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Chapter 3

Missing Data and Data
Augmentation

3.1 Introduction to Graphical Models

In the rest of the module it will sometimes be useful to use graphical representations of models.
We will look at a particular type of graph called a directed acyclic graph or dag.

Suppose that we are going to observe a number of animals of the same species. Each animal
might or might not have a particular gene. Suppose that all animals in the population are con-
sidered to be exchangeable with respect to having this gene. Let Ti = 1 if animal i has the gene.
Otherwise Ti = 0. Because of the exchangeability, we can represent the relationships in our beliefs
about T1, T2, . . . by introducing θ to represent the unknown overall proportion of animals in the
population which have the gene. The graph for two animals is shown in Figure 3.1.

With three unknowns, A,B,C, we can always write the joint probability as

Pr(A,B,C) = Pr(A) Pr(B|A) Pr(C|A,B).

In the example this might have led us to write

Pr(θ, T1, T2) = Pr(θ) Pr(T1|θ) Pr(T2|θ, T1).

In fact the last term is just Pr(T2|θ) since T2 is conditionally independent of T1 given θ. In other
words we do not draw an arrow (or arc) from T1 to T2 in figure 3.1. We can build up the joint
probability as a product of one marginal probability and a sequence of conditional probabilities.
The direction of the arcs denotes the order in which we are doing this and the arcs leading into a
node indicate on which other unknowns we need to condition at each step. In a way, the important
feature, therefore, is which possible arcs are missing. Note that we can not have a directed cycle
in such a graph. The graphs are sometimes called directed acyclic graphs or DAGs. They are also
sometimes called influence diagrams.

Figure 3.2 gives another example of a DAG. Here A and D are independent, B and E are
conditionally independent given C and each of B,E is conditionally independent of each of A,D
given C. The joint probability can be written

Pr(A,B,C,D,E) = Pr(A) Pr(D) Pr(C|A,D) Pr(B|C) Pr(E|C). (3.1)

There is no unique graph for a group of random variables.

Suppose, in the example of figure 3.2, we wanted A to be the only node with no parents. This
means reversing the direction of the arc between D and C. It is not quite as simple as this though.
The joint probability is given by (3.1). By Bayes theorem,

Pr(C | A,D) =
Pr(C | A) Pr(D | A,C)

Pr(D | A)
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Figure 3.1: Graphical model for animals example

Figure 3.2: Directed acyclic graph
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Figure 3.3: Arc reversal

but Pr(D | A) = Pr(D) so

Pr(D) Pr(C | A,D) = Pr(C | A) Pr(D | A,C).

Hence we replace (3.1) with

Pr(A,B,C,D,E) = Pr(A) Pr(C|A) Pr(D|A,C) Pr(B|C) Pr(E|C).

So (unless D is conditionally independent of A given C, which would not be true in general)
we need to add an arc from A to D, as in figure 3.3. The general rule is that we can reverse the
direction of an arc between two nodes, N1 and N2, provided that

1. we do not create a directed cycle by doing so and

2. any node which is a parent of either N1 or N2 is made a parent of both.

See Figure 3.3.
Going back to figure 3.2, suppose we wished to eliminate C. Then we could replace (3.1) with

Pr(A,B,D,E) = Pr(A) Pr(D) Pr(B|A,D) Pr(E|A,B,D)

which gives the diagram in figure 3.4. To see this, first note that we can always remove a node
which has no children without having to make any other changes. This is obvious since we are just
dropping a term from the end of the joint probability factorisation. So, we can arrange for the
node which we want to delete to have no children by suitable arc reversals. For example, starting
with figure 3.2, we could reverse the arc between B and C and then reverse the arc between C and
E. This would leave us with figure 3.4. If we did the reversals in the other order we would get a
slightly different result.

The procedure using arc reversals to eliminate a node will work but we might end with a graph
which has more arcs than are necessary. There is a general rule which can be used which avoids
this problem. (You need not memorise this rule). The general rule is as follows. If a node N is
eliminated then:

• every child of N inherits all parents of N,

• every pair of the children of N is connected by an arc,

• every child that receives an arrow from another child inherits all parents of the latter.

See Pearl, Geiger and Verma (1990) p82.
Figure 3.5 shows a simple repeated measures model with three observations on each of two

individuals. The model is as follows.
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Figure 3.4: Node deletion

Suppose we have k samples of observations and observation j in sample i is

Yij = θi + εij

for j = 1, . . . , J, where εij ∼ N(0, σ2
ε) and θi ∼ N(µ, σ2

θ) (all independent).
Suppose we have independent priors for the three parameters:

µ ∼ N(µ0, σ
2
0)

σ2
θ ∼ IG(a1, b1)

σ2
ε ∼ IG(a2, b2)

where IG stands for “inverse gamma” (i.e. (σ2)−1 has a gamma distribution).
The diagram shows the model with k = 2 and J = 3.
We will see similar models in a later lecture.
Figure 3.6 shows an example of how we might represent relationships in our prior beliefs about

quantities. Here M1,M2,M3 are all related because they share a common parent, U3. Thus, if we
learn something about M1 this will affect our beliefs about M2 and M3. Furthermore M1 is more
strongly related to M2 than to M3 because M1 and M2 share a common parent, U1, which is not
a parent of M3.
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Figure 3.5: Repeated measures model

Figure 3.6: Three related quantities
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3.2 Missing Data

3.2.1 Motivation

Consider a regression model with a dependent variable Y and explanatory variables X1, . . . , Xp.
This could be a linear model, a generalised linear model or some other kind of model such as a
survival model. In some cases the values of X1, . . . , Xp will be deliberately chosen in a designed
experiment. In other cases the data will arise from an observational study in which we observe
the variables for each of a sample of individuals from some population. In the latter case it is
possible that, for some reason, the values of one or more of the explanatory variables are missing.
In fact this is not particularly unusual. Regression is not the only situation where this might be a
problem. It might apply in other cases wher we make multivariate observations.

What can we do? We can not simply make inferences about the model parameters in the
ordinary way when observations on some variables are missing. One possibility would be simply
to delete any obervation where there are missing data. This is not satisfactory for two reasons as
follow.

1. We would be losing information which could be used.

2. We might make misleading inferences as a result. It could be that the cases where data are
missing are also different in some other way from the complete cases.

From the Bayesian viewpoint the missing values are simply “unknowns” in the same way as
other unknowns such as model parameters. We can therefore extend our model to include a model
for the variables which may be missing. If a variable X is sometimes, but not always, missing
then we can (subject to certain assumptions – see below) use the cases where it is present to
learn about its relationship with other variables. Therefore we can obtain a posterior distribution
for the missing values. In fact we obtain a joint posterior distribution for the model parameters
and the missing values. We can then “integrate out” the missing values to obtain the marginal
posterior distribution of the model parameters. In effect, our inferences about model parameters
are “averaged” over the distribution of possible values of the missing data. MCMC methods
are well suited to handling problems of this type and it is often quite straightforward to handle
missing-data problems using software such as BUGS.

We need to do two things:

1. We need to consider the nature of the “missingness” to see what it makes sense to do.

2. If it does make sense to proceed then we need a “missing data model”. That is a model
which shows how the variables which are sometimes missing are related to other variables.

3.2.2 Different kinds of missingness

Suppose that we make a multivariate observation Y on each of a number of individuals. In the
regression example above, Y would contain both the dependent variable Y and the explanatory
variable X1, . . . , Xp. For an individual i the vector of values of the variables is y

i
= (yi,1, . . . , yi,J)T .

However some of the values yi,1, . . . , yi,J might be missing and therefore not observed. We introduce
the inclusion indicator Ii = (Ii,1, . . . , Ii,J)T where Ii,j = 1 if yi,j is observed and Ii,j = 0 if yi,j is
missing.

We introduce (vector) parameters θ, φ such that, given θ and φ, we can write the joint proba-
bility (density) of y

i
, Ii as

fy,I(yi, Ii | θ, φ) = fy(y
i
| θ)pI(Ii | y, φ).

Let us consider all of the data (for all individuals) together. We write y for the complete data
on all individuals, I for the inclusion indicator for all individuals, which is now a matrix, and so
on. Then we write

fy,I(y, I | θ, φ) = fy(y | θ)pI(I | y, φ).

(The meaning of f and p has, of course, changed here).
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Missing data mechanism :

Observed data and likelihood :

Missingness at random :
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Ignorable missing-data mechanism :

Missingness completely at random :

Notice that it is not usually necessary to assume MCAR for Bayesian inference. It is usually
sufficient to have MAR - ignorable.

The MAR assumption is more plausible when we observe a large number of variables since the
observed values are then more likely to convey enough information to make missingness condition-
ally independent of the missing values.

3.2.3 Missing data models

Consider the abrasion loss example in Practical 1 (Section 1.4.1). Suppose that some of the
hardness (X1) and tensile strength (X2) measurements are missing.

We need a model for the joint distribution of X1 and X2. The existing regression model is just
a model for the conditional distribution of Y given X1 and X2. For example, we could say

X1 | µ1, τ1 ∼ N(µ1, τ
−1
1 )

µ1 ∼ N(60, 400)

τ1 ∼ Ga(1, 100)

X2 | x1, δ1, δ2, τ2 ∼ N(δ1 + δ2[x1 − 60], τ−12 )
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δ1 ∼ N(200, 2500)

δ2 ∼ N(0, 1)

τ2 ∼ Ga(1, 2000)

Notice that we have done this by giving X1 a distribution and then giving X2 a conditional
distribution given X1. (Of course we could have done it the other way round). There are many
possibilities for the way we build a “missing data model” depending on what the variables are. For
example, we might have a binary variable which we could relate to a continuous variable through a
logistic regression (or we could give the continuous variable two different conditional distributions
depending on the value of the binary variable).

Figure 3.7 shows a BUGS model specification in the abrasion loss example. (Note that we are
not using the fully conjugate prior here). The data file would simply contain NA where a value is
missing.

model abrasion

{for (i in 1:30)

{loss[i]~dnorm(lossmean[i],tau)

lossmean[i]<-alpha+beta[1]*(hard[i]-60)+beta[2]*(tens[i]-200)

hard[i]~dnorm(muhard,tau.hard)

tens[i]~dnorm(tensmean[i],tau.tens)

tensmean[i]<-delta[1]+delta[2]*(hard[i]-60)

}

alpha~dnorm(150,0.000625)

beta[1]~dnorm(0,0.0025)

beta[2]~dnorm(0,0.0025)

beta0<-alpha+60*beta[1]+200*beta[2]

muhard~dnorm(60,0.0025)

delta[1]~dnorm(200,0.0004)

delta[2]~dnorm(0,1)

tau.tens~dgamma(1,2000)

tau.hard~dgamma(1,100)

tau~dgamma(2,3200)

}

Figure 3.7: BUGS model specification for abrasion loss example with missing data
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3.3 Data augmentation

3.3.1 Introduction

Some models have rather complicated likelihood functions which, if handled directly, would lead
to difficult calculations. Sometimes it is possible to make things much simpler by introducing
extra variables, known as auxiliary variables, which are not observed but, which, if they were
observed, would make the likelihood simpler. These auxiliary variables are then treated as if they
were missing data. This is known as data augmentation. MCMC methods are well suited to this
approach.

3.3.2 Example 1: Mixture models

In MAS3301 we looked at the use of mixture distributions as priors. We can also use mixtures as
sampling distributions. The likelihood can be complicated and difficult to calculate but we can
make things much simpler by introducing a group-membership variable which is unobserved. We
will look at the case of mixtures in Chapter 4.

3.3.3 Example 2: Student t-model

In a normal linear model we have

Yi | µi, σ2 ∼ N(µi, σ
2)

where µi =

J∑
j=1

βjxi,j

Suppose instead we want to use a Student’s t-distribution for the errors so

Yi − µi
σ

| µi, τ ∼ td,

where td represents the Student’s t distribution on d degrees of freedom. We assume that d is
chosen. A small value of d makes the error distribution “heavy-tailed.”

The likelihood in this model is such that sampling for a Gibbs sampler would be difficult.
However we can overcome this problem by introducing auxiliary variables Xi where

dσ2Xi ∼ χ2
d.

Then we let

Yi | µi, Xi ∼ N(µi, X
−1
i ).

Now we get the following properties.

• Yi has the required error distribution.

Proof: Since dσ2Xi ∼ χ2
d we have Xi ∼ Ga(d/2, dσ2/2). Therefore the joint density of Xi

and Yi given µi and σ2 is

fX,Y (xi, yi | µi, σ2) = (2π)−1/2x
1/2
i exp

{
−xi

2
(yi − µi)2

} (dσ2/2)d/2x
d/2−1
i e−dσ

2xi/2

Γ(d/2)

= (2π)−1/2
(dσ2/2)d/2

Γ(d/2)
x
(d+1)/2−1
i e−xi[dσ

2+(yi−µi)
2]/2

=
(2π)−1/2(dσ2/2)d/2Γ([d+ 1]/2)

Γ(d/2)([dσ2 + (yi − µi)2]/2)(d+1)/2

× ([dσ2 + (yi − µi)2]/2)(d+1)/2

Γ([d+ 1]/2)
x
(d+1)/2−1
i e−xi[dσ

2+(yi−µi)
2]/2
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Now integrate with respect to xi and the second term, which is a gamma density, integrates
to 1. So the density of Yi is

fY (Yi) =
(2π)−1/2(dσ2/2)d/2Γ([d+ 1]/2)

Γ(d/2)([dσ2 + (yi − µi)2]/2)(d+1)/2

= π−1/2dd/2σd
Γ([d+ 1]/2)

Γ(d/2)
[dσ2 + (yi − µi)2]−(d+1)/2

= (πd)−1/2σ−1
Γ([d+ 1]/2)

Γ(d/2)

[
1 + d−1

(
yi − µi
σ

)2
]−(d+1)/2

Now let Ti = (Yi − µi)/σ. Then dt/dy = 1/σ so the density of Ti is

fT (ti) = (πd)−1/2
Γ([d+ 1]/2)

Γ(d/2)

[
1 +

t2

d

]−(d+1)/2

.

This is the density of a td distribution, as required.

• Given a multivariate normal prior for β1, . . . , βJ , the full conditional distribution of β1, . . . , βJ
(conditioning on values for X1, . . . , XJ) is also multivariate normal and therefore easy to
sample.

• Given a value for σ2 and values for µ1, . . . , µn, the full conditional distribution for each Xi

is a gamma distribution and therefore easy to sample.

• Given values for X1, . . . , Xn and a gamma prior for σ2 (Note: σ2 in this case, not τ = σ−2),
the full conditional distribution of σ2 is also a gamma distribution and easy to sample.

3.3.4 Example 3: Integrated moving average processes

Integrated moving average processes are commonly used as models for nonstationary time series.
The integrated first order moving average process, denoted IMA (0,1,1), is especially useful.

Let the observation at time t be yt. Let zt = yt − yt−1. Then we model zt using a first order
moving average, MA(1), process

zt = εt + θεt−1

where . . . , εt−2, εt−1, εt, εt+1, . . . are independent and each has distribution εj ∼ N(0, σ2), given
σ2.

This is a stationary process. For reasons of identifiability we restrict θ to −1 ≤ θ ≤ 1. Given
the parameters, the moments of the process are as follows.

E(zt) = 0,

γ0 = var(zt) = σ2(1 + θ2),

γ1 = covar(zt, zt−1) = σ2θ,

γk = covar(zt, zt−k) = 0 (k > 1).

(Note that the mean is zero because we have not added a nonzero “drift” into the model).
If we observe y = (y1, . . . , yn)T then, we can transform this to the equivalent observation

y1, z2, . . . , zn where z2, . . . , zn is a realisation of a MA(1) process. Given the parameters, this is an
observation from a multivariate normal distribution in which the variance matrix is a function of
the unknown parameters σ2 and θ.

Things take on a simpler form if we observe that, conditional on εt−1 and the model parameters,
the distribution of zt is normal with mean

E(zt | εt−1, θ) = θεt−1

and variance σ2. This now looks like a straightforward normal linear regression (with no intervept
because we are not fitting a nonzero mean). However, we need to know the values of εt−1. Apart
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from one catch, this problem is easily solved since, if we know εt−1 and zt and the parameters, we
can calculate

εt = zt − θεt−1.

Therefore we can calculate the ε values recursively through the time series. The catch is that we
need a starting value at the beginning of the series and we do not have it. That is, we do not
have ε1 which we need to calculate ε2. The solution is to augment the data by including ε1 as an
auxiliary variable. Since y1 and ε1 are not independent and we have the observation y1, we really
ought to use this information. One way to do this is to write y1 = µ + ε1 and specify a (normal)
prior for µ.
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Figure 3.8 shows a possible BUGS model specification using this second approach. We can
regard x1, . . . , xn as auxiliary data. In fact, in this model specification I have also introduced x0
to help to construct the prior. There are different ways to construct priors for models of this sort
but a method like that shown here is often used if we wish to use the model for forecasting.
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model ima

{

for (i in 1:n)

{y[i]~dnorm(x[i],tau.y)

}

x0~dnorm(400,0.0001)

x[1]~dnorm(x0,tau.x)

for (i in 2:n)

{x[i]~dnorm(x[i-1],tau.x)

}

tau.x~dgamma(1,10)

tau.y~dgamma(1,10)

k<- -(tau.y/tau.x+2)

theta1<-k+sqrt(pow(k,2)-4)

theta2<-k-sqrt(pow(k,2)-4)

theta<-max(theta1,theta2)

sigmasq<- -1/(theta*tau.y)

}

Figure 3.8: BUGS model specification for integrated moving average IMA (0,1,1) process

3.4 Practical 3

3.4.1 Abrasion Loss

Consider the abrasion loss example in Practical 1 (Section 1.4.1). Suppose that some of the
hardness (X1) and tensile strength (X2) measurements are missing.

1. Obtain a copy of the data file abrasion.txt used in Practical 1. Edit the file by changing
the first two hardness values to NA and the third and fourth tensile strength values to NA.
Add headings for the columns as shown below. The first few lines of the file should now look
like this.

loss[] hard[] tens[]

372 NA 162

206 NA 233

175 61 NA

154 66 NA

136 71 231

112 71 237

We now have four missing values in the file.

Add the word END at the end of the file. The end of the file should now look like this.

283 65 148

267 74 144

215 81 134

148 86 127

END

Save the file with the name abmiss.txt .
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2. Obtain a copy of the BUGS model file from the module Web page.

3. In R, check the syntax of the model.

modelCheck("abmissbug.txt")

4. Load the data.

modelData("abmiss.txt")

5. Compile the model.

modelCompile()

6. Generate initial values.

modelGenInits()

7. Run the sampler for a burn-in period.

modelUpdate(5000)

8. Start recording samples. You do not have to record everything, of course, but, in this case,
it might be interesting to see the sampled values of the missing data as well as the model
parameters.

samplesSet(c("beta0","beta","tau","muhard","tau.hard","delta","tau.tens","hard","tens"))

9. Run the sampler for some more iterations.

modelUpdate(10000)

10. Look at the results in the various ways which you have seen and compare the posterior
summaries with those obtained in Practical 1 when no observations were missing.

11. Try running this model again but this time with two chains to check convergence. To see
what happens we will not use a burn-in.

modelCheck("abmissbug.txt")

modelData("abmiss.txt")

modelCompile(2)

modelGenInits()

samplesSet(c("beta0","beta","tau","muhard","tau.hard","delta","tau.tens","hard","tens"))

modelUpdate(10000)

samplesHistory("beta0")

Etc.
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model abrasion

{for (i in 1:30)

{loss[i]~dnorm(lossmean[i],x[i])

lossmean[i]<-alpha+beta[1]*(hard[i]-60)+beta[2]*(tens[i]-200)

x[i]~dgamma(5,w)

}

alpha~dnorm(150,0.000625)

beta[1]~dnorm(0,0.0025)

beta[2]~dnorm(0,0.0025)

beta0<-alpha+60*beta[1]+200*beta[2]

w<-5*v

v~dgamma(2,0.00125)

}

Figure 3.9: BUGS model specification for abrasion loss example with Student t errors.

3.4.2 Abrasion loss with t errors

Let us analyse the abrasion loss data again, this time with no missing data but with Student t
errors.

1. Create a new model file, perhaps by editing abmissbug.txt. Save the file as abtbug.txt.
The file should look like figure 3.9. We set the degrees of freedom to 10. We will use data
augmentation (although, in fact, BRugs is probably clever enough to handle the problem
even without this).

2. Create a data file, called abrasion.txt, like abmiss.txt but with none of the observations
missing.

3. Try the analysis.

modelCheck("abtbug.txt")

modelData("abrasion.txt")

modelCompile()

modelGenInits()

modelUpdate(5000)

samplesSet(c("beta0","beta","v"))

modelUpdate(10000)

samplesHistory("beta0")

Etc.

4. Compare the results with the results in Practical 1. What do you think is the effect of using
t rather than normal errors?

3.4.3 IBM Stock Prices

Table 3.1 shows 160 consecutive daily IBM common stock closing prices. The data may be obtained
from the Module Web Page. They were obtained from Box and Jenkins (1976). Box and Jenkins
suggest fitting an IMA (0,1,1) model to these data.

1. Use the model file shown in Figure 3.8 to analyse these data. You can obtain the model file
from the Module Web Page.
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460 457 452 459 462 459 463 479 493 490 492 498 499 497 496 490
489 478 487 491 487 482 479 478 479 477 479 475 479 476 476 478
479 477 476 475 475 473 474 474 474 465 466 467 471 471 467 473
481 488 490 489 489 485 491 492 494 499 498 500 497 494 495 500
504 513 511 514 510 509 515 519 523 519 523 531 547 551 547 541
545 549 545 549 547 543 540 539 532 517 527 540 542 538 541 541
547 553 559 557 557 560 571 571 569 575 580 584 585 590 599 603
599 596 585 587 585 581 583 592 592 596 596 595 598 598 595 595
592 588 582 576 578 589 585 580 579 584 581 581 577 577 578 580
586 583 581 576 571 575 575 573 577 582 584 579 572 577 571 560

Table 3.1: One hundred and sixty consecutive daily IBM common stock closing prices. The data
are to be read along the rows.

2. We can calculate forecasts in a straightforward way. Edit the data file. Change n=160 to
n=164. Add NA four times at the end of the list of y values, separated by commas. Repeat
the analysis but this time you can record the values of the “missing” Y values, by monitoring
y, and thus obtain a forecast distribution.

3.5 Exercise

Table 3.2 shows the numbers of patients undergoing surgery and the numbers who died in the
hospital following surgery in two areas of the USA, broken down by age-group and sex. The data
are taken from Mosteller and Tukey (1977).

We propose the following model. There are four area-sex groups:

Group 1 : Males in Area 1.

Group 2 : Females in Area 1.

Group 3 : Males in Area 2.

Group 4 : Females in Area 2.

Given the model parameters, the number of deaths in Area-Sex Group j and Age-group k has a
binomial Bin(nj,k, pj,k) distribution where nj,k is the number of patients undergoing surgery and

log

(
pj,k

1− pj,k

)
= αj + βj(xk − 50)

where xk is the mid-point of the age-range for age-group k.

We need to make inferences about the eight model parameters, α1, . . . , α4, β1, . . . , β4.

1. Suppose that we consider “typical” patients aged 50. Suppose that for such patients, the
probability p0 of death is α0 and we give α0 a normal prior distribution. Suppose that, in
our prior beliefs, Pr(p0 < 0.02) = Pr(p0 > 0.10) = 0.025. Find the mean and variance of our
normal prior distribution for α0.

2. Our joint prior distribution for α1, . . . , α4 can be represented as follows. We write

αj | ᾱ ∼ N(ᾱ, Vα,1) for j = 1, . . . , 4.

ᾱ ∼ N(mα, Vα,0).

Here α1, . . . , α4 are conditionally independent given ᾱ. We choose to make Vα,0 = Vα,1 and
Vα,0 + Vα,1 gives the prior variance of α0. Find the values of Vα,0 and Vα,1.
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Area 1 Area 2
Total undergoing Total undergoing

surgery Number dying surgery Number dying
Age Males Females Males Females Males Females Males Females
5-14 4272 3911 9 11 1739 1758 5 2

15-24 2835 2989 23 5 1233 1244 14 1
25-34 2785 2606 19 8 989 1004 8 3
35-44 1930 1886 16 15 897 922 9 13
45-54 1497 1524 59 40 921 961 28 15
55-64 960 1013 101 52 686 739 68 37
65-75 652 855 185 118 611 784 159 73
76-83 186 287 97 108 189 290 86 88

Table 3.2: Deaths following surgery in two areas of the USA

3. We propose a matching structure for β1, . . . , β4 with β1, . . . , β4 independent of α1, . . . , α4 in
the prior.

βj | β̄ ∼ N(β̄, Vβ,1) for j = 1, . . . , 4.

β̄ ∼ N(mβ , Vα,0).

Here β1, . . . , β4 are conditionally independent given β̄. We choose to make Vβ,0 = Vβ,1 and
Vβ,0 + Vβ,1 = 0.0004. Find the values of Vβ,0 and Vβ,1. The value of mβ is 0.0.

4. Construct a suitable BRugs model file. Hint: You can use a construction such as alpha[group[i]]
to denote αj where observation i belongs to group j.

5. The data are available from the Module Web Page in a file called surgicaldata.txt. The
data have been arranged into four columns as follows.

• group: the area-sex group number as above.

• age: the midpoint of the age range for the age-group.

• patients: the number of patients undergoing surgery.

• deaths: the number of deaths.

Use BRugs to find the posterior distribution of the model parameters. Check convergence of
the sampler.

6. Present summaries of the inference, including posterior means and standard deviations of
the parameters.

7. Find the posterior mean and standard deviation of log(p∗1/p
∗
3) where p∗1 is the probability of

death for a fifty-year-old male in area 1 and p∗3 is the probability of death for a fifty-year-old
male in area 2. Plot the psoterior probability density function of this quantity and comment.
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3.6 Problems 4

Solutions to all questions are to be submitted in the Homework Letterbox no later than 4.00pm on
Wednesday December 12th. Please note that you should give some attention to the presentation
of your work. Describe the data, model, prior etc. and explain what you have done. Comment on
your conclusions. A listing of the output from a R session with one or two things written on it will
not get a very good mark on its own.

In questions 2 and 3, each student is given different data. For this purpose each student is
given a reference number according to the table below. Please use the correct data and write your
reference number on your work.

Reference numbers

Browning, Bethany Megan 11
Bulmer, Rebecca Louise 12
Chaffey, Adam John 13
Cherlin, Svetlana 14
Clawson, Rebecca 15
Consul, Juliana Iworikumo 16
Dickens, Jordan Mark 17
Goodall, Elizabeth Adeline 18
Halliwell, James William 19
Jones, Dean Robert Matthew 20
Moffatt, Joseph Michael 21
Mossop, Helen 22
Sofro, A’Yunin 23
Sutherland, Fiona 24
Varey, Emma Catherine 25
Wong, Goldie Sin Man 26

Problems

1. Full conditional distribution

Certain components are manufactured in batches. Each batch contains n components. The
components in N batches are then tested and some are found to be defective. Let the number
of defective components in batch i be xi. We suppose that, given the value of πi, where
0 < πi < 1, the value of xi is an observation from a binomial distribution Xi ∼ Bin(n, πi)
and Xi and Xj are independent given πi and πj when i 6= j. Let ηi = loge{πi/(1− πi)}. We
suppose that, given the values of µ and τ, ηi is an observation from the normal N(µ, τ−1)
distribution and ηi and ηj are independent, when i 6= j, given the values of µ and τ. Finally we
have independent prior distributions for µ and τ with µ having a normal prior, µ ∼ N(m, v),
and τ having a gamma prior, τ ∼ Ga(a, b).

Find a function proportional to the density of the full conditional distribution (fcd) of ηi,
that is the distribution of ηi given xi and values for µ and τ.

(10 marks)

2. Piston rings

Four compressors are located in the same building. Each has three “legs”. The compressors
are of the same design and are oriented the same way. The three legs of each are labelled
“North”, “Centre” and “South.” Over a certain period of time the number of failures of
piston rings in each leg of each compressor is counted. These numbers are your data.

The model is as follows. Let the number of failures in leg i of compressor j be yi,j (where
i = 1 for North, i = 2 for Centre and i = 3 for South). Given the value of a quantity λi,j > 0,
we assume that yi,j is an observation from a Poisson distribution Yi,j ∼ Po(λi,j), with Yi,j
independent of Yi′,j′ unless (i, j) = (i′, j′), given the values of λi,j and λi′,j′ .
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The prior distribution is as follows. Let ηi,j = loge(λi,j). Then

ηi,j = µ+ αi + βj + γi,j

where, α1, . . . , α3, β1, . . . , β4, γ1,1, . . . , γ3,4 and µ are mutually independent and

µ ∼ N(3, 4),

αi ∼ N(0, 1), i = 1, . . . , 3,

βj ∼ N(0, 1), j = 1, . . . , 4,

γi,j ∼ N(0, 0.25), i = 1, . . . , 3, j = 1, . . . , 4.

Data.

To obtain your data, first install the R function pistonread. This function may be obtained
from the Module Web Page, under “Data”, or directly from

http://www.mas.ncl.ac.uk/~nmf16/teaching/mas8303/pistonreadR.txt

or simply by typing the following into R.

pistonread<-function(refno)

{data<-read.table("http://www.mas.ncl.ac.uk/~nmf16/teaching/mas8303/pistondata.txt")

out<-cbind(data[,1],data[,2],data[,refno])

write.table(format(out),row.names=FALSE,col.names=FALSE,quote=FALSE,file="mypistondata.txt")

}

Then, use the function with your reference number as the argument. For example, if your
reference number is 20, type

pistonread(20)

You will then have a file (in your working directory) called mypistondata.txt.There will be
three columns of data, as follows.

• The leg numbers (1 for North etc) are in column 1.

• The compressor numbers are in column 2.

• Your failure numbers are in column 3.

You will need to edit the file as follows.

• Insert a line at the top as follows.

leg[] comp[] y[]

• Insert END after the last line of data.

The file will then be ready to use as a data file with BRugs.

• Use MCMC to take samples from the posterior distribution of the unknowns in the
model.

(5 marks)

• Display your results appropriately.

(4 marks)

• Explain your method and show your BUGS model specification and the commands
which you have used.

(4 marks)
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• Show how you have checked convergence.

(3 marks)

• Give summaries of the posterior distributions of the model unknowns. In particular,
compare the failure rates in the twelve legs using the posterior distribution. What can
you conclude?

(4 marks)

3. Fraud

Banks and credit card companies attempt to detect fraud by looking for unusual observations
in the withdrawal data for customers. This potentially involves quite complicated models.
The model in this question is a somewhat simplified version but the principal is the same.

You will each be supplied with data for five customers. For each of these customers you will
be given the total withdrawals from the customer’s account for each of twenty weeks. The
value for customer j in week i is yi,j .

For each customer in each week there is a small probability π that a fraud takes place. We
therefore use a mixture model with two components. The component indicator for customer
j in week i is ci,j .

If ci,j = 1 then a fraud against customer j takes place in week i.

If ci,j = 2 then no fraud takes place against customer j in week i.

We assume that, given the model parameters, ci,j is independent of ci′,j′ for (i, j) 6= (i′, j′).
Given π, we have Pr(ci,j = 1) = π. Our prior distribution for π is Beta(1, 99).

If ci,j = 1 then yi,j ∼ Ga(2, 0.0002). If ci,j = 2 then, given α, βj , we have yi,j ∼ Ga(α, βj).
We assume that yi,j is independent of yi′,j′ for (i, j) 6= (i′, j′), given α, βj and βj′ . Our prior
distribution for α is Ga(2, 0.5).

Let βj = α/λj and λj = exp(µj). Given µ0, τ, we have µj ∼ N(µ0, τ
−1) with µj independent

of µj′ for j 6= j′. Our prior distribution for µ0 is µ0 ∼ N(5.3, 1.4). Our prior distribution for
τ is Ga(3, 4).

Unless otherwise stated, the prior distributions are independent.

Data. To obtain your data, first install the R function fraudread. This function may be
obtained from the Module Web Page, under “Data”, or directly from

http://www.mas.ncl.ac.uk/~nmf16/teaching/mas8303/fraudreadR.txt

or simply by typing the following into R.

fraudread<-function(refno)

{data<-read.table("http://www.mas.ncl.ac.uk/~nmf16/teaching/mas8303/frauddata.txt")

no1<-5*(refno-11)+1

no5<-no1+4

out<-data[,no1:no5]

write.table(format(out),row.names=FALSE,col.names=FALSE,quote=FALSE,file="myfrauddata.txt")

}

Then, use the function with your reference number as the argument. For example, if your
reference number is 20, type

fraudread(20)

You will then have a file (in your working directory) called myfrauddata.txt.There will be
five columns of data, one for each customer, and twenty rows, one for each week. You will
need to edit the file as follows.

• Insert a line at the top as follows.
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y[,1] y[,2] y[,3] y[,4] y[,5]

• Insert END after the last line of data.

The file will then be ready to use as a data file with BRugs.

• Use MCMC to find the posterior means for pi,j = 2− ci,j and hence find the posterior
probabilities of fraud for each customer in each week and identify any cases where fraud
is likely to have occurred.

(5 marks)

• Display your results appropriately.

(4 marks)

• Explain your method and show your BUGS model specification and the commands
which you have used.

(4 marks)

• Show how you have checked convergence.

(3 marks)

• Give summaries of the posterior distributions of the model parameters.

(4 marks)


