
MAS8303 Modern Bayesian Inference

Part 2

M. Farrow
School of Mathematics and Statistics

Newcastle University

Semester 1, 2012-13

Chapter 4

Mixture Models

4.1 Mixtures

4.1.1 Finite mixtures as sampling distributions

In MAS3301 we looked at the use of mixture distributions as priors. We can also use mixtures as
sampling distributions.

There are two reasons why we might want to do this:

1. We might believe that there really are two or more sub-populations and it makes sense to
represent each by a component of the mixture. For example, the amount of a compound
found in blood samples taken from animals might depend on whether or not the animal
carries a particular infection. There are thus two sub-populations, one of infected animals
and one of non-infected animals. We might not know which animals are infected but it might
make sense to allow for these two sub-populations in a model. The distribution of the amount
of the substance might be bimodal.

2. Even when there is no “physical” interpretation of the mixture components, using a mixture
distribution allows more flexibility in the sampling model. We can relax the assumption that
the data are “normally distributed”, for example.

Consider a simple two-component mixture model. Our sampling model for observation Yi has
pdf

f(yi; π, θ1, θ2) = πf1(yi; θ1) + (1− π)f2(yi; θ2).

Here fj(y; θj) is the pdf for component j and depends on parameters θj . The component member-
ship probabilities are π and 1− π, with 0 ≤ π ≤ 1.

Suppose that we have n independent (given the parameters) observations y1, . . . , yn. The like-
lihood is

L =

n∏
i=1

{πf1(yi; θ1) + (1− π)f2(yi; θ2)} . (4.1)

This has a rather complicated form. For example, it is a polynomial of degree n in π.
More generally we could have J components with

f(yi; π,Θ) =

J∑
j=1

πjfj(yi; θj), (4.2)

where
∑J
j=1 πj = 1 and πj ≥ 0 for j = 1, . . . , J. In this case the likelihood is

L =

n∏
i=1


J∑
j=1

πjfj(yi; θj)

 . (4.3)

91

92 CHAPTER 4. MIXTURE MODELS

This could be very complicated.
We can make things much simpler by introducing a group-membership variable which is unob-

served. The values form auxiliary data so this is an example of data augmentation.
We introduce, for observation i, an auxiliary variable ci, which can take the values 1, . . . , J.

Then, given that ci = j, the conditional pdf for observation i is simply fj(yi; θj). The corresponding
conditional likelihood is then just

Lc =

n∏
i=1

πcifci(yi; θci).

Now we give ci a multinomial (or “categorical”) distribution, in which Pr(ci = j) = πj . We
give the parameters π = (π1, . . . , πJ)T and Θ = {θ1, . . . , θJ} a suitable prior distribution. Then,
by “integrating out”, i.e. “averaging over”, c1, . . . , cn, we obtain the correct posterior distribution.

The joint probability (density) that ci = j and Yi = yi is

f(yi, ci = j; π,Θ) = πjfj(yi; θj).

To find the marginal probability density of yi we sum over j and obtain (4.2) as required.

4.1.2 MCMC and label-switching

MCMC

Once we have the model set up with the auxiliary variables c1, . . . , cn as above, we have a prior
distribution with density f0(Θ, π) for the parameters and we have initial values for the unknowns,
Θ, π, c1, . . . , cn, then we can proceed with MCMC as follows.

1. Sample a new value for Θ.

The fcd density is proportional to

f0(Θ, π)

J∏
j=1

Lc,j

where
Lc,j =

∏
i∈Cj

fj(yi; θj)

and i ∈ Cj if ci = j. That is Cj is the set of observations currently assigned to component j.
We might well have f0(Θ, π) = f0,θ(Θ)f0,π(π) in which case the fcd density is proportional to

f0(Θ)

J∏
j=1

Lc,j

4.1. MIXTURES 93

2. Sample a new value for π.

The fcd density is proportional to

f0(Θ, π)

J∏
j=1

π
nj

j

where nj is the number of observations currently assigned to component j. If f0(Θ, π) =
f0,θ(Θ)f0,π(π) then the fcd density is proportional to

f0,π(π)

J∏
j=1

π
nj

j .

A popular choice for f0,π(π) would be a Dirichlet density. In this case the fcd is also a Dirichlet
distribution. Sampling from a Dirichlet distribution is quite easy.

3. Sample a new value for each of c1, . . . , cn.

The fcd is a categorical distribution with

Pr(ci = j) ∝ πjfj(yi; θj).

4. Repeat.

94 CHAPTER 4. MIXTURE MODELS

Label-switching

Consider the likelihood (4.1).
Suppose that both component distributions are of the same family so that the likelihood is

L =

n∏
i=1

{πfy(yi; θ1) + (1− π)fy(yi; θ2)} .

Suppose that we “switch the labels” and write

L̃ =

n∏
i=1

{
π̃fy(yi; θ̃1) + (1− π̃)fy(yi; θ̃2)

}
where π̃ = 1− π, θ̃1 = θ2 and θ̃2 = θ1.

Clearly L = L̃. The likelihood is therefore bimodal and, in fact, the modes match each other.
If the prior does not strongly favour one mode over the other then the posterior distribution will
also be bimodal.

In the more general case of (4.3) we can also permute the component labels and get the same
likelihood (provided that the distributions are all of the same family). This time the posterior will
be multimodal unless the prior strongly favours one mode.

Unless we do something about this, it can cause difficulties in MCMC sampling using the data-
augmentation method. If the posterior is multimodal then, eventually, the sampler will jump from
one mode to another. The auxiliary variables ci will suddenly change values so that observations
move from one component to another and the parameters “go with them.” This might only happen
after thousands of iterations. Therefore we might need a very large number of iterations before
the sampler has stayed in each mode the correct proportion of the time.

Clearly this behaviour is undesirable. If θj is a scalar parameter we can (usually) avoid the
problem by imposing an order constraint on the parameters. That is by requiring that θ1 < θ2 <
· · · < θJ .

I say “usually” because we can encounter another problem It may be that our mixture model
has J components but the data, through the likelihood, suggest only J − 1 components. Then we
might encounter switching between different possibilities for which label is the absent component.
There are more advanced methods, beyond the scope of this module, which can deal with this
problem.

When θj is a vector parameter we may need more ingenuity to devise suitable constraints.

4.1. MIXTURES 95

4.1.3 Multivariate mixtures

It is, of course, possible to make a mixture model where the observation y is multivariate. For
example, we might make several measurements on each of a sample of birds belonging to one
species with the idea that there might be two or more subspecies. In two dimensions we might
expect a plot of observations y1 against y2 to reveal “clusters” of observations.

4.1.4 Continuous mixtures

As well as the finite mixtures described above it is possible to have a mixture model with an infinite
number of components. It is also possible to have a continuous mixture. In a continuous mixture
model, instead of (4.2), we have, for example,

f(yi) =

∫
Ω

fθ(θ)fy(yi; θ, λi) dθ. (4.4)

Here θ is a parameter with a continuous distribution specified by the mixing density fθ(θ).
The range of values of θ is denoted by Ω. There may be other parameters which do not vary in
this way and these are denoted by λi.

We saw an example of this in Section 3.3.3 where we used Student-t errors in a regression. The
model was

Yi | µi, Xi ∼ N(µi, X
−1
i),

dσ2Xi ∼ χ2
d.

Here µi corresponds to λi in (4.4) and X corresponds to θ in (4.4). The mixing density is that

of a scaled χ2 distribution and fy(yi; θ, λi) in (4.4) corresponds to φ(X
1/2
i [yi − µi]) where φ() is

the standard normal pdf.

96 CHAPTER 4. MIXTURE MODELS

4.2 Mixture Examples

4.2.1 “Old Faithful”

Table 4.1 shows 299 successive waiting times, in minutes, between the starts of eruptions of the
“Old Faithful” geyser in the Yellowstone National Park, Wyoming, USA. The data are taken from
Azzalini and Bowman (1990).

Figure 4.1 shows histograms of the data and the logs of the data. In each case we appear to
see two distinct modes. However the human brain is very good at spotting patterns, even when
they are not there. The evidence in the data migh not be as strong as we imagine. Each of
the two-component mixture models below has five parameters, compared to two parameters for a
simple normal or gamma model. The likelihood might not distinguish very strongly between all
possible values of these five parameters. Therefore careful choice of a prior distribution might be
important. If we really believe that there are two sub-populations then our prior may need to
reflect this.

Normal mixture

Let us try using a two-component normal mixture model for the log intervals. So

Pr(ci = 1) = π

Pr(ci = 2) = 1− π
π ∼ Beta(aπ, bπ)

yi | µj , τj , ci = j ∼ N(µj , τ
−1
j)

µj | µ0 ∼ N(µ0 + δj , τ
−1
µ)

µ0 ∼ N(Mµ, Vµ)

τj ∼ Ga(aτ , bτ)

Notice that we have given µ1, µ2 a “hierarchical prior.” Each depends on µ0 which then has a
prior of its own. In order to avoid label switching we can impose the restriction µ1 < µ2. We also
push the conditional prior means of µ1, µ2 apart by making them µ0 + δ1 and µ0 + δ2 respectively,
where δ1 = −δ and δ2 = δ.

We could also use a hierarchical prior for τ1 and τ2 although this is not quite as straightforward
with gamma distributions as it is with normal distributions. I have just given them independent
priors here. There is no need to impose an order constraint on τ1, τ2.

The specification of the prior is completed by giving numerical values to aπ, bπ, aτ , bτ ,Mµ, Vµ, τµ, δ.
We will use the following values.

aπ = 3, bπ = 3, aτ = 4, bτ = 0.04,

Mµ = 4.0 ≈ log(60), Vµ = 0.30 ≈ (log(3)/2)2, τµ = 3.3 ≈ (log(3)/2)−2, δ = 0.2.

Figure 4.2 shows a BUGS model specification for this example.

4.2. MIXTURE EXAMPLES 97

80 71 57 80 75 77 60 86 77 56 81 50 89 54 90
73 60 83 65 82 84 54 85 58 79 57 88 68 76 78
74 85 75 65 76 58 91 50 87 48 93 54 86 53 78
52 83 60 87 49 80 60 92 43 89 60 84 69 74 71

108 50 77 57 80 61 82 48 81 73 62 79 54 80 73
81 62 81 71 79 81 74 59 81 66 87 53 80 50 87
51 82 58 81 49 92 50 88 62 93 56 89 51 79 58
82 52 88 52 78 69 75 77 53 80 55 87 53 85 61
93 54 76 80 81 59 86 78 71 77 76 94 75 50 83
82 72 77 75 65 79 72 78 77 79 75 78 64 80 49
88 54 85 51 96 50 80 78 81 72 75 78 87 69 55
83 49 82 57 84 57 84 73 78 57 79 57 90 62 87
78 52 98 48 78 79 65 84 50 83 60 80 50 88 50
84 74 76 65 89 49 88 51 78 85 65 75 77 69 92
68 87 61 81 55 93 53 84 70 73 93 50 87 77 74
72 82 74 80 49 91 53 86 49 79 89 87 76 59 80
89 45 93 72 71 54 79 74 65 78 57 87 72 84 47
84 57 87 68 86 75 73 53 82 93 77 54 96 48 89
63 84 76 62 83 50 85 78 78 81 78 76 74 81 66
84 48 93 47 87 51 78 54 87 52 85 58 88 79

Table 4.1: Waiting times, in minutes, between eruptions of the “Old Faithful” geyser. Data are to
be read along the rows.

Interval

D
en

si
ty

40 60 80 100

0.
00

0.
02

0.
04

Log Interval

D
en

si
ty

3.8 4.2 4.6

0.
0

1.
5

3.
0

Figure 4.1: Histograms of time intervals between eruptions of “Old Faithful” and logs of the
intervals.

98 CHAPTER 4. MIXTURE MODELS

model faithnorm

{for (i in 1:n)

{c[i]~dcat(q[])

y[i]~dnorm(mu[c[i]],tau[c[i]])

}

for (j in 1:2)

{tau[j]~dgamma(4,0.04)

}

mumean[1]<-mu0-0.2

mumean[2]<-mu0+0.2

mu[1]~dnorm(mumean[1],3.3) I(,mu[2]) # This imposes the order constraint.

mu[2]~dnorm(mumean[2],3.3) I(mu[1],)

mu0~dnorm(4.0,p.mu)

p.mu<-1/0.3

pi~dbeta(3,3)

q[1]<-pi

q[2]<-1-pi

}

Figure 4.2: BUGS model specification for “Old Faithful” normal mixture model.

Gamma mixture

As an alternative to the normal mixture for the log intervals, which is, of course, equivalent to a
lognormal mixture for the intervals, we could try a gamma mixture for the intervals themselves.

Pr(ci = 1) = π

Pr(ci = 2) = 1− π
π ∼ Beta(aπ, bπ)

ti | αj , βj , ci = j ∼ Ga(αj , βj)

βj = αj/λj

λj = exp(µj)

µj | µ0 ∼ N(µ0 + δj , τ
−1
µ)

µ0 ∼ N(Mµ, Vµ)

αj ∼ Ga(aα, bα)

Since the mean of a gamma(αj , βj) distribution is αj/βj and we set βj = αj/λj , the mean

4.2. MIXTURE EXAMPLES 99

model faithgamma

{for (i in 1:n)

{c[i]<-dcat(q[])

t[i]~dgamma(alpha[c[i]],beta[c[i]])

}

for (j in 1:2)

{alpha[j]~dgamma(3,0.1)

beta[j]<-alpha[j]/lambda[j]

lambda[j]<-exp(mu[j])

}

mumean[1]<-mu0-0.2

mumean[2]<-mu0+0.2

mu[1]~dnorm(mumean[1],3.3) I(,mu[2]) # This imposes the order constraint.

mu[2]~dnorm(mumean[2],3.3) I(mu[1],)

mu0~dnorm(4.0,p.mu)

p.mu<-1/0.3

pi~dbeta(3,3)

q[1]<-pi

q[2]<-1-pi

}

Figure 4.3: BUGS model specification for “Old Faithful” gamma mixture model.

interval, in component j, is λj . We then treat µj = log(λj) in the same way as we treated µj in the
lognormal mixture. Of course the log of the mean is not the same as the mean of the logs but, in
this case, this difference has little effect. (To avoid this slight discrepancy we would have to make
λj the median rather than the mean but this is not convenient with a gamma distribution).

I have not used a hierarchical prior for α1, α2. I have just given them independent priors here.
There is no need to impose an order constraint on α1, α2.

We will use the following values to complete the prior specification.

aπ = 3, bπ = 3, aα = 3, bα = 0.1,

Mµ = 4.0 ≈ log(60), Vµ = 0.30 ≈ (log(3)/2)2, τµ = 3.3 ≈ (log(3)/2)−2, δ = 0.2.

Figure 4.3 shows a BUGS model specification for this example.

4.2.2 Road vehicle headways

Cowburn (2003) describes the use of mixture models for the time gaps, or “headways”, between
vehicles passing along a road. See also Cowburn and Farrow (2007). The idea is that headways
fall naturally into one of two sub-populations:

1. Headways where the following vehicle is not impeded by the vehicle in front.

2. “Congested” headways where the following vehicle is impeded by the vehicle in front.

Cowburn proposed that non-congested headways would follows an exponential distribution, that
is a Ga(1, β1) distribution, and congested headways would follow a Ga(α2, β2) distribution with
α2 > 1. (A number of other mixture models have been proposed in the highway engineering
literature). Successive headways are independent (given the model parameters) in this version of
the model. We will see a version where this is not the case in the next lecture.

100 CHAPTER 4. MIXTURE MODELS

model headway;

{

for (i in 1:N)

{c[i]~dcat(q[])

t[i]~dgamma(alpha[c[i]],beta[c[i]])

}

alpha[1]<-1

alpha[2]<-1+aa

aa~dgamma(1,0.5)

beta[1]~dgamma(2,8) I(,bb)

beta[2]<-alpha[2]*bb

bb~dgamma(1,2) I(beta[1],)

pi~dbeta(1,2)

q[1]<-pi

q[2]<-1-pi

mu[1]<-1/beta[1]

mu[2]<-1/bb

}

Figure 4.4: BUGS specification for independent headways model.

A BUGS model specification is given in Figure 4.4. The constraint that α2 > 1 is imposed
by letting α2 = 1 + A where A ∼ Ga(aA, bA). In the BUGS code A is represented by aa. We
have aA = 2 and bA = 8. The mean headway in component 1 is µ1 = β−1

1 . The mean headway
in component 2 is µ2 = α2/β2. We set β2 = α2B where B ∼ Ga(aB , bB). In the BUGS code B is
represented by bb. We have aB = 1 and bB = 2. Thus µ2 = B−1. By imposing the constraint
B > β1 we ensure that µ1 > µ2. (So, in fact, B has truncated gamma distribution). The headways
are recorded in seconds.

4.3 Hidden Markov Models

4.3.1 Introduction

In the mixture models above, the unobserved (or latent) component memberships ci are indepen-
dent of each other, given the model parameters. Sometimes, when the data have a natural ordering,
as in a time series, we may wish to allow the component memberships to depend on each other.

Figure 4.5 shows the logarithms of the time intervals between eruptions of “Old Faithful”. The
ith log interval yi is plotted against the preceding log interval yi−1. Clearly successive intervals
are not independent. One way to model this might be to suppose that there are “short intervals”
and “long intervals” and that a short interval is always followed by a long interval but a long
interval may be followed by either a short interval or a long interval. Thus we could model the
sequence c1, . . . , cn using a two-state Markov chain with the following transition matrix, where
qj,k = Pr(ci = j | ci−1 = k). (

q1,1 q1,2

q2,1 q2,2

)
=

(
0 π
1 1− π

)
. (4.5)

Of course, before we saw the data we would not know about this pattern so it could be argued
that we should use a more general model in which we allow q1,1 > 0. In this case we would have

4.3. HIDDEN MARKOV MODELS 101

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

● ●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

3.8 4.0 4.2 4.4 4.6

3.
8

4.
0

4.
2

4.
4

4.
6

yi−−1

y i

Figure 4.5: Logarithms of time intervals between eruptions of “Old Faithful”. The ith log interval
yi is plotted against the preceding log interval yi−1.

(
q1,1 q1,2

q2,1 q2,2

)
=

(
1− π2 π1

π2 1− π1

)
. (4.6)

This is an example of a hidden Markov model or HMM. In this case there are two hidden states.
There are many different kinds of HMM and they have many applications, in such diverse areas as
time series, DNA sequences and linguistics. In general, in a HMM, we have a sequence of (possibly
vector) observations . . . yi−1, yi, yi+1 . . . where the distribution of yi depends on the value of an
unobserved (i.e. latent) (possibly vector) variable xi and the sequence . . . xi−1, xi, xi+1, . . . forms a
Markov chain. There may, of course, be more than two hidden states.

Figure 4.6 shows a DAG for a typical HMM. There will typically also be unknown parameters
on which the distributions depend but these have been omitted. Notice that (given the model
parameters) the observations Y only depend on each other through the latent variables X. Figure
4.7 shows a DAG with the addition of the unknown parameters µ = (µ1, µ2)T , τ = (τ1, τ2)T and

π, for a case where the conditional distribution of Yi when Xi = ci is N(µci , τ
−1
ci) for ci = 1, 2.

4.3.2 Two-state hidden Markov model

In the Old Faithful model, the latent variable Xi is the component membership ci and there are
two components. This is an example of a two-state HMM.

The transition matrix (4.6) defines the conditional distribution of ci given ci−1. To complete
the model specification we have to give a distribution to the initial state c1 (or to c0, the state
immediately before the start of the data). Very often we regard the process as stationary. That is

102 CHAPTER 4. MIXTURE MODELS

&%
'$
Xi−1

&%
'$
Yi−1

&%
'$

Xi

&%
'$

Yi

&%
'$
Xi+1

&%
'$
Yi+1

- - - -

6 6 6

Figure 4.6: Directed acyclic graph for hidden Markov model

&%
'$
Xi−1

&%
'$
Yi−1

&%
'$

Xi

&%
'$

Yi

&%
'$
Xi+1

&%
'$
Yi+1

- - - -

6 6 6

&%
'$

π

6

@
@

@
@
@
@I

�
�
�
�
�
��

&%
'$
µ, τ

?

�
�

�
�
�
�	

@
@
@
@
@
@R

Figure 4.7: Directed acyclic graph for hidden Markov model showing unknown parameters

4.3. HIDDEN MARKOV MODELS 103

the properties are not changing over time. In this case the initial state should have the stationary
distribution of the Markov chain which can be found by solving(

1− π2 π1

π2 1− π1

)(
P1

P2

)
=

(
P1

P2

)
for P1 and P2 with the constraint that P1 + P2 = 1. The solution is

P1 = Pr(c1 = 1) =
π1

π1 + π2
, P2 = Pr(c1 = 2) =

π2

π1 + π2
. (4.7)

Unfortunately we have two problems with this.

1. BUGS software can not (or could not) handle the resulting likelihood with the complication
of (4.7). We can, of course, write a Gibbs or Metropolis-Hastings algorithm of our own in
R or some other programming language. However we could also use a trick to make BUGS
work and which would give the correct result to a good approximation. The trick is to add
the states c−s, . . . , c0 as auxiliary variables for some reasonably large s (e.g. 30). We then
give c−s a convenient distribution, e.g. Pr(c−s = 1) = Pr(c−s = 2) = 0.5, or even just fix its
value. The choice of this distribution or value has little effect on the posterior distribution.
(This can be checked numerically). Figure 4.8 shows a BUGS model specification for the
“Old Faithful” model, using (4.5) and normal distributions for the log interval times.

2. The BUGS model shown in Figure 4.8 worked satisfactorily in previous years. However, this
year, it causes R to crash. This seems to be associated with a change in the version of R.
Perhaps a change needs to be made to the BRugs package and this has not been made.

Because of these problems, especially Point 2, we will not attempt to use BRugs for hidden
Markov models this year but, instead use specially-written R functions to demonstrate the use of
MCMC with these models. In many cases we can sample from most of the fcds straightforwardly.
The one exception is sampling values for π1 and π2 because of the term for the initial state. However
we can use a Metropolis-Hastings sampler for this and thus have a Metropolis-within-Gibbs scheme.

For sampling π1 and π2 we can proceed as follows.
Suppose that the current value of the state at time 1 is c1. Let

P (c1, π1, π2) =
πc1

π1 + π2
.

Let the current numbers of state transitions, according to the currently allocated states, be
n1,1, n1,2, n2,1, n2,2. That is, according to the allocation of observations to states at this itera-
tion, we have nj,k transitions from state k to state j. Let L? be the “likelihood” based just on
these transitions. Then

L? = (1− π2)n1,1π
n2,1

2 π
n1,2

1 (1− π1)n2,2 .

Suppose, for example, that we have independent beta prior distributions for π1 and π2, so that
the joint prior density for π1 and π2 is

g
(0)
1 (π1)g

(0)
2 (π2) ∝ πa1−1

1 (1− π1)b1−1πa2−1
2 (1− π2)b2−1.

Then, based just on L?, the joint “posterior” density is g
(1)
1 (π1)g

(1)
2 (π2) where g

(1)
1 (π1) is the density

of a Beta(a1 +n1,2, b1 +n2,2) distribution and g
(1)
2 (π2) is the density of a Beta(a2 +n2,1, b2 +n1,1)

distribution. As a proposal, we can sample values π1,prop and π2,prop for π1 and π2 from this joint
“posterior”. That is we take independent samples from the two beta distributions.

However the fcd has density k(n1,1, n1,2, n2,1, n2,2)P (c1, π1, π2)g
(1)
1 (π1)g

(1)
2 (π2) where the con-

stant k(n1,1, n1,2, n2,1, n2,2) does not depend on π1 or π2. Therefore, if π1,old and π2,old are the
current values, from the preceding iteration, the acceptance ratio is

104 CHAPTER 4. MIXTURE MODELS

model faithnormhmm

{p0[1]<-0.5

p0[2]<-0.5

cc[1]~dcat(p0[])

for (i in 2:30)

{cc[i]~dcat(q[,cc[i-1]]) # This is the "burn-in"section.

}

c[1]~dcat(q[,cc[30]]) # This is for the initial state.

for (i in 2:n)

{c[i]~dcat(q[,c[i-1]])

}

for (i in 1:n)

{y[i]~dnorm(mu[c[i]],tau[c[i]])

}

for (j in 1:2)

{tau[j]~dgamma(4,0.04)

}

mumean[1]<-mu0-0.2

mumean[2]<-mu0+0.2

mu[1]~dnorm(mumean[1],3.3) I(,mu[2]) # This imposes the order constraint.

mu[2]~dnorm(mumean[2],3.3) I(mu[1],)

mu0~dnorm(4.0,p.mu)

p.mu<-1/0.3

q[1,2]<-pi

pi~dbeta(1,1)

q[2,2]<-1-q[1,2]

q[1,1]<-0.0

q[2,1]<-1-q[1,1]

}

Figure 4.8: BUGS model specification for “Old Faithful” normal hidden Markov model.

4.4. PRACTICAL 4 105

A =
k(n1,1, n1,2, n2,1, n2,2)P (c1, π1,prop, π2,prop)g

(1)
1 (π1,prop)g

(1)
2 (π2,prop)

k(n1,1, n1,2, n2,1, n2,2)P (c1, π1,old, π2,old)g
(1)
1 (π1,old)g

(1)
2 (π2,old)

× g
(1)
1 (π1,old)g

(1)
2 (π2,old)

g
(1)
1 (π1,prop)g

(1)
2 (π2,prop)

=
P (c1, π1,prop, π2,prop)

P (c1, π1,old, π2,old)
.

When sampling the component memberships ci, the fcd depends on the transition probability
from the preceding state, the transition probability to the succeeding state and the conditional
density of the observation. So, for example, suppose that the conditional distributions are normal
with means µ1 and µ2 and precisions τ1 and τ2 and the observation is yi. Then write the conditional
densities as f(yi;µ1, τ1) and f(yi;µ2, τ2). Given that the preceding state is ci−1 and the succeeding
state is ci+1 and the transition matrix is as given in (4.6), then the “prior probability” that ci = j
is proportional to

Pr(ci = j | ci−1) Pr(ci+1 | ci = j) = qj,ci−1
qci+1,j .

Multiplying “prior” by “likelihood” we find that the fcd probability that ci = j is proportional to
qj,ci−1

qci+1,jf(yi;µj , τj). Therefore the fcd probability that ci = j is

qj,ci−1qci+1,jf(yi;µj , τj)∑2
c=1 qc,ci−1

qci+1,cf(yi;µc, τc)
.

Figures 4.9 and 4.10 show a R function for a two-state HMM, as developed here, with normal
conditional distributions. The conjugate normal-gamma form is used for the prior for each normal
distribution.Note that the R command table produces the transpose of the table of counts used in
these notes. Therefore, in the R function hmmnorm, the variables ns[2,1] and ns[1,2] correspond
to n1,2 and n2,1 respectively.

4.3.3 Forward-backward algorithm

Mixing can be poor when using a Gibbs sampler with a HMM if we sample the hidden state
at each time point separately. This is because there can be strong correlation in the posterior
distribution between the states at neighbouring time points. We can overcome this problem by
sampling the whole collection of hidden states as a block. This can be done using a procedure
called the forward-backward algorithm. We do not have time to cover this in this course. See, for
example, Scott (2002).

4.4 Practical 4

4.4.1 Simulated normal mixture data

Mixture models can sometimes be tricky to fit so we will start with an artificial example which is
deliberately made so that it will work well.

The data mixturedata.txt and the BUGS model file mixturenormbug.txt can both be ob-
tained from the web page.

1. It is often necessary to help the software by providing initial values for the Gibbs sampler.
In the case of mixture models it is also particularly important to check convergence. One
way to do this is to run the sampler more than once, starting with different initial values.
Therefore, use Notepad (or whatever you prefer) to create two different initial value files.
The first should be called

mixturenorminits1.txt

106 CHAPTER 4. MIXTURE MODELS

hmmnorm<-function(niter,prior,y)

{n<-length(y)

cv<-ifelse(y<mean(y),1,2) # Initialise component memberships.

m<- matrix(nrow=2,ncol=2)

mu<- matrix(nrow=niter,ncol=2)

tau<-matrix(nrow=niter,ncol=2)

pi<- matrix(nrow=niter,ncol=2)

proportion<-numeric(niter)

piprop<-numeric(2)

piold <-c(0.5,0.5)

for (iter in 1:niter)

{ns<-table(cv[1:(n-1)],cv[2:n]) # Count the transitions.

piprop[1]<-rbeta(1,prior$a[1]+ns[2,1],prior$b[1]+ns[2,2]) # Proposal for pi_1.

piprop[2]<-rbeta(1,prior$a[2]+ns[1,2],prior$b[2]+ns[1,1]) # Proposal for pi_2.

Pprop<-piprop[cv[1]]/sum(piprop) # Stationary probability.

Pold <-piold[cv[1]]/sum(piold) # Stationary probability.

A<-min(1,Pprop/Pold) # Acceptance probability.

U<-runif(1)

if (U<A) # M-H sampling for pi.

{pi[iter,]<-piprop

piold<-piprop

}

else

{pi[iter,]<-piold

}

m[1,1]<-1-pi[iter,2] # Transition matrix.

m[1,2]<-pi[iter,1]

m[2,1]<-pi[iter,2]

m[2,2]<-1-pi[iter,1]

for (comp in 1:2) # Sample other parameters.

{nc<-sum(cv==comp)

if (nc>0)

{ycomp<-y[cv==comp]

ybar<-mean(ycomp)

s2n<-(sum(ycomp*ycomp)-nc*ybar*ybar)/nc

ycd<-ycomp-prior$m[comp]

r2<-sum(ycd*ycd)/nc

k1<-prior$c[comp]+nc

d1<-prior$d[comp]+nc

m1<-(prior$c[comp]*prior$m[comp]+nc*ybar)/k1

vd<-(prior$c[comp]*r2+nc*s2n)/k1

v1<-(prior$d[comp]*prior$v[comp]+nc*vd)/d1

tau[iter,comp]<-rgamma(1,(d1/2),(d1*v1/2))

sd<-sqrt(1/(k1*tau[iter,comp]))

mu[iter,comp]<-rnorm(1,m1,sd)

}

else

{tau[iter,comp]<-rgamma(1,(prior$d[comp]/2),(prior$d[comp]*prior$v[comp]/2))

sd<-sqrt(1/(prior$c[comp]*tau[iter,comp]))

mu[iter,comp]<-rnorm(1,prior$m[comp],sd)

}

}

Figure 4.9: R function for a two-state HMM with normal conditional distributions (Part 1).

4.4. PRACTICAL 4 107

P<-pi[iter,]/sum(pi[iter,]) # Stationary probabilities.

pc<-P*m[cv[2],] # "Prior probs" for cv_1.

sd<-numeric(2)

for (comp in 1:2)

{sd[comp]<-sqrt(1/tau[iter,comp])

pc[comp]<-pc[comp]*dnorm(y[1],mu[iter,comp],sd[comp]) # "Prior times likelihood".

}

pc<-pc/sum(pc) # Normalise.

cv[1]<-2-rbinom(1,1,pc[1]) # Sample cv_1.

for (t in 2:(n-1))

{pc<-m[,cv[t-1]]*m[cv[t+1],] # "Prior probs" for cv_t.

for (comp in 1:2)

{pc[comp]<-pc[comp]*dnorm(y[t],mu[iter,comp],sd[comp]) # "Prior times likelihood".

}

pc<-pc/sum(pc) # Normalise.

cv[t]<-2-rbinom(1,1,pc[1]) # Sample cv_t.

}

pc<-m[,cv[n-1]] # "Prior probs" for cv_n.

for (comp in 1:2)

{pc[comp]<-pc[comp]*dnorm(y[n],mu[iter,comp],sd[comp]) # "Prior times likelihood".

}

pc<-pc/sum(pc) # Normalise.

cv[n]<-2-rbinom(1,1,pc[1]) # Sample cv_n.

proportion[iter]<-sum(cv==1)/n # Proportion in component 1.

}

out<-list(mu=mu,tau=tau,pi=pi,proportion=proportion)

out

}

Figure 4.10: R function for a two-state HMM with normal conditional distributions (Part 2).

108 CHAPTER 4. MIXTURE MODELS

and should contain the following.

list(mu=c(1,7),pi=0.3)

The second should be called

mixturenorminits2.txt

and should contain the following.

list(mu=c(1,7),pi=0.7)

So, we will start with very different probabilities of an observation being in component 1.

2. Check convergence of pi , the probability for component 1. We will set the two different
intial values in two separate chains and run them without burn-in periods.

modelCheck("mixturenormbug.txt")

modelData("mixturedata.txt")

modelCompile(2)

modelInits("mixturenorminits1.txt")

modelInits("mixturenorminits2.txt")

modelGenInits()

samplesSet("pi")

modelUpdate(1000)

samplesHistory("pi")

Look at the resulting graph. You should see that “convergence” has been quite quick.

3. Compute the posterior distribution. This time we will use a burn-in.

modelCheck("mixturenormbug.txt")

modelData("mixturedata.txt")

modelCompile(2)

modelInits("mixturenorminits1.txt")

modelInits("mixturenorminits2.txt")

modelGenInits()

modelUpdate(1000)

samplesSet(c("pi","mu","tau"))

modelUpdate(2000)

4. Look at the results. For example:

samplesStats(c("pi","mu","tau"))

samplesDensity("pi")

4.4.2 Old Faithful log-normal mixture

We will fit a two-component normal mixture to the logs of the intervals between eruptions of “Old
Faithful.”

The data geyserlogdata.txt and the BUGS model file faithnormbug.txt can both be ob-
tained from the web page.

Use Notepad (or whatever you prefer) to create two different initial value files. The first should
be called

faithnorminits1.txt

4.4. PRACTICAL 4 109

and should contain the following.

list(mu=c(4.0,4.4),pi=0.3)

The second should be called

faithnorminits2.txt

and should contain the following.

list(mu=c(4.0,4.4),pi=0.7)

So, we will start with very different probabilities of an observation being in component 1.

1. Check convergence of pi , the probability for component 1. We will set the two different
intial values in two separate chains and run them without burn-in periods.

modelCheck("faithnormbug.txt")

modelData("geyserlogdata.txt")

modelCompile(2)

modelInits("faithnorminits1.txt")

modelInits("faithnorminits2.txt")

modelGenInits()

samplesSet("pi")

modelUpdate(1000)

samplesHistory("pi")

Look at the resulting graph. Has “convergence” been quick?

2. Compute the posterior distribution. This time we will use a burn-in.

modelCheck("faithnormbug.txt")

modelData("geyserlogdata.txt")

modelCompile(2)

modelInits("faithnorminits1.txt")

modelInits("faithnorminits2.txt")

modelGenInits()

modelUpdate(1000)

samplesSet(c("pi","mu","tau"))

modelUpdate(2000)

3. Look at the results. For example:

samplesStats(c("pi","mu","tau"))

samplesDensity("pi")

4.4.3 Old Faithful gamma mixture

We will fit a two-component gamma mixture to the intervals between eruptions of “Old Faithful.”

The data geyserdata.txt and the BUGS model file faithgammabug.txt can both be obtained
from the web page.

We can use the same initial value files as we used for the normal mixture.

1. Check convergence of pi , the probability for component 1. We will set the two different
intial values in two separate chains and run them without burn-in periods.

110 CHAPTER 4. MIXTURE MODELS

modelCheck("faithgammabug.txt")

modelData("geyserdata.txt")

modelCompile(2)

modelInits("faithnorminits1.txt")

modelInits("faithnorminits2.txt")

modelGenInits()

samplesSet("pi")

modelUpdate(1000)

samplesHistory("pi")

Look at the resulting graph. Has “convergence” been quick?

2. Compute the posterior distribution. This time we will use a burn-in.

modelCheck("faithgammabug.txt")

modelData("geyserdata.txt")

modelCompile(2)

modelInits("faithnorminits1.txt")

modelInits("faithnorminits2.txt")

modelGenInits()

modelUpdate(1000)

samplesSet(c("pi","alpha","beta"))

modelUpdate(3000)

3. Look at the results. For example:

samplesStats(c("pi","alpha","beta"))

samplesDensity("pi")

samplesDensity("alpha")

samplesDensity("beta")

4. The marginal posterior distributions for β1 and β2 are quite similar. Perhaps values of β1 and
β2 which are close to each other would represent the data well. Let us look at the posterior
distribution of β1/β2.

beta1<-samplesSample("beta[1]")

beta2<-samplesSample("beta[2]")

betaratio<-beta1/beta2

plot(density(betaratio))

4.4.4 Road traffic headways (independent)

We will fit an exponential/gamma mixture model to some road traffic headway data. Two files of
data are avilable on the web page. They are:

dd01data.txt

feb28peledata.txt

The first was collected by my research student, Ged Cowburn. I collected the second. You can use
either one. They have slightly different characteristics.

The BUGS model file is also available on the Web page as headway0bug.txt.
We will need some initial value files. Create two files as follows.

headwayinits1.txt

containing

list(aa=2, bb=0.5, pi=0.1)

4.4. PRACTICAL 4 111

and

headwayinits2.txt

containing

list(aa=2, bb=0.5, pi=0.7)

1. Check convergence of pi , the probability for component 1. We will set the two differ-
ent intial values in two separate chains and run them without burn-in periods. I will use
dd01data.txt but you can use feb28peledata.txt if you wish.

modelCheck("headway0bug.txt")

modelData("dd01data.txt")

modelCompile(2)

modelInits("headwayinits1.txt")

modelInits("headwayinits2.txt")

modelGenInits()

samplesSet("pi")

modelUpdate(1000)

samplesHistory("pi")

Look at the resulting graph. You will probably see that the samplers have “converged” but
that “mixing” is not very good. Therefore we need to take a large number of samples.

2. Compute the posterior distribution. This time we will use a burn-in.

modelCheck("headway0bug.txt")

modelData("dd01data.txt")

modelCompile(2)

modelInits("headwayinits1.txt")

modelInits("headwayinits2.txt")

modelGenInits()

modelUpdate(2000)

samplesSet(c("pi","alpha","beta"))

modelUpdate(10000)

3. Look at the results. For example:

samplesStats(c("pi","alpha","beta"))

samplesDensity("pi")

samplesDensity("alpha")

samplesDensity("beta")

4.4.5 Old Faithful (log-normal hidden Markov model)

Try fitting the log-normal hidden Markov model to the Old Faithful data. The R function shown
in Figures 4.9 and 4.10 is available on the Web page as hmmR.txt. It seems to work well despite the
fact that I have not used any defence against label-switching, other than giving the two components
different prior means and initialising the component memberships to favour the correct allocation.
The logs of the intervals, in a suitable form, are in a file geyserlogdatab.txt on the Web page.

1. Load the data:

y<-scan("geyserlogdatab.txt")

2. Set up the prior:

112 CHAPTER 4. MIXTURE MODELS

a<-c(1,1)

b<-c(1,1)

m<-c(3.5,4.5)

d<-c(8,8)

v<-c(0.01,0.01)

c<-c(0.01,0.01)

prior<-list(a=a,b=b,m=m,d=d,v=v,c=c)

3. Install the function:

source("hmmR.txt")

4. Try, for example, 1000 iterations:

test<-hmmnorm(1000,prior,y)

5. Have a look at the results. For example:

mu<-test$mu

Iteration<-1:1000

plot(Iteration,mu[,1],type="l",col=2,ylim=c(3.5,5))

lines(Iteration,mu[,2],col=3)

pi<-test$pi

plot(Iteration,pi[,1],type="l",col=2,ylim=c(0.0,1.0))

lines(Iteration,pi[,2],col=3)

plot(density(mu[,1]))

In particular, notice that, as expected π2 turns out to be close to 1.

6. Try anything else you like.

Note that the function gives a single chain. If you want to try multiple chains, you have to run
the function multiple times.

4.4.6 Headways (hidden Markov model)

Cowburn and Farrow (2007) discussed fitting hidden Markov models to series of road-vehicle head-
ways. The two component distributions were as in section 4.2.2. The transition matrix was as in
(4.6).

This model is complicated by the fact that both parameters are unknown in one of the con-
ditional gamma distributions and sampling the fcd for the “shape” or “index” parameter (ie the
first parameter) is not straightforward. To avoid this complication we will fix its value at 4.0.

You can download a suitable R function from the file hmmheadwayR.txt on the Web page. I
have marked with ###### the places where changes have been made from hmmR.The first set of
headway data is available in the file dd01datab.txt on the Web page. (You could also easily edit
the other set to make it usable this way if you so wished). The function seems to work well even
though, again, I have not really defended against label switching.

1. Load the data:

t<-scan("dd01datab.txt")

2. Set up the prior:

a<-c(1,1)

b<-c(2,2)

abeta<-c(2,1)

bbeta<-c(8,0.5)

priorh<-list(a=a,b=b,abeta=abeta,bbeta=bbeta)

4.4. PRACTICAL 4 113

3. Install the function:

source("hmmheadwayR.txt")

4. Try, for example, 1000 iterations:

test<-hmmheadway(1000,priorh,t)

5. Have a look at the results. For example:

mean<-test$mean

Iteration<-1:1000

plot(Iteration,mean[,1],type="l",col=2,ylim=c(0,20),ylab="Mean headway")

lines(Iteration,mean[,2],col=3)

lrr<-log(test$pi[,2]/(1-test$pi[,1]))

plot(density(lrr))

I expect that you will see that a short burn-in might help. You can easily delete the first few
iterations from the output.

The quantity lrr is the log relative risk for being in component 2 next time comparing
being in component 1 now with being in component 2 now. As you can see, there is little
evidence that this differs much from zero. Thus there is little evidence that the component
memberships are not independent and that we need a hidden Markov model at all. At least,
this is what is suggested by this model!

6. Try anything else you like.

