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Chapter 5

Random Effects and Hierarchical
Models

5.1 Random Effects

5.1.1 Fixed and random effects

Consider Example 2 of Lecture 1.3.1. The data gave the gains in weight of rats fed on four different
diets. The diets differed in terms of the amount of protein (“low” or “high”) and the source of
the protein (“beef” or “cereal”). The population mean weight gains with each diet are considered
to be parameters of the model. If we were to observe very large numbers of rats with each diet
then we would gain very precise information about the values of these parameters. In the limit,
we would know the values exactly. The differences in population mean weight gains between the
diets are regarded as fixed but unknown.

We can write the four means in the form

µ1 = µ− βa − βs + γ,

µ2 = µ+ βa − βs − γ,
µ3 = µ− βa + βs − γ,
µ4 = µ+ βa + βs + γ.

Then βa, βs, γ are all regarded as fixed effects.
Now consider another example. This example comes from Davies and Goldsmith (1972). The

experiment concerned testing the strength of Portland cement. The cement was divided into small
samples. Each sample was then mixed with water and worked. This process is called “gauging.”
Each sample was then cast into a cube and allowed to set. The samples were then tested for
strength. This is known as “breaking.”

Three different people did the gauging and three different people did the breaking. There are
thus nine combinations of gauger and breaker. In each combination there were four cubes. The
data, in pounds per square inch, are given in Table 5.1.

Let yi,j,k be the ith observation made with Gauger j and breaker k, a realisation of the random
variable Yi,j,k. Then we might write

Yi,j,k | µj,k, τε ∼ N(µj,k, τ
−1
ε )

where
µj,k = µ+ αj + βk + γj,k.

Here, just as in the rats example, we have the main effects of two factors and an interaction
effect. The gauger effects are α1, α2, α3, the breaker effects are β1, β2, β3 and the interaction
effects are γ1,1, . . . , γ3,3. However these are not regarded as fixed effects. Instead they are regarded
as random effects. This is because we are not just interested in the effects of these gaugers and
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Breaker 1 Breaker 2 Breaker 3
Gauger 1 5280 5520 4340 4400 4160 5180

4760 5800 5020 6200 5320 4600
Gauger 2 4420 5280 5340 4880 4180 4800

5580 4900 4960 6200 4600 4480
Gauger 3 5360 6160 5720 4760 4460 4930

5680 5500 5620 5560 4680 5600

Table 5.1: Breaking strengths (pounds per square inch) of cement samples.

breakers but in how much variation there is between gaugers generally and between breakers
generally. We regard these gaugers as a sample from the population of gaugers and these breakers
as a sample from the population of breakers.

We do not constrain the effects to sum to zero, or fix one of them to be zero. Instead we regard
them as samples from a distribution with zero mean. The mean is zero because we include the
parameter µ which absorbs any nonzero mean.

Notice two difference between this random effects model and the fixed effects model which we
used for the rats example.

1. We suppose that we might observe a new gauger or a new breaker in the future. No matter
how many observations we make with the gaugers and breakers in our sample, we will never
be able to predict exactly the mean for a new gauger-breaker combination which have not
yet observed because this will involve new realisations from the random effects distributions.
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2. Suppose that, instead of giving τα, τβ , τγ prior distributions, we simply chose values for them.
Then the model would be very similar to a fixed effects model. The only differences would be
point 1, which refers to how we interpret the results in terms of future observations, and the
fact that we do not constrain the effects to sum to zero. This latter point would mean that
the individual model effects would not be identifiable but the nine means for combinations
of gauger and breaker would still be identifiable. However, in fact, we do not choose values
for these precisions (i.e. for the variance components) but regard them as unknown and learn
about them from the data. This means that we use the data to tell us how similar we can
expect future gauger-breaker combinations to be to those which we have already seen.

5.1.2 Evaluation of posterior distribution

Given a model such as the cement-testing example, we can easily use MCMC with data aug-
mentation to sample from the posterior distribution. We regard the random effects as auxiliary
variables. I will illustrate the method in terms of the cement example. The auxiliary data are
α1, . . . , α3, β1, . . . , β3, γ1,1, . . . , γ3,3.

A possible MCMC scheme is as follows. Sketching a DAG might help to see how this works.

1 Sample τε : Given values for the fixed effect µ and the random effects we have

Yi,j,k − µ− αj − βk − γj,k ∼ N(0, τ−1ε )

With a gamma prior for τε we get a gamma fcd for τε and it is easy to sample from this.

2 Sample µ : Given values for the error precision τε and the random effects we have

Yi,j,k − αj − βk − γj,k ∼ N(µ, τ−1ε )

With a normal prior for µ we get a normal fcd for µ and it is easy to sample from this.

3 Sample τα : Given τα we have αj ∼ N(0, τ−1α ). So, given values for α1, . . . , α3 and a gamma
prior for τα, the fcd for τα is a gamma distribution and it is easy to sample from this.

4 Sample τβ : Given τβ we have βk ∼ N(0, τ−1β ). So, given values for β1, . . . , β3 and a gamma
prior for τβ , the fcd for τβ is a gamma distribution and it is easy to sample from this.

5 Sample τγ : Given τγ we have γj,k ∼ N(0, τ−1γ ). So, given values for γ1,1, . . . , γ3,3 and a gamma
prior for τγ , the fcd for τγ is a gamma distribution and it is easy to sample from this.

6 Sample α1, . . . , α3 : Given values for the fixed effect µ, for τα and for the other random effects
we have

Yi,j,k − µ− βk − γj,k ∼ N(αj , τ
−1
ε )

The “prior” for αj here is the conditional distribution of αj given τα which is αj | τα ∼
N(0, τ−1α ). The resulting fcd is normal and it is easy to sample from this. The fcd for αj
just involves the data through y1,j,1, . . . , y4,j,3.

7 Sample β1, . . . , β3 : Given values for the fixed effect µ, for τβ and for the other random effects
we have

Yi,j,k − µ− αj − γj,k ∼ N(βk, τ
−1
ε )

The “prior” for βk here is the conditional distribution of βk given τβ which is βk | τβ ∼
N(0, τ−1β ). The resulting fcd is normal and it is easy to sample from this. The fcd for βk
just involves the data through y1,1,k, . . . , y4,3,k.
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8 Sample γ1,1, . . . , γ3,3 : Given values for the fixed effect µ, for τγ and for the other random
effects we have

Yi,j,k − µ− αj − βk ∼ N(γj,k, τ
−1
ε )

The “prior” for γj,k here is the conditional distribution of γj,k given τγ which is γj,k | τγ ∼
N(0, τ−1γ ). The resulting fcd is normal and it is easy to sample from this. The fcd for γj,k
just involves the data through y1,j,k, . . . , y4,j,k.

Note that this is by no means the only way to evaluate the posterior distribution. In fact this
algorithm may be subject to poor mixing. However it is simple to implement.

5.1.3 More general models

I have explained random effects models in terms of a simple example with two factors, each with
three levels, and an interaction. Of course we could have much more complicated models with
more factors and interactions. The principles remain the same though.

We could also have models which contain non-normal distributions We will see an example of
this later.

5.1.4 Mixed models

We can also have models in which some effects are fixed and some random. For example, in
testing two drugs for the control of high blood pressure, each patient might provide a number of
blood pressure measurements while being treated with each of the drugs (e.g. in a crossover trial).
We would normally regard the drug effects as fixed but the patient effects, and any patient-drug
interaction, as random effects. At step 2 in the algorithm above we would sample all of the fixed
effects.

A model containing both fixed and random effects is called a mixed model. A mixed model
where the random effects distributions are normal and the error distribution is normal and the
means are linear functions of the effects is a linear mixed model. We could also have, for example,
a generalised linear mixed model in which the error distribution might be, for example, Poisson or
binomial, the means are related to linear predictors by a link function and the linear predictors
are linear functions of fixed and random effects.
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5.2 Hierarchical Models

5.2.1 Hierarchical structures

We are going to look at models and priors where we have two or more “levels” of conditional
distributions.

Notice that

• there are several levels in this structure and

• the structure is nested or hierarchical.

Here Yi,j,k is the ith obervation within sub-group j of group k. Two observations within the
same subgroup are more strongly correlated with each other than two observations within different
subgroups. Two observations in different subgroups within the same group are more strongly
correlated than two observations in different groups. The group means are themselves correlated
in the prior.
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Therefore, in the example above:

When we looked at mixture models we said that there were two different reasons why we might
use a mixture model, depending on whether or not we supposed that there really were subpopu-
lations. The distinction between a “hierarchical prior” and a “multilevel model” or “hierarchical
model” is of a similar nature.

In some cases we are really only interested in one level of unit, such as the sub-groups indexed
j, k above, and other levels, e.g. the groups indexed k above, are introduced simply to give a
covariance structure to the prior. In this case we would regard this as a “hierarchical prior.”

In other cases the levels might have “physical” interpretations. For example, Yi,j,k could be
the score obtained in a test by pupil i in school j of education authority k. Then the values of the
education-authority effects bk and the school effect aj,k might be of interest in themselves.
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5.2.2 Hierarchical priors and “borrowing strength”

We have seen hierarchical priors already. We might make observations on members of a number
of groups, e.g. weight gains of rats given different diets. So Yi,j is the ith observation in Group j.
Then, given µj and σ2

Y , we have

Yi,j | µj , σ2
Y ∼ N(µj , σ

2
Y ).

We need a prior for µ1, . . . , µJ but, if we are measuring the same thing in these groups, e.g. weight
gain, then it seems reasonable that these means will be positively correlated in our prior. So, given
µ0 and σ2

µ, we write

µj | µ0, σ
2
µ ∼ N(µ0, σ

2
µ).

Then we give a prior to µ0 with
µ0 ∼ N(m0, v0).

Thus, in our prior, given σ2
µ, each of µj and µj′ has mean m0 and variance v0 + σ2

µ but they also
have covariance v0 when j 6= j′.

Typically we would also give a prior to σ2
Y . We might simply choose a value for σ2

µ but we
might choose to give it a prior as well. Choosing to give σ2

µ a distribution has two effects.

• Because of the covariance structure, the posterior means of µ1, . . . , µJ will tend to be closer
to their common overall mean than the sample means of the data are. This is a similar effect
to the posterior mean being closer to the prior mean than the sample mean is when we have
a single sample. This effect is called shrinkage. The degree of shrinkage depends, in part, on
the relative sizes of the variances. If we choose the value of σ2

µ then we are (almost) choosing
the degree of shrinkage. (The degree of shrinkage also depends on σ2

Y and we allow this to
be unknown). If we allow σ2

µ to be unknown and give it a prior then we give the data more
influence over the degree of shrinkage.

• If we expect to observe other related groups in the future then, learning about σ2
µ from the

data allows us to change our minds about how close we expect these future group means to
be to the means for groups which we have seen. We would have to believe that, in some
sense, the future groups would be drawn from “the same population.” (Usually this means
that we would believe that groups were exchangeable).

Borrowing strength

The shrinkage effect noted above has an important benefit. Consider the following (very simplified)
example.

We are interested in the rates of a disease in different areas of the country. In area j the
population at risk is nj . (In reality we would usually also take into account age groups etc.). Our
model says that the number of cases in area j is Yj which, conditional on a rate parameter θj , has
a Poisson distribution

Yj | θj ∼ Po(njθj).

Now the mean of this distribution njθj might be a small number (e.g. 10) so that the standard
deviation of the Poisson distribution is quite large compared to its mean. If we try to make
inferences about the individual rates λj treating them independently then there is little information
in the data about each. On the other hand, if we pool all of the data and assume that λ1 = λ2 =
· · · = λJ , then we lose any possibility of detecting unusual rates in particular places. Instead we
compromise and use a hierarchical prior. Given a, b we give θj a gamma distribution

θj | a, b ∼ Ga(a, b).

we can then give a prior to a, b.
In this way the posterior distribution for θj uses information not only from Yj but also from

the observations in other areas. For example, the posterior means in cases with unusually large Y
values will be “shrunk” somewhat towards the overall average. This is called “borrowing strength.”

In spatial statistics, more complicated models are used in which the parameter in an area is
more strongly correlated with the parameters in neighbouring areas.
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5.2.3 Data augmentation and MCMC

Clearly, just as in Lecture 5.1 on random effects, hierarchical structures such as those discussed
here give rise to a straightforward application of MCMC with data augmentation, regarding the
different levels of random effects as auxiliary data. So, for example, in the first, normal, example
above we could regard {Aj,k} and {Bk} as auxiliary data. For fixed values of these the likelihood
is simple and sampling values for the parameters is simple. When the values of the parameters
and one set of auxiliary variables is fixed, it is simple to sample values for the other set of auxiliary
variables.

5.2.4 Multilevel models

As noted above, in some cases we are interested in the random effects themselves, rather than
either just the population parameters (µ, σ2

B , σ
2
A, σ

2
Y ) or just the first-level parameters ({Aj,k}).
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5.3 Repeated Measures

5.3.1 Introduction

Among the types of problem where random effects are used are repeated measures models, where
several observations are made on the same individual, and longitudinal data, where we are partic-
ularly interested in how repeated measurements taken on individuals change over time.

5.3.2 Example: Repeated measurements in two groups

A drug for lowering blood pressure is tested. A sample of patients with high blood pressure is
divided randomly into two groups. Patients in Group 1 are given the drug. Patients in Group 2
are given a placebo. After a suitable period a sequence of five blood pressure measurements, at
intervals, is made on each patient. (In this example we assume that there is no time trend).

This is really just a mixed-effects model. There is a fixed treatment effect and there are random
patient effects.

Let Yi,g,t be the observation on patient i of group g at time t for i = 1, . . . , ng, g = 1, 2, t =
1, . . . 5.
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model bloodpressure

{for (i in 1:N)

{for (t in 1:5)

{y[i,t]~dnorm(p_[i],tau.y)

}

p[i]~dnorm(mu[group[i]],tau.p)

}

for (g in 1:2)

{mu[g]~dnorm(mu0,0.001)

}

mu0~dnorm(150,0.0005)

tau.y~dgamma(2,100)

tau.p~dgamma(2,200)

}

Figure 5.1: BUGS code for blood pressure example.

Here the variance of µ1−µ2 is var(2δ) = 4ṽg. In the first form of prior we had var(µ1−µ2) = 2vg.
Hence, if we set ṽg = vg/2 we get the same variances and covariances. The introduction of d0 allows
us to have a nonzero prior mean for the treatment effect.

Figure 5.1 shows some suitable BUGS code. It is assumed that the data file contains six
columns. The first column contains the number of the group to which the patient belongs. The
remaining five columns contain the five blood pressure measurements, in order. (With BRugs it
would be necessary to load the overall sample size N from another file). The first form of the
prior is used.

5.3.3 Autocorrelation

In the example in 5.3.2 we have made no use of the time-ordering of the observations. The five
observation on a particular patient are treated as exchangeable. We might believe that neigh-
bouring observations are likely to be more strongly correlated than observations further apart.
We could allow for this by allowing autocorrelation of the observations. This could be done, for
example, using an autoregressive process or a moving average process. For illustration we will use
a first-order moving average process.

The model as it stands can be written

Yi,g,t = Pi,g + εi,g,t

where εi,g,t ∼ N(0, σ2
Y ).

Let us replace this with

Yi,g,t = Pi,g + εi,g,t + ηi,g,t + ηi,g,t+1

where εi,g,t ∼ N(0, σ2
ε) and ηi,g,t ∼ N(0, σ2

η). The conditional variance of Yi,g,t is now σ2
ε + 2σ2

η

so we would want this variance to correspond to the old σ2
Y . The conditional covariance between

Yi,g,t and Yi,g,t′ is now zero for |t− t′| > 1 but σ2
η for |t− t′| = 1.

Figure 5.2 shows modified BUGS code. Note that we have to allow for an extra ηi,g,6.

5.3.4 Example: growth curves

Growth curves are a special kind of longitudinal-data problem. We are often interested in how, for
example, individual children or young animals grow over time.

Here is a simple example taken from Gelfand et al. (1990). It can also be found as an example
on the BUGS Website.
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model bloodpressure

{for (i in 1:N)

{for (t in 1:5)

{y[i,t]~dnorm(ymean[i,t],tau.eps)

ymean[i,t]<-p[i]+eta[i,t]+eta[i,t+1]

}

for (t in 1:6)

{eta[i,t]~dnorm(0,tau.eta)

}

p[i]~dnorm(mu[group[i]],tau.p)

}

for (g in 1:2)

{mu[g]~dnorm(mu0,0.001)

}

mu0~dnorm(150,0.0005)

tau.eps~dgamma(1,30)

tau.eta~dgamma(1,10)

tau.p~dgamma(2,200)

}

Figure 5.2: BUGS code for blood pressure example with moving average errors.

The weights of thirty young rats are measured at weekly intervals for five weeks. A straight-line
model is used to relate weight to time. (We might well want to consider a more complicated form
of curve and possibly allow autocorrelation of deviations from the curve but, for this example, we
will stick to a straight line with independent “errors”). However the intercept and gradient of the
line are allowed to vary as random effects between rats.

The five times, in days, at which the weights are measured are t1 = 8, t2 = 15, t3 = 22, t4 =
29, t5 = 36. The weight of rat i on day tj is

Yi,j | αi, βi, τY ∼ N(αi + βi[tj − 22], τ−1Y ).

Now we need a model for how αi, βi vary between rats. We could simply write

αi | µα, τα ∼ N(µα, τ
−1
α )

βi | µβ , τβ ∼ N(µβ , τ
−1
β ) (5.1)

with αi, βi independent given the parameters. However it might be more realistic to allow them to
have a nonzero correlation. One way to do this (though not the way that it is done on the BUGS
Website) is to specify the conditional distribution of βi given αi. So, instead of (5.1) we write

βi | µβ , τβ , αi, γ ∼ N(µβ + γ[αi − µα], τ−1β ).

Finally we give prior distributions to the model parameters. The priors given here are based
(loosely) on those used in the example on the BUGS Website. They are meant to be “noninfor-
mative.”

µα ∼ N(0, 10000)

µβ ∼ N(0, 10000)

γ ∼ N(0, 4000)

τY ∼ Ga(0.001, 0.001)

τα ∼ Ga(0.001, 0.001)

τβ ∼ Ga(0.001, 0.001)
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model rats

{for (i in 1:N)

{for j in 1:5)

{mean[i,j]<-alpha[i]+beta[i]*(t[j]-22)

y[i,j] ~ dnorm(mean[i,j],tau.y)

}

alpha[i] ~ dnorm(mu.alpha,tau.alpha)

betamean[i]<-mu.beta+gamma*(alpha[i]-mu.alpha)

beta[i] ~ dnorm(betamean[i],tau.beta)

}

mu.alpha ~ dnorm(0,0.0001)

mu.beta ~ dnorm(0,0.0001)

gamma ~ dnorm(0,0.00025)

tau.y ~ dgamma(0.001,0.001)

tau.alpha ~ dgamma(0.001,0.001)

tau.beta ~ dgamma(0.001,0.001)

}

Figure 5.3: BUGS model specification for rats growth curves example.

Figure 5.3 shows suitable BUGS code.
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Hospital ni ri Hospital ni ri Hospital ni ri
1 47 0 5 211 8 9 207 14
2 148 18 6 196 13 10 97 8
3 119 8 7 148 9 11 256 29
4 810 46 8 215 31 12 360 25

Table 5.2: Mortality in twelve hospitals performing cardiac surgery on babies. ni : number of
operations at hospital i. ri : number of deaths at hospital i.

5.4 Practical 5

5.4.1 Hospital ranking

This example is taken from the BUGS Website. It concerns the mortality rates in twelve hospitals
performing cardiac surgery in babies. The data are shown in table 5.2.

Crude methods of comparing hospitals might be misleading. For example, the variance of the
observed proportions of deaths is large if the number of operations is smaller. Therefore a small
hospital could appear to have a very bad rate simply because of a small number of cases. Using a
random-effects model helps to smooth out such effects.

We suppose that, associated with hospital i there is a rate pi which, if it were known, would
be the probability of death at that hospital. We suppose that the number of deaths ri out of ni
operations at hospital i has a binomial distribution

ri ∼ Bin(ni, pi).

Then we write

bi = log

(
pi

1− pi

)
and

bi | µ, τ ∼ N(µ, τ).

We then gives priors to the parameters. These are the priors used on the BUGS Website. They
are so-called “noninformative” priors.

µ ∼ N(0, 106)

τ ∼ Ga(0.001, 0.001)

1. Type the following model specification into a file called hospitalbug.txt .

model hospital

{for (i in 1:N)

{r[i]~dbin(p[i],n[i])

logit(p[i])<-b[i]

b[i]~dnorm(mu,tau)

}

mu~dnorm(0.0,1.0E-6)

tau~dgamma(0.001,0.001)

}

Note that 1.0E-6 means 1.0× 10−6.

2. Type the data into a file called hospitaldata.txt as follows.

list(N=12, n=c(47,148,119,810,211,196,148,215,207,97,256,360),

r=c(0,18,8,46,8,13,9,31,14,8,29,24))
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3. Use BRugs to evaluate the posterior distribution. Monitor b1, . . . , b12 and compare the pos-
terior 95% intervals for these. Does any hospital stand out from the rest?

You will need to set some initial values. For example, to run two chains, create one file called

hospitalinits1.txt

containing the following

list(mu=-2.0, tau=2.0)

and another file called

hospitalinits2.txt

containing the following.

list(mu=-2.0, tau=20.0)

You would then need to issue commands as follows.

modelCheck("hospitalbug.txt")

modelData("hospitaldata.txt")

modelCompile(2)

modelInits("hospitalinits1.txt")

modelInits("hospitalinits2.txt")

modelGenInits()

You would then be ready to start updating (with or without setting a monitor). The final
modelGenInits() is necessary because our initial value files do not specify initial values for

all of the unknowns.

5.4.2 Rat growth

This is the “rats” example of section 5.3.4. The BUGS code is available on the Web page as
ratsbug.txt and there are two data files, also on the Web page, called ratsxdata.txt and
ratsydata.txt . Because there are two data files, you will need to start like this.

modelCheck("ratsbug.txt")

modelData("ratsxdata.txt")

modelData("ratsydata.txt")

Use BRugs to evaluate the posterior distribution. Monitor µα, µβ , γ, τy, τα and τβ . You could
also monitor the regression coefficients of individual rats, αi, βi, if you wish.

You will need to supply initial values for some of the unknowns. I suggest that you use two
chains and initialise them as follows.

modelCheck("ratsbug.txt")

modelData("ratsxdata.txt")

modelData("ratsydata.txt")

modelCompile(2)

modelInits("ratsinits1.txt")

modelInits("ratsinits2.txt")

modelGenInits()

Here is a suggestion for the contents of ratsinits1.txt

list(tau.y=1.0E-5,tau.alpha=1.0,tau.beta=10.0)

and here is a suggestion for the contents of ratsinits2.txt
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list(tau.y=5.0E-6,tau.alpha=10.0,tau.beta=100.0)

Set the sample monitors and do, say, 5000 updates. Then look at the results using samplesHistory .
You might be surprised at how poor the convergence is in this example. This is probably because
the parameters are poorly identified.

In fact things behave much better if we assume that αi and βi are conditionally independent
given µα, µβ , τα, τβ . Try this. Replace the lines

betamean[i]<-mu.beta+gamma*(alpha[i]-mu.alpha)

beta[i] ~ dnorm(betamean[i],tau.beta)

with the single line

beta[i] ~ dnorm(mu.beta,tau.beta)

in the model file and try fitting the model again.
Further investigation shows that the posteriors for τY , τα and τβ are sensitive to the choice of

priors for these parameters suggesting that the parameters are not well identified. Nevertheless,
in this case, the “noninformative” priors seem to give sensible results.

5.4.3 Vertebral fractures in older women.

Here is one for you to do yourselves.
The data come from Cooper et al. (1991). Osteoporosis is a problem for many post-menopausal

women. It can lead to bone fractures. Women were screened for evidence of vertebral fractures
according to a certain criterion. A subset of the data were as follows.

i Age group Total number Number with fracture
1 50-54 17 1
2 55-59 282 12
3 60-64 244 17
4 65-69 218 23
5 70-74 120 9
6 75-79 105 11
7 80- 18 5

Let the lower age limit of age-group i be xi. Let the number of women screened in this group
be ni and let the number classified as having vertebral fractures be yi. Then we assume

yi | ni, pi ∼ Bin(ni, pi)

with

log

(
pi

1− pi

)
= ηi = β0 + β1xi + δi.

Here β0 and β1 are parameters about which we wish to learn. We adopt the following indepen-
dent prior distributions.

β0 ∼ N(−3, 5),

β1 ∼ N(0, 1).

Because the relationship between age and logit of fracture rate might not really be a straight
line we allow some deviation by adding a random variable δi with

δi ∼ N(0, 0.001).

Use BRugs to evaluate the posterior distribution of β0, β1, η1, . . . , η7.
Convergence and mixing are poor. You will need a long burn-in. It might help if you use two

initial value files such as the following.
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list(beta0=-4.5, beta1=0.01)

list(beta0=-5.5, beta1=0.06)

Try also monitoring p1, . . . , p7. You can do this using

samplesSet("p")

The results are quite interesting.
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