < 1, α > 0, β > 0

where B(α, β) = Γ(α)Γ(β)/Γ(α + β).

Also, E(X) = α/(α + β) and Var(X) = αβ/[(α + β)2(α + β + 1)].

• Exponential Exp(λ) distribution. It has density

f(x|λ) = λe−λx, x > 0, λ > 0.

Also, E(X) = 1/λ and Var(X) = 1/λ2.

• Gamma Ga(α, λ) distribution. It has density

f(x|α, λ) =
λαxα−1e−λx

Γ(α)
, x > 0, α > 0, λ > 0.

Also, E(X) = α/λ and Var(X) = α/λ2.

• Normal N(µ, σ2) distribution. It has density

f(x|µ, σ) =
1√

2πσ2
exp

{
−(x− µ)2

2σ2

}
, −∞ < x <∞,

−∞ < µ <∞, σ > 0.

Also, E(X) = µ and Var(X) = σ2.

• Lognormal LN(µ, σ2) distribution. It has density

f(x|µ, σ) =
1

x
√

2πσ2
exp

{
−(log x− µ)2

2σ2

}
, x > 0, −∞ < µ <∞, σ > 0.

Also, E(X) = exp(µ+ σ2/2) and Var(X) = exp(2µ+ σ2)[exp(σ2)− 1].

• Rayleigh R(θ) distribution. It has density

f(x|θ) = 2xθe−θx
2

, x > 0, θ > 0.

Also, E(X) =
√
π/(4θ) and Var(X) = (4− π)/(4θ).

• Poisson Po(λ) distribution. It has probability function

Pr(X = j | λ) =
e−λλj

j!
, j = 0, 1, . . . , λ > 0.

Also,
E(X) = λ, Var(X) = λ.
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• Dirichlet Dd(a1, . . . , ad) distribution. It has density

f(x1, . . . , xn | a1, . . . , an) =
Γ(A)∏d
i=1 Γ(ai)

d∏
i−1

xai−1
i , A =

d∑
i=1

ai,

0 < ai, 0 < xi < 1,
d∑
i=1

xi = 1.

Also

E(Xi) =
ai
A
, Var(Xi) =

ai(A− ai)
A2(A+ 1)

, Covar(Xi, Xj) = − aiaj
A2(A+ 1)

, (i 6= j).
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BUGS functions

Function Usage Definition

Complementary cloglog(p)<-a+b*x log[− log(1− p)] = a+ bx
log log y<-cloglog(p) y = log[− log(1− p)]

Logical equals y<-equals(x,z) y = 1 if x = z
y = 0 if x 6= z

Exponential y<-exp(x) y = ex

Inner product y<-inprod(a[],b[]) y =
∑

i aibi
Matrix inverse y[,]<-inverse(x[,]) y = x−1

y, x both n× n matrices
Natural logarithm log(lambda)<-a+b*x log(λ) = a+ bx

y<-log(x) y = log x
Log determinant y<-logdet(x[,]) y = log |x|

x is a n× n matrix
Log factorial y<-logfact(x) y = log(x!)
Log(gamma function) y<-loggam(x) y = log[Γ(x)]
Logit y<-logit(p) y = log[p/(1− p)]

logit(p)<-a+b*x log[p/(1− p)] = a+ bx

Maximum c<-max(a,b) c = max(a, b)
Mean x.bar<-mean(x[]) x̄ =

∑
i xi/n

Minimum c<-min(a,b) c = min(a, b)

Standard Gaussian p<-phi(x) p =
∫ x
−∞(2π)−1/2e−t

2/2 dt

distribution function i.e. p = Φ(x)
Power z<-pow(x,y) z = xy

Probit y<-probit(p) y = Φ−1(p)
probit(p)<-a+b*x Φ−1(p) = a+ bx

Standard deviation s<-sd(x[]) s =
√∑

i(xi − x̄)2/n

Square root sigma<-sqrt(tau) σ =
√
τ

Unit step y<-step(x) y = 0 if x < 0
y = 1 if x ≥ 0

Sum x.sum<-sum(x[]) xsum =
∑

i xi
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BUGS distributions

Distribution Usage Definition

Bernoulli r~dbern(p) f(r | p) = pr(1− p)1−r;
r = 0, 1

beta p~dbeta(a,b) f(p | a, b) = Γ(a+b)
Γ(a)Γ(b)p

a−1(1− p)b−1;

0 < p < 1
binomial r~dbin(p,n) f(r | p, n) = n!

r!(n−r)!p
r(1− p)n−r;

r = 0, . . . , n
categorical r~dcat(p[]) f(r | p1, . . . , pR) = pr;

r = 1, 2, . . . , R where R = dim(p)

chi-squared x~dchisq(k) f(x | k) = 2−k/2xk/2−1e−x/2/Γ(k2);
x > 0

double x~ddexp(mu,tau) f(x | µ, τ) = τ
2e
−τ |x−µ|;

exponential −∞ < x <∞
Dirichlet p[]~ddirch(alpha[]) f(p | α) =

Γ(
∑
i αi)∏

i Γ(αi)

∏
i p

αi−1
i ;

0 < pi < 1,
∑

i pi = 1
exponential x~dexp(lambda) f(x | λ) = λe−λx;

x > 0
gamma x~dgamma(r,mu) f(x | r, µ) = µrxr−1e−µx/Γ(r);

x > 0
lognormal x~dlnorm(mu,tau)

f(x | µ, τ) =
√

τ
2πx

−1 exp[−τ
2(log x− µ)2]; x > 0

logistic x~dlogis(mu,tau)

f(x | µ, τ) = τeτ(x−µ)/(1 + eτ(x−µ))2; −∞ < x <∞
multivariate x[]~dmnorm(mu[],T[,])

normal f(x | µ,T) = (2π)−N/2|T|1/2 exp[−1
2(x− µ)′T(x− µ)];

−∞ < xi <∞
multinomial x[]~dmulti(p[],N) f(x | p, N) =

(
∑
i xi)!∏
i xi!

∏
i p

xi
i ;

0 < pi < 1,
∑

i pi = 1
∑

i xi = N

negative x~dnegbin(p,r) f(x | p, r) = (x+r−1)!
x!(r−1)! p

r(1− p)x;
binomial x = 0, 1, 2, . . .

normal x~dnorm(mu,tau)

f(x | µ, τ) =
√

τ
2π exp[−τ

2(x− µ)2]; −∞ < x <∞
Pareto x~dpar(alpha,c) f(x | α, c) = αcαx−(α+1);

x > c

Page 5 of 14



MAS8303

BUGS distributions continued

Distribution Usage Definition

Poisson r~dpois(lambda) f(r | λ) = e−λλ
r

r! ;
r = 0, 1, . . .

Student’s t x~dt(mu,tau,k)

f(x | µ, τ, k) = Γ([k+1]/2)
Γ(k/2)

√
τ
kπ [1 + τ

k(x− µ)2]−(k+1)/2;

−∞ < x <∞
uniform x~dunif(a,b) f(x | a, b) = 1/(b− a);

a < x < b
Weibull x~dweib(v,lambda)

f(x | v, λ) = vλxv−1 exp(−λxv);
x > 0

Wishart x[,]~dwish(R[,],k)

f(x | R, k) ∝ |R|k/2|x|(k−p−1)/2 exp(−1
2tr[Rx]);

x symmetric and positive definite
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1. Dr Shi’s question.
[7 marks]

2. Dr Shi’s question.
[8 marks]

3. Dr Shi’s question.
[10 marks]
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4. In an experiment people are tested to see how they learn to perform a
difficult task. Different groups of subjects (i.e. people) are given different
lengths of time practising the task and each person is then tested once
to see whether they complete the task successfully. The number yi of
subjects who successfully complete the task in Group i is counted (i =
1, . . . , N). The number of subjects tested in Group i is ni. Members of
Group i were given xi hours of practice before the test.

The following BUGS code is used in the analysis of the data. In the
BUGS code y[i] stands for yi, n[i] stands for ni and x[i] stands
for xi. We will use β0, β1 and pi to refer to the quantities denoted by
beta0, beta1 and p[i] in the code.

{

for (i in 1:N)

{ y[i] ~ dbin(p[i],n[i])

logit(p[i])<-beta0+beta1*x[i]

}

beta0~dnorm(-1.0, 1.0)

beta1~dnorm(0.0, 5.0)

}

(a) Write down a description of the model expressed by this code using
standard mathematical notation.

(b) Find the prior lower and upper quartiles of pi if xi = 5.0.

Note that, if Z ∼ N(0, 1), then the quartiles of Z are ±0.6745.

[9 marks]

5. In a medical study, patients are given a simple diagnostic test T1. The
result Y1 is either “positive” or “negative.” If Y1 is positive then the
patient is given a second test T2 which gives a result Y2. If the result of
T1 is negative then the patient is either given T2, with probability 0.2,
or not given any further test, with probability 0.8. Determine whether
the missing Y2 values are “missing at random.”

[5 marks]
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6. (a) Explain briefly what is meant by “data augmentation.”

(b) An ecologist counts the number of bumble bees seen in a series of
two-hour visits, on different days, to a site. Let the number seen
on visit i be Yi. The ecologist wishes to use a negative binomial
distribution with probability function

Pr(Yi = j) =
Γ(a+ j)

j!Γ(a)
pa(1− p)j (j = 0, 1, 2, . . .)

to model these data.

Show that, by introducing random quantities λi > 0 and supposing
that

Yi | λi ∼ Po(λi)

and λi ∼ Ga(a, b)

where p = b/(b + 1), we obtain the same distribution for Yi and
comment on how this fact might be used in a MCMC algorithm

[11 marks]
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7. Answer EITHER PART (a) OR PART (b) below.

(a) Dr Shi’s question.

(b) Dr Shi’s question.

[25 marks]
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8. Answer EITHER PART (a) OR PART (b) below.

(a) (i) We wish to construct a model for the one-year survival of pa-
tients with a particular disease. Let p(x, θ) be the conditional
probability that a patient survives one year given a vector of
covariate values x and the model parameters θ. Let

η(x, θ) = loge

(
p(x, θ)

1− p(x, θ)

)
.

A. For a particular covariate vector x, we wish to give η(x, θ) a
normal prior distribution with mean m and variance v. Find
values for m and v such that

Pr[p(x, θ) < 0.5] = Pr[p(x, θ) > 0.75] = 0.05.

Note that, if Z ∼ N(0, 1), then Pr(Z < 1.645) = Pr(Z >

1.645) = 0.05.

B. Suppose that

η(x, θ) = θ0 + θ1x1 + θ2x2

where x1 and x2 are scalar covariates. Suppose that we make
the following prior judgements.
When x1 = 2 and x2 = 0

η(x, θ) = η1 ∼ N(1.8, 0.04).

When x1 = 0 and x2 = 1

η(x, θ) = η2 ∼ N(0.0, 0.10).

When x1 = 1 and x2 = 1

η(x, θ) = η3 ∼ N(1.0, 0.07).

These three distributions are independent.
Find the joint prior distribution of θ0, θ1, θ2.

Question 8 continued on next page Page 11 of 14
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(ii) Patients suffering from a certain long-term chronic illness suffer
events which require medical attention from time to time. After
a patient is put on long-term treatment, the times of these events
are recorded. Let the time till the first event for patient i be Ti,1,
the time between the first and second events be Ti,2 and time
between the second and third events be Ti,3. These three times
are recorded for n patients, i = 1, . . . , n.
Our model says that, given the values of αj and λi, for j = 1, 2, 3,
we have

Ti,j ∼ Ga(αj, λi)

with Ti,j independent of Ti′,j′ unless i = i′ and j = j′.
Given the values of π, αλ, β1, β2, where 0 < π < 1, the other pa-
rameters are all positive and β2 < β1, we have a two-component
mixture distribution for λi with density

fλ(λi) = πfλ,1(λi; αλ, β1) + (1− π)fλ,2(λi; αλ, β2)

where fλ,k is a gamma density

fλ,k =
βαλk λ

αλ−1
i exp(−βkλi)

Γ(αλ)
.

A. Verify that this model can be reformulated by writing

fλ(λi | Z = z) = zfλ,1(λi; αλ, β1) + (1− z)fλ,2(λi; αλ, β2)

where Z is a binary random variable with Pr(Z = 1) = π
and Pr(Z = 0) = 1− π.

B. Write down the full conditional distribution of Zi, the value
of Z for patient i.

C. Write suitable BUGS (or BRugs or WinBUGS or OpenBUGS)
code for the model. The model is completed with the follow-
ing prior distribution for the parameters which are indepen-
dent apart from the constraint on β1, β2.

αj ∼ Ga(2, 0.5) (j = 1, 2, 3),

π ∼ Beta(1, 2),

αλ ∼ Ga(2, 1),

β1 ∼ Ga(2, 0.2),

β2 ∼ Ga(2, 0.5).

Question 8 continued on next page Page 12 of 14
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D. Explain briefly why it is advisable to impose a constraint such
as β2 < β1.

(b) In a medical experiment, five measurements of the same variable are
to be made on each of n patients. The measurements are to be made
at times t = 1, 2, 3, 4, 5. Let the measurement on patient i at time t
be Yi,t.

We have a model as follows. Given the values of the unknown quan-
tities µi and τy the conditional distribution of Yi,t is

Yi,t | µi, τy ∼ N(µi, τ
−1
y )

independently for i = 1, . . . , n and t = 1, . . . , 5. Given the values of
the unknown quantities µ and τµ the distribution of µi is

µi | µ, τµ ∼ N(µ, τ−1
µ )

independently for i = 1, . . . , n. The prior distribution for µ is

µ ∼ N(m, τ−1
0 ).

(i) Find the following conditional variance and covariances, given
the values of τ0, τµ and τy.

A. The conditional variance of Yi,t.

B. The conditional covariance of Yi,t and Yi,s where s 6= t.

C. The conditional covariance of Yi,t and Yj,s where i 6= j.

(ii) the values m = 45.0, τ0 = 0.002 are used but τµ and τy are given
independent gamma prior distributions with

τµ ∼ Ga(1, 0.01),

τy ∼ Ga(1, 0.01).

Write suitable BUGS (or BRugs or WinBUGS or OpenBUGS)
code to specify the model.

(iii) We now wish to modify the model to allow the value of the
variable to change over time within a patient. For t = 1, . . . , 5
we replace µi with µi,t and, given µi,t, τy, we have

Yi,t | µi,t, τy ∼ N(µi,t, τ
−1
y ).

Question 8 continued on next page Page 13 of 14
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Then
µi,1 = µi

and, for t = 2, . . . , 5, given µi,t−1, δi, τx,

µi,t | µi,t−1, δi, τx ∼ N(µi,t−1 + δi, τ
−1
x ).

Given δ and τδ,
δi | δ, τδ ∼ N(δ, τ−1

δ )

independently for i = 1, . . . , n. The prior distribution for δ is

δ ∼ N(d, τ−1
1 ).

The values of d = 0 and τ1 = 0.01 are used but τδ and τx are
given independent gamma prior distributions with

τδ ∼ Ga(1, 0.002),

τx ∼ Ga(1, 0.002).

A. Write modified BUGS (or BRugs or WinBUGS or Open-
BUGS) code to specify this new model.

B. Find the conditional variance of Yi,5 given the values of τ0, τµ,
τy, τ1, τδ, τx.

C. Find the conditional covariance of Yi,2 and Yi,5 given the val-
ues of τ0, τµ, τy, τ1, τδ, τx.

D. If these are measurements taken over time on patients with
a chronic condition and expected to be in a steady state, do
you think this model is reasonable? Comment.

[Total: 25 marks]

THE END
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