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Chapter 1

The Normal Linear Model

1.1 Regression and the normal linear model

1.1.1 Introduction

A model which describes how the conditional distribution of one variable, often called the dependent
variable, given some other variables, depends on the values taken by these other variables, is called
a regression. Typically we are interested in how the conditional mean of the dependent variable
depends on the values of the other variables but other features of the distribution may also change.
Various names are used to describe these other variables, including regressors, explanatory variables
and covariates.

There are many different kinds of regression models. One of the simplest is described by the
equation

Y = α+ βx+ ε. (1.1)

This might be used in situations where an observation consists of a pair of values (xi, yi) where

yi = α+ βxi + εi,

• yi is observation number i on the dependent variable,

• xi is observation number i on a single explanatory variable,

• εi is a random “error” and

• α and β are parameters the values of which are usually unknown.

Our data might consist of n such pairs.

We also need to specify a sampling distribution for εi. In this chapter we assume the following
(conditional on model parameters):

Normality : ε ∼ N(0, σ2).

Independence : ε1, . . . , εn are independent , given the parameters of their distribution (typically

the variance σ2).

Equality of variance each of ε1, . . . , εn has the same variance σ2 (equivalently, the same preci-
sion τ).

Another way to express this model is to say that the conditional distribution of Y given x (and
the model parameters) is normal with mean α+βx and variance σ2 and that, given xi and xj and
the model parameters, Yi and Yj are independent for i 6= j.

This model, with the relationship given in (1.1) and these assumptions about the errors is called
an ordinary linear regression on a single covariate with normal errors.
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1.1.2 Example

Here is a simple example. We wish to be able to predict the height of a student if we know the
student’s shoe size.

Suppose that we are prepared to accept (1.1) as a reasonable description of the relationship.
That is, the conditional mean height, given shoe size, is a linear function of shoe size and the actual
heights, given a particular shoe size, have a distribution centered on this mean. The “errors” ε
are the differences between the actual height values and the conditional mean given by our linear
function of shoe size. Suppose that we are also prepared to accept the usual assumptions of
normality, independence and equal variance, that is that the conditional variance of height given
shoe size does not depend on shoe size. These are issues of model choice. One way to think of a
regression model like this is as a device which allows us to use information from many different
values of the regressor X to help us to make predictions about Y for other values of X, in a way
which seems to be appropriate to us according to our prior beliefs.

We need to specify our prior distribution for the parameters. There are three parameters in
this model, α, the intercept, β, the slope of the regression line, and τ = σ−2, the error precision.

There are many possibilities, including the following.

• The value of τ is known and we give α and β a bivariate normal prior.

• The value of τ is unknown but we use a conjugate prior. We give τ a gamma prior and
we give α and β a bivariate normal conditional prior, given τ, where the precision matrix is
proportional to τ.

• We use a semi-conjugate prior in which τ has a gamma prior and α and β have a bivariate
normal prior independently of τ.

• A non-conjugate prior.

For illustration, consider a semi-conjugate prior.
As it stands, our model says that the conditional mean height for a student with shoe size x

is α + βx. This makes α a rather unnatural paramater because it represents the mean height for
students with shoe size zero, a shoe size which is well outside the usual range for students. This
makes it difficult for us to think about our prior beliefs about α and also creates a rather awkward
relationship between α and β in our beliefs since a change in α would require a change in β to
make the regression line continue to pass through the region where we think (X,Y ) points will
typically be found. It is better to change the origin of X to a more usable reference value xref .
I know my own shoe size and height so let us use my shoe size, 11, as a reference value. Let
z = x− xref1 = x− 11 then our regression equation becomes

Y = α̃1 + βz + ε,

where α̃1 = α + βxref1 = α + 11β now represents the mean height for students who take size 11
shoes. I can now use my own height, 74 inches, as a guide to the likely value of α̃. Let us give α̃
a prior distribution which is normal with mean 74. Of course I can not assume that I am exactly
the average height for size 11 shoe-wearers so we need a suitable prior standard deviation for α̃1. I
think that, even bearing in mind that it is a long time since I was a first year student, I am unlikely
to be more than six inches from the conditional mean so let us make the standard deviation 3,
giving a variance of 9 and a precision of 0.111. We could choose to make the standard deviation
larger, of course, if we felt less confident about the value of our prior information.

Now we need a prior for β. How much does the mean height change when we change the shoe
size by one unit? As a guide, my wife is 64 inches tall and takes size 5 shoes. This suggests a
change of 10 inches in 6 shoes sizes or β = 10/6 ≈ 1.7. Let us use xref2 = 5 as a second reference
value. Let α̃2 = α + βxref2 = α + 5β now represent the mean height for students who take size 5
shoes. Let us give α̃2 a N(64, 9) prior distribution.

In this example it seems reasonable to make α̃1 and α̃2 independent in our prior distribution
and this is what we will do. In other examples we might, for example, feel that we are likely to have
misjudged both conditional means in the same direction and so give them a positive covariance.
So, let us write

β̃ =

(
α̃1

α̃2

)
.
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1.1.3 The normal linear model

The normal linear model is a more general class of models which includes (1.1) and many more
kinds of model, as special cases.

First of all let us rewrite (1.1), using slightly different notation, as

Y = β0 + β1x+ ε. (1.2)

Now suppose that we want to relate the dependent variable Y to the values, x1, . . . , xk, of two or
more regressors X1, . . . , Xk. One way to do this is to write

Y = β0 + β1x1 + · · ·+ βkxk + ε.

So, our model for observation i is

Yi = β0 + β1xi,1 + · · ·+ βkxi,k + εi, (1.3)

where xi,j is the value of regressor Xj in observation i.
It is convenient to make a further change to the notation. We relabel the regressors and

coefficients 1, . . . , p instead of 0, . . . , k. So k = p− 1. Then

Yi = β1xi,1 + · · ·+ βpxi,p + εi =

p∑
j=1

βjxi,j + εi. (1.4)

We seem to have lost the intercept term β0 in (1.2) and (1.3). However this is easily overcome by
defining X1 so that xi,1 = 1 for all i. Then we can rewrite (1.2) as

Y = β11 + β2x+ ε

and define X1 ≡ 1 and X2 = X.

Example: one-way layout We observe several samples from normal distributions (as in the
“one-way ANOVA”). Model: Yi,j ∼ N(µj , τ

−1) for the ith observation in sample j. Let us
rename µj as βj . Then we can write the model as

Yi,j = βj + εi,j (1.5)

where εi,j ∼ N(0, τ−1). Now, suppose that, instead of numbering the observations within

each sample, we number them all in one long sequence Y1, . . . , Yn, where n =
∑J
j=1 nj .

We need a way to indicate to which sample an observation belongs so we define regressors
X1, . . . , XJ where xi,j = 1 if observation i is in sample j and xi,j = 0 otherwise. Then our
model is exactly of the form (1.4) if we set p = J.

Notice that, for fixed values of the regressors xi,1, . . . , xi,p, (1.4) is linear in the coefficients
β1, . . . , βp. This is therefore called a linear model or a linear regression. It is called a normal linear
model because of our assumption that the “errors” ε are normally distributed. The normal linear
model includes a great variety of models which are commonly used in statistics. Generalisations
and extensions allow an even greater variety but we will leave these for later. Just to illustrate
that the linearity refers to the coefficients and not to the shape of a graph which we might draw to
represent how Y changes, consider a model in which we want to describe the way that Y changes
over time t using a cubic function of t. We simply write xi,1 = 1, xi,2 = ti, xi,3 = t2i and xi,4 = t3i .
Then

Yi = β1 + β2ti + β3t
2
i + β4t

3
i + εi.

Matrix notation

It is convenient to use matrix notation. We rewrite (1.4) as

Y = Xβ + ε (1.6)



1.1. REGRESSION AND THE NORMAL LINEAR MODEL 23

where Y = (Y1, . . . , Yn)T is a n× 1 vector of observations on Y,

X =


x11 x12 · · · x1p
x21 x22 · · · x2p

...
...

...
xn1 xn1 · · · xnp


is a n × p matrix whose elements are known x-values. (In some cases all of the elements are 0 or
1). We call X the design matrix. This name reflects the fact that sometimes, that is is designed
experiments, the elements of X are deliberately chosen and X then represents the design of the
experiment. The p× 1 vector of unknown parameters is β = (β1, . . . , βp)

T and ε = (ε1 . . . , εn)T is
a n× 1 error vector. The vector of random errors has a multivariate normal distribution (given τ):

ε ∼ Nn(0, τ−1I)

where 0 is a vector of zeroes and I is a n× n identity matrix.
Given τ and β, the vector of observations y is an observation from a multivariate normal

distribution:
Y ∼n N(Xβ, τ−1I).

Example: Regression on a single covariate Here Yi = α+ βxi + εi. We have

X =

(
1 1 1 . . . 1
x1 x2 x3 . . . xn

)T
and

β =

(
α
β

)
.

Example: one-way layout (as above). Suppose, for illustration, that we have four samples,
each with three observations. Then we have

β =


µ1

µ2

µ3

µ4

 and X =



1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1



.

(There is, in fact, more than one way to parameterise, that is express in terms of parameters,
this model and it is sometimes convenient to do it in a different way).

Notice that the design matrix contains one column corresponding to each of the coefficients
β1, . . . , βp.
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1.2 Inference for the normal linear model

1.2.1 Likelihood and sufficient statistics

Given the model in (1.6) and a data vector y containing n observations, the likelihood is

L = (2π)−n/2τn/2 exp
{
−τ

2
(y −Xβ)T (y −Xβ)

}
.

We will assume in what follows that the design matrix X is of full rank and that therefore
(XTX)−1 exists. If X is not of full rank then this does not mean that the likelihood does not exist
nor that no Bayesian inference is possible. However it does mean that there is at least one linear
function of β about which the data will tell us nothing. In such a case it may be best to reconsider
the model. For example, suppose that, instead of the model in (1.5), we had Yi,j = µ + βj + εi,j
where µ is meant to represent a sort of overall mean. Then, when we put this in the form (1.4), µ
becomes, in effect, βJ+1 and we have an extra regressor XJ+1 where xi,J+1 = 1. However, for all i,
xi,J+1 = xi,1 + · · ·+xi,J so the rank of X is still J, not J+1 even though it now has J+1 columns.
It is easy to see that, in this case, we have too many parameters and they can not all be identified.
If we replaced β1, . . . , βJ with β̃1, . . . , β̃J , where β̃j = βj + δ, and βJ+1 with β̃J+1 = βJ+1− δ, then
we would get exactly the same model and exactly the same likelihood so the data can not tell us
about δ and therefore not about the complete set of values of β1, . . . , βJ . We could, however, learn
about the differences βj − βJ+1 for j = 1, . . . , J.

So, assuming that (XTX)−1 exists, let us write

β̂ = (XTX)−1XT y.

We call β̂ the least squares estimates of β.

Then

(y −Xβ)T (y −Xβ) = (y −Xβ̂ −X[β − β̂])T (y −Xβ̂ −X[β − β̂])

= (y −Xβ̂)T (y −Xβ̂) + (β − β̂)TXTX(β − β̂)− 2(β − β̂)TXT (y −Xβ̂)

but

(β − β̂)TXT (y −Xβ̂) = (β − β̂)T {XT y −XTX(XTX)−1XT y} = 0.

Thus

L = (2π)−n/2τn/2 exp
{
−τ

2
[Sd + (β − β̂)TXTX(β − β̂)]

}
(1.7)

and Sd and β̂ are sufficient for τ and β, where

Sd = (y −Xβ̂)T (y −Xβ̂).

Moreover, if τ is known, then β̂ is sufficient for β.

The sampling distribution of Y is

Y | τ, β ∼ Nn(Xβ, τ−1I)

so the sampling distribution of β̂ is

β̂ | τ, β ∼p N(β, τ−1[XTX]−1)

since (XTX)−1XTXβ = β and (XTX)−1XT [τ−1I]X(XTX)−1 = τ−1[XTX]−1. Thus the “data

precision” is τXTX.



1.2. INFERENCE FOR THE NORMAL LINEAR MODEL 25

1.2.2 Inference with known error precision

Suppose that the error precision is known and that our prior distribution for β is a multivariate

normal distribution with mean b0 and variance V0 = P−10 . Then the posterior distribution is a
multivariate normal distribution with mean b1 and variance V1 = P−11 where

b1 = P−11 (P0b0 + Pdβ̂),

P1 = P0 + Pd

and Pd = τXTX.

The matrices P0 and P1 are the prior and posterior precision matrices respectively.

Proof: The prior density is proportional to

exp

{
−1

2
(β − b0)TP0(β − b0)

}
.

The posterior density is therefore proportional to

h(β) = exp

{
−1

2
(β − b0)TP0(β − b0)

}
exp

{
−1

2
(β − β̂)TPd(β − β̂)

}
= exp

{
−1

2

[
βT (P0 + Pd)β − 2(bT0 P0 + β̂

T
Pd)β + bT0 P0b0 + β̂

T
Pdβ̂

]}
= exp

{
−1

2

[
βT (P0 + Pd)β − 2(bT0 P0 + β̂

T
Pd)(P0 + Pd)

−1(P0 + Pd)β + bT0 P0β0
+ β̂

T
Pdβ̂

]}
= exp

{
−1

2

[
βT (P0 + Pd)β − 2bT1 (P0 + Pd)β + bT0 P0b0 + β̂

T
Pdβ̂

]}
= exp

{
−1

2

[
βT (P0 + Pd)β − 2βT

1
(P0 + Pd)β + bT1 (P0 + Pd)b1

]}
× exp

{
−1

2

[
bT0 P0b0 + β̂

T
Pdβ̂ − bT1 (P0 + Pd)b1

]}
= exp

{
−1

2
(β − b1)T (P0 + Pd)(β − b1)

}
× exp

{
−1

2

[
bT0 P0b0 + β̂

T
Pdβ̂ − bT1 (P0 + Pd)b1

]}
which is proportional to

exp

{
−1

2
(β − b1)T (P0 + Pd)(β − b1)

}
which, in turn, is proportional to the pdf of a normal distribution with mean b1 and precision
matrix P0 + Pd.
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Example 1
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For the shoe-size and height example in section 1.1.2 we have
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Example 2

After certain material is extracted from an organism, the concentration of a certain compound in
the material decreases exponentially over time.
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The data are as follows.

i 1 2 3 4 5 6
Time ti 25 50 75 100 125 150

Measured Concentration Z̃ 113 81 74 52 43 36
Log Concentration Y 4.73 4.39 4.30 3.95 3.76 3.58
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1.3 Inference with a conjugate prior

1.3.1 Prior and posterior

Suppose now that τ is unknown. There is a conjugate prior.
We give τ a gamma Ga(d0/2, d0v0/2) prior. Then d0v0τ has a χ2

d0
distribution.

We then define the conditional prior distribution of β given τ as a multivariate normal distri-
bution with mean b0 and precision P0 = C0τ, where the value of C0 is specified. Thus the prior
precision of β is proportional to the error precision τ. It is easily shown that the marginal prior
distribution of βj is such that

βj − b0,j√
v0/c0,j,j

∼ td0

where b0,j is the jth element of b0 and c−10,j,j is the jth diagonal element of C−10 .
The prior density is then proportional to

τd0/2−1e−τ(d0v0/2)τp/2 exp
{
−τ

2
(β − b0)TC0(β − b0)

}
.

From (1.7) the likelihood is proportional to

τn/2 exp
{
−τ

2
Sd

}
exp

{
−τ

2
(β̂ − β)TCd(β̂ − β)

}
where Cd = XTX.

The posterior density is therefore proportional to

τ (d0+n)/2−1e−τ(d0v0+Sd)/2τp/2 exp
{
−τ

2
[(β − b0)TC0(β − b0) + (β̂ − β)TCd(β̂ − β)]

}
.

Some further algebra shows that the posterior density is proportional to

τd1/2−1e−τd1v1/2τp/2|C1|1/2 exp
{
−τ

2
(β − b1)TC1(β − b1)

}
where

d1 = d0 + n

v1 =
d0v0 + nvd
d0 + n

vd =
Sd +R

n

R = bT0 C0b0 + β̂
T
Cdβ̂ − bT1 C1b1

C1 = C0 + Cd

b1 = (C0 + Cd)
−1(C0b0 + Cdβ̂)

Thus

• The marginal posterior distribution of τ is gamma Ga(d1/2, d1v1/2).

So d1v1τ ∼ χ2
d1
.

• The conditional posterior distribution of β given τ is multivariate normal with mean b1 and

variance P−11 = τ−1C−11 .

It is convenient to use a R function to do the calculations. A suitable function is shown
in figure 1.1. The prior specification is supplied as a list containing d0, v0, b0 and V0, where
(V0/v0)−1 = C0. The function returns a list containing d1, v1, b1 and V1, where (V1/v1)−1 = C1.
The data are supplied as a matrix X and a vector y. The function can be called with a command
such as the following.

posterior<-linmod(prior,X,y)
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linmod<-function(prior,X,y,unknown=TRUE)

{Xt<-t(X)

Cd<-Xt%*%X

Xty<-Xt%*%y

b0<-prior$b

betahat<-solve(Cd,Xty)

n<-length(y)

C0<-solve(prior$V/prior$v)

C1<-C0+Cd

b1<-solve(C1,(C0%*%b0+Cd%*%betahat))

res<-y-X%*%betahat

Sd<-sum(res^2)

if (unknown)

{d1<-prior$d+n

R<-t(b0)%*%C0%*%b0 + t(betahat)%*%Cd%*%betahat - t(b1)%*%C1%*%b1

nvd<-Sd+R

v1<-(prior$d*prior$v + nvd)/d1

v1<-v1[1,1]

}

else

{v1<-prior$v

d1<-0

}

V1<-v1*solve(C1)

result<-list(d=d1,v=v1,b=b1,V=V1)

result

}

Figure 1.1: R function for the normal linear model

Optionally, we can use a command such as the following.

posterior<-linmod(prior,X,y,unknown=FALSE)

In this latter case the calculations for the known-τ case are used and the prior argument is a list
containing v0 = τ−1, b0 and V0 = P−10 . Similarly the result is a list containing v1 = v0 = τ−1, b0
and V1 = P−11 . The result in this case also contains the value d1 = 0.

The use of the function is illustrated in the following examples.

Example 1

This is the example involving shoe sizes and heights of students, as in section 1.2.2. The only
difference here is that we make τ unknown with d0 = 2 and v0 = 2. We can use the R function as
follows.

> Xshoe<-matrix(c(rep(1,152),shoesize),ncol=2)

> d0shoe<-2

> v0shoe<-2

> b0shoe<-matrix(c(55.7,1.7),ncol=1)

> V0shoe<-matrix(c(36.5,-4,-4,0.5),ncol=2)

> priorshoe<-list(d=d0shoe,v=v0shoe,b=b0shoe,V=V0shoe)

> postshoe<-linmod(priorshoe,Xshoe,height)

> postshoe

$d

[1] 154

$v
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Treatment Diet Weight gain
1 Beef Low 90 76 90 64 86 51 72 90 95 78
2 Beef High 73 102 118 104 81 107 100 87 117 111
3 Cereal Low 107 95 97 80 98 74 74 67 89 58
4 Cereal High 98 74 56 111 95 88 82 77 86 92

Table 1.1: Weight gains in rats given different diets

[1] 3.515502

$b

[,1]

[1,] 56.189352

[2,] 1.561022

$V

[,1] [,2]

[1,] 0.3947624 -0.046750199

[2,] -0.0467502 0.005879935

The posterior means are exactly the same as in the known-τ case. This is a property of the
conjugate prior when it is specified in this way, with everything unchanged and v0 equal to the
previous “known” value. It seems though that the error variance may be a little greater than our
“known” value.

Example 2

The data in table 1.1 are from Snedecor and Cochran (1967) and are also given by Hand et al.
(1994). They give the gains in weight of rats fed on four different diets. The diets differ in terms
of the amount of protein (“low” or “high”) and the source of the protein (“beef” or “cereal”).

Suppose that our prior beliefs are as follows. Given parameters µ = (µ1, . . . , µ4)T , τ, the

weight gains Y1,1, . . . , Y10,4 are independent with Yi,j ∼ N(µj , τ
−1). Our prior distribution for τ

is gamma Ga(d0/2, d0v0/2) with d0 = 2 and v0 = 60. Our conditional prior distribution for µ is

N4(M0, (τC0)−1) with M0 = (80, 80, 80, 80)T and

C0 =
1

8


2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2


−1

=
1

40


4 −1 −1 −1
−1 4 −1 −1
−1 −1 4 −1
−1 −1 −1 4

 .

Consider an alternative way of formulating this example. Instead of working directly in terms
of the four means µ1, . . . , µ4, we can use different parameters. We can write

µ1 = µ− βa − βs + γ,

µ2 = µ+ βa − βs − γ,
µ3 = µ− βa + βs − γ,
µ4 = µ+ βa + βs + γ.

Here µ is an overall mean, βa is an effect due to the amount of protein, βs is an effect due to the
source of protein. The interaction effect allows the treatment means to be unrestricted. It allows
for the mean for, eg., “cereal high” not to be obtained simply by adding the source effect and the
amount effect to the overall mean. It is easily seen that

β = (µ, βa, βs, γ)T = Hµ
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where

H =
1

4


1 1 1 1
−1 1 −1 1
−1 −1 1 1

1 −1 −1 1

 .

So, if our prior mean and conditional prior variance for µ were M0 and (τC0,µ)−1 respectively,
then our prior mean and prior variance for β are

b0 = HM0 =


80
0
0
0

 and (τC0)−1 = H(τC0,µ)−1HT = τ−1


10 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

 .

Hence

C0 =


0.1 0 0 0
0 0.5 0 0
0 0 0.5 0
0 0 0 0.5

 .

In practice we might assess the prior distribution for β directly rather than through a prior dis-
tribution for µ. Also we might well wish to give γ a smaller prior variance than βa or βs since we
might judge that such an interaction effect is likely to be less important than the main effects of
amount and source of protein.

Here is the calculation of the posterior distribution using the R function linmod. The vector
ratgain contains the weight gains (90, 76, 90, . . . , 86, 92).

> x1<-rep(1,40)

> x2<-rep(c(-1,1,-1,1),c(10,10,10,10))

> x3<-rep(c(-1,-1,1,1),c(10,10,10,10))

> x4<-rep(c(1,-1,-1,1),c(10,10,10,10))

> Xrat<-cbind(x1,x2,x3,x4)

> d0rat<-2

> v0rat<-60

> b0rat<-matrix(c(80,0,0,0),ncol=1)

> V0rat<-60*diag(c(10,2,2,2))

> priorrat<-list(d=d0rat,v=v0rat,b=b0rat,V=V0rat)

> postrat<-linmod(priorrat,Xrat,ratgain)

> postrat

$d

[1] 42

$v

[1] 195.3410

$b

[,1]

x1 87.231920

x2 5.629630

x3 -2.320988

x4 -4.641975

$V

x1 x2 x3 x4

x1 4.871347 0.000000 0.000000 0.000000

x2 0.000000 4.823235 0.000000 0.000000

x3 0.000000 0.000000 4.823235 0.000000

x4 0.000000 0.000000 0.000000 4.823235
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1.3.2 Linear functions of coefficients

In our posterior distribution τ ∼ Ga(d1/2, d1v1/2) and β | τ ∼ Np(b1, (τC1)−1).

Suppose that we are interested in some linear function of β. For example, with β = (β1, β2, β3)T ,
we might be interested in δ = xβ = 4β1 + 3β2 − 5β3. This is, of course, the mean of Y when
x = (4, 3,−5).

Then

δ | τ ∼ N(xb1, x(τC1)−1xT ).

That is

δ | τ ∼ N(xb1, (τcδ,1)−1)

where c−1δ,1 = xC−11 xT .

So the marginal posterior for δ is such that

δ − xb1√
v1/cδ,1

=
δ − xb1√
xV1xT

∼ td1 ,

where V1 = v1C
−1
1 .
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1.3.3 Prediction

Very often our purpose in using a regression is to be able to make predictions. That is, we want
to find the distribution of a future observation on the dependent variables, or perhaps a collection
of future observations. In the case of the normal linear model this is usually straightforward.

Suppose that we are going to make a new observation on Y and the covariate values will be
x0,1, . . . , x0,p. We arrange these covariate values into a vector x0. For convenience, we regard this
as a row vector rather than the more usual column vector. That is, its dimension is (1× p) rather
than (p× 1). Then we can write

Y = x0β + ε,

where ε is a new error which is conditionally independent of any data which we have observed,
given τ, and therefore also conditionally independent of the unknown value of β, given τ. Given

τ, the distribution of ε is N(0, τ−1). Let us assume that our distribution for β is normal. Then,
given τ, the distribution of Y is normal with mean given by the mean of x0β and variance given
by the sum of the variance of x0β and the variance of ε.

Suppose that we are making a posterior prediction. That is, we are making our prediction after
we have observed some data and our conditional posterior distribution for β | τ is N(b1, τ

−1C−11 ).
Then we can write

Y | τ ∼ N(x0b1, x0[C1τ ]−1xT0 + τ−1)

∼ N(x0b1, [cpτ ]−1),

where

cp = {1 + x0C
−1
1 xT0 }−1.

In the conjugate case, where our posterior distribution for τ is τ ∼ Ga(d1/2, d1v1/2), it follows
that the marginal distribution for Y is given by

Y − x0b1√
v1/cp

=
Y − x0b1√
v1 + x0V1x

T
0

∼ td1 . (1.8)

This is our predictive distribution for the new observation Y. It includes both the uncertainty due
to our lack of knowledge of the model parameters and our uncertainty associated with the new
error.

More generally we might want a joint predictive distribution for a vector Y of new observations
with sampling distribution Nm(X0β, τ

−1I), where I is an identity matrix and the covariate values

for the ith element of Y give the ith row of X0. Then

Y | τ ∼ Nm(X0b1, X0[C1τ ]−1XT
0 + τ−1I)

∼ Nm(X0b1, [Cpτ ]−1),

where

Cp = {I +X0C
−1
1 XT

0 }−1.



36 CHAPTER 1. THE NORMAL LINEAR MODEL

Example

1.3.4 Other cases

We have looked in detail at the conjugate case. We can also analyse linear models with a semi-
conjugate prior or with a non-conjugate prior. In the semi-conjugate case we need numerical
integration in one dimension, that of τ. In the non-conjugate case we usually need more difficult
numerical integration and it is usually easier to use MCMC.

1.4 Practical 1

1.4.1 Abrasion Loss

The data in Table 1.2 are taken from Davies and Goldsmith (1972). They come from an experiment
to investigate how the resistance of rubber to abrasion is affected by other properties. These are X1,
its hardness, in degrees Shore, and X2, its tensile strength (in kg per square cm). The dependent
variable Y is abrasion loss in g per hour. This is the weight loss due to abrasion which was
measured over a fixed time.

You are to fit a linear regression of Y on X1 and X2. The model is

Yi = β0 + β1xi,1 + β2xi,2 + εi

where, given τ, the errors εi are independent with εi ∼ N(0, τ−1).

1. Install the function linmod. It is available from the Web page at
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Abrasion loss Hardness Tensile strength
Y X1 X2

372 45 162
206 55 233
175 61 232
154 66 231
136 71 231
112 71 237
55 81 224
45 86 219

221 53 203
166 60 189
164 64 210
113 68 210
82 79 196
32 81 180

228 56 200
196 68 173
128 75 188
97 83 161
64 88 119

249 59 161
219 71 151
186 80 165
155 82 151
114 89 128
341 51 161
340 59 146
283 65 148
267 74 144
215 81 134
148 86 127

Table 1.2: Abrasion loss data
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http://www.mas.ncl.ac.uk/~nmf16/teaching/mas8303/

You can install it by copying and pasting or by

source("http://www.mas.ncl.ac.uk/~nmf16/teaching/mas8303/linmod.txt")

2. The data are available in the file abrasion.txt which is available from the Web page.

You can read the data using commands such as the following.

abrasion<-read.table("http://www.mas.ncl.ac.uk/~nmf16/teaching/mas8303/abrasion.txt")

loss<-abrasion[,1]

hard<-abrasion[,2]

tens<-abrasion[,3]

3. Construct a design matrix X as follows.

X<-matrix(c(rep(1,30),hard,tens),ncol=3)

4. Our prior distribution is as follows. We give τ a Ga(d0/2, d0v0/2) distribution with d0 = 4
and v0 = 1600. Conditional on τ we give β = (β0, β1, β2)T a multivariate normal prior distri-

bution with mean vector b0 = (150, 0, 0)T and precision matrix τC0 where C0 = (V0/v0)−1

and we construct V0 as follows. Consider first a reference value with x1 = 60 and x2 = 200. If
we consider the model E(Y ) = β̃0 + β1(x1− 60) + β2(x2− 200) we obtain for the parameters
β̃ = (β̃0, β1, β2)T the matrix

Ṽ0 = 1600

 1 0 0
0 0.25 0
0 0 0.25

 .

Now, since β = Hβ̃ where

H =

 1 −60 −200
0 1 0
0 0 1

 ,

we can construct V0 = HṼ0H
T as follows.

V0tilde<-matrix(c(1600,0,0,0,400,0,0,0,400),ncol=3)

H<-matrix(c(1,0,0,-60,1,0,-200,0,1),ncol=3)

V0<-H%*%V0tilde%*%t(H)

Put all of the elements of the prior together.

d0<-4

v0<-1600

b0<-matrix(c(150,0,0),ncol=1)

priorabloss<-list(d=d0,v=v0,b=b0,V=V0)

5. Find the posterior.

postabloss<-linmod(priorabloss,X,loss)

6. Find a 95% posterior predictive interval for the abrasion loss in a new observation with
x1 = 80 and x2 = 150.
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Ayrshire Canadian
Mature 2-yr-old Mature 2-yr-old

3.74 4.44 3.92 4.29
4.01 4.37 4.95 5.24
3.77 4.25 4.47 4.43
3.78 3.71 4.28 4.00
4.10 4.08 4.07 4.62
4.06 3.90 4.10 4.29
4.27 4.41 4.38 4.85
3.94 4.11 3.98 4.66
4.11 4.37 4.46 4.40
4.25 3.53 5.05 4.33

Table 1.3: Butterfat percentages in milk

v1<-postabloss$v

V1<-postabloss$V

x0<-matrix(c(1,80,150),nrow=1)

mean<-x0%*%postabloss$b

var<-v1+x0%*%V1%*%t(x0)

tval<-qt(0.975,postabloss$d)

mean-tval*sqrt(var)

mean+tval*sqrt(var)

1.4.2 Butterfat

Table 1.3 shows part of a set of data taken from Sokal and Rohlf (1981). The table shows average
butterfat percentages in the milk of forty cows. Twenty of the cows belong to each of two breeds,
Ayrshire and Canadian. Within each breed, ten of the cows are mature (i.e. at least five years old)
and ten are two-year-olds.

We adopt the following model.

Yi = β0 + β1xi,1 + β2xi,2 + β3xi,3 + εi

where Yi is the butterfat percentage for cow i. We make the usual assumptions about ε1, . . . , x40.
That is, given τ, they are independent and εi ∼ N(0, τ−1). The explanatory variables are as follows.

• Breed, where xi,1 = −1 if the breed of cow i is Ayrshire and xi,1 = 1 if the breed of cow i is
Canadian.

• Age, where xi,2 = −1 if cow i is mature and xi,2 = 1 if cow i is a 2-year-old.

• Breed by age interaction, xi,3 = xi,1xi,2.

1. If you have not already done so, install the function linmod . (See above).

source("http://www.mas.ncl.ac.uk/~nmf16/teaching/mas8303/linmod.txt")

2. The data are available in the file butter.txt which is available from the Web page.

You can read the data using commands such as the following.

butter<-read.table("http://www.mas.ncl.ac.uk/~nmf16/teaching/mas8303/butter.txt")

butter<-c(butter[,1],butter[,2],butter[,3],butter[,4])

3. Construct a design matrix X as follows.
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z<-rep(10,4)

x0<-rep(1,40)

x1<-rep(c(-1,-1,1,1),z)

x2<-rep(c(-1,1,-1,1),z)

x3<-x1*x2

X<-cbind(x0,x1,x2,x3)

4. Our prior distribution is as follows. We give τ a Ga(d0/2, d0v0/2) distribution with d0 = 6
and v0 = 0.1. Conditional on τ we give β = (β0, β1, β2, β3)T a multivariate normal prior dis-

tribution with mean vector b0 = (4, 0, 0, 0)T and precision matrix τC0 where C0 = (V0/v0)−1

and

V0 =


40 0 0 0
0 10 0 0
0 0 10 0
0 0 0 2.5

 .

We can construct V0 as follows.

V0<-diag(c(40,10,10,2.5))

Put all of the elements of the prior together.

d0<-6

v0<-0.1

b0<-matrix(c(4,0,0,0),ncol=1)

priorbutter<-list(d=d0,v=v0,b=b0,V=V0)

5. Find the posterior.

postbutter<-linmod(priorbutter,X,butter)

6. Find a 90% posterior interval for the mean butterfat percentage for 2-yr-old Ayrshire cows.

v1<-postbutter$v

V1<-postbutter$V

x0<-matrix(c(1,-1,1,-1),nrow=1)

mean<-x0%*%postbutter$b

var<-x0%*%V1%*%t(x0)

tval<-qt(0.95,postbutter$d)

mean-tval*sqrt(var)

mean+tval*sqrt(var)

1.5 Exercises

1. Table 1.4 shows the heights and weights of thirty eleven-year-old girls attending Heaton
Middle School, Bradford. The data are taken from Open University (1983).

The data are available in the file height.txt on the Web page.

You can read the data using commands such as the following.

eleven<-read.table("http://www.mas.ncl.ac.uk/~nmf16/teaching/mas8303/height.txt")

height<-eleven[,1]

weight<-eleven[,2]
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Height (cm) Weight (kg) Height (cm) Weight (kg)
135 26 133 31
146 33 149 34
153 55 141 32
154 50 164 47
139 32 146 37
131 25 149 46
149 44 147 36
137 31 152 47
143 36 140 33
146 35 143 42
141 28 148 32
136 28 149 32
154 36 141 29
151 48 137 34
155 36 135 30

Table 1.4: Heights and weights of eleven-year-old girls

(a) You should work in terms of the logarithms of both height and weight. So, let Y be the
natural logarithm of the weight and X be the natural logarithm of the height. Calculate
these and plot a graph to show the data.

Our model is

Yi = α+ βxi + εi

where, given the value of τ, the errors εi are independent and εi ∼ N(0, τ−1).

(b) Our prior distribution is as follows. We give τ a Ga(d0/2, d0v0/2) distribution with
d0 = 6 and v0 = 0.02. Conditional on τ we give β = (α, β)T a bivariate normal prior

distribution with mean vector b0 = (−10, 3)T and precision matrix τC0 where C0 =
(V0/v0)−1 and

V0 =

(
25 0
0 1

)
.

Find the posterior distribution. (I.e. explain it as I have explained the prior distribution
but with the appropriate parameter values).

(c) Find a 95% posterior predictive interval for the natural logarithm of the weight of an
eleven-year-old girl who is 145 cm tall and, convert this into a 95% posterior predictive
interval for the actual weight of such a girl.

2. Table 1.5 gives some data from Till (1974). They give measured salinity values (parts per
thousand) for three separate water masses in the Bimini Lagoon in the Bahamas.

The data are available in the file salinity.txt on the Web page.

You can read the data using commands such as the following.

bimini<-read.table("http://www.mas.ncl.ac.uk/~nmf16/teaching/mas8303/salinity.txt")

salinity<-bimini[,1]

location<-bimini[,2]

mass1<-ifelse((location==1),1,0)

mass2<-ifelse((location==2),1,0)

mass3<-ifelse((location==3),1,0)

(a) Our model is
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I II III
37.54 40.17 39.04
37.01 40.80 39.21
36.71 39.76 39.05
37.03 39.70 38.24
37.32 40.79 38.53
37.01 40.44 38.71
37.03 39.79 38.89
37.70 39.38 38.66
37.36 38.51
36.75 40.08
37.45
38.85

Table 1.5: Salinity measurements (parts per thousand)

Yi = β1xi,1 + β2xi,2 + β3xi,3 + εi

where, given the value of τ, the errors εi are independent and εi ∼ N(0, τ−1) and
xi,j = 1 if observation i is from location j with xi,j = 0 otherwise.

(b) Our prior distribution is as follows. We give τ a Ga(d0/2, d0v0/2) distribution with
d0 = 4 and v0 = 0.3. Conditional on τ we give β = (β1, β2, β3)T a multivariate normal

prior distribution with mean vector b0 = (40, 40, 40)T and precision matrix τC0 where
C0 = (V0/v0)−1 and

V0 = HṼ0H
T

where

Ṽ0 =


40 0 0 0
0 25 0 0
0 0 25 0
0 0 0 25


and

H =

 1 1 0 0
1 0 1 0
1 0 0 1

 .

Find the posterior distribution. (I.e. explain it as I have explained the prior distribution
but with the appropriate parameter values).

(c) Find a 95% posterior interval for the difference in mean salinity between water mass I
and water mass II.

Note that, as an alternative to using the function linmod in this question, you could use
the function oneway which is also available from the Web page.
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1.6 Problems 3

Solutions to all questions are to be submitted in the Homework Letterbox no later than 4.00pm on
Wednesday November 28th. Please note that you should give some attention to the presentation
of your work. Describe the data, model, prior etc. and explain what you have done. Comment on
your conclusions. A listing of the output from a R session with one or two things written on it will
not get a very good mark on its own.

In questions 2 and 3, each student is given different data. For this purpose each student is
given a reference number according to the table below. Please use the correct data and write your
reference number on your work. In these questions you may, of course, use R functions such as
linmod for calculations.

Reference numbers

Browning, Bethany Megan 11
Bulmer, Rebecca Louise 12
Chaffey, Adam John 13
Cherlin, Svetlana 14
Clawson, Rebecca 15
Consul, Juliana Iworikumo 16
Dickens, Jordan Mark 17
Goodall, Elizabeth Adeline 18
Halliwell, James William 19
Jones, Dean Robert Matthew 20
Moffatt, Joseph Michael 21
Mossop, Helen 22
Sofro, A’Yunin 23
Sutherland, Fiona 24
Varey, Emma Catherine 25
Wong, Goldie Sin Man 26

Problems

1. Prior Elicitation

Some household contents insurance policies require an estimate to be made of what it would
cost to replace the existing contents. Suppose that a person has a large collection of books.
We might attempt to predict the replacement cost of all of the books by looking at a sample.
We might improve this prediction by taking into account an auxiliary variable such as the
width of the spine of the book. (We might also distinguish between hardback and paperback
books so suppose that we are only considering hardback books). Let Ci be the replacement
cost, in £, of book i, and let wi be its spine width in mm.

Let

Yi = loge(Ci) and xi = loge(wi).

It is believed that Y is related to X by

Yi = α+ βxi + εi

where Yi and xi refer to book i for i = 1, . . . , n, εi ∼ N(0, τ−1) and ε1, . . . , εn are conditionally
independent given τ.

We give α and β a bivariate normal prior distribution. Find the parameters of this distribu-
tion based on the following prior judgments.

Suppose that we could observe a very large number of books, each of which has a spine
w = 20mm wide, and a very large number of books, each of which has a spine w = 30mm wide.
Let the median replacement costs at these two spine widths be M20 and M30 respectively.
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Our prior median for M20 is 25 and our prior median for M30 is 35. Our prior upper quartile
for M20 is 40 and our prior upper quartile for M30 is 55.

Let

m20 = loge(M20) and m30 = loge(M30).

Our prior correlation for m20 and m30 is 0.75.

Find the prior means, prior variances and prior covariance of α, β.

(10 marks)
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2. Lowering blood pressure during surgery

It is sometimes necessary to lower a patient’s blood pressure during surgery, using a hy-
potensive drug. The length of time over which the drug is administered varies and therefore
so does the total dose. This, in turn, might affect the time it takes for the patient’s blood
pressure to return to normal.

The data provided are as follows, for n = 53 patients.

• The natural logarithm of the recovery time, T, in minutes.

• The natural logarithm of the dose, d, in milligrams.

• The average systolic blood pressure, b, in millimetres of mercury, during administration.

Let Y = ln(T ), x1 = ln(d)− 5 and x2 = b− 60. We will use a regression model with

y = β0 + β1x1 + β2x2 + ε

where β0, β1, β2 are unknown parameters and, conditional on the values of the parameters,
ε1, . . . , ε53 are independent with εi ∼ N(0, τ−1).

Our prior distribution is as follows.

We give τ a gamma prior, τ ∼ Ga(1.5, 0.6). Conditional on τ we give β = (β0, β1, β2)T a

multivariate normal prior distribution with mean vector b0 = (3.0,−0.03, 0.5)T and precision
matrix τC0 where C0 = (V0/v0)−1 and

V0 =

 1 0 0
0 10−4 0
0 0 0.04

 .

You can read the data using a command such as the following.

surgery<-read.table("http://www.mas.ncl.ac.uk/~nmf16/teaching/mas8303/surgerydata.txt")

There are thirty columns.

• The log doses ln(d) are in column 1.

• The blood pressures b are in column 2.

• Your log recovery times t are in the column corresponding to your reference number.
For example, if your reference number is 20 then your data are in column 20.

(a) Find the posterior distribution of β0, β1, β2, τ (in the same form as the prior distribu-
tion).

(4 marks)

(b) Find and plot the posterior predictive probability density of the logarithm of the recovery
time for a patient with log dose 4.0 and blood pressure 70 during administration.

(4 marks)

(c) Find and plot the posterior predictive probability density of the recovery time for a
patient with log dose 4.0 and blood pressure 70 during administration.

(4 marks)

(d) Present, explain and comment on your findings clearly.

(8 marks)

Hint: You can use the following R commands to build the design matrix.

x1<-surgery[,1]-5

x2<-surgery[,2]-60

x0<-rep(1,53)

X<-cbind(x0,x1,x2)
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3. Yields of barley

An experiment was conducted to investigate the effect of manure on the yield of barley. Four
different levels of manure were compared: 1: no manure, 2: 0.01 tons per acre, 3: 0.02
tons per acre, 4: 0.04 tons per acre. Three different varieties of barley were used. The
experimental plots were arranged in six blocks. (A “block” is an area of land).

You can read the data using a command such as the following.

barley<-read.table("http://www.mas.ncl.ac.uk/~nmf16/teaching/mas8303/splitdata.txt")

There are thirty columns. Your barley yields y are in the column corresponding to your
reference number. For example, if your reference number is 20 then your data are in column
20. Columns 1, 2 and 3 contain the block, variety and manure level respectively.

You can construct a suitable design matrix using the following R commands.

block<-barley[,1]

variety<-barley[,2]

manure<-barley[,3]

X<-matrix(nrow=72,ncol=11)

for (col in 1:4)

{X[,col]<-ifelse(manure==col,1,0)

}

b<-rep(12,6)

X[,5]<-rep(c(1, 1, 1,-1,-1,-1),b)

X[,6]<-rep(c(2,-1,-1, 0, 0, 0),b)

X[,7]<-rep(c(0, 1,-1, 0, 0, 0),b)

X[,8]<-rep(c(0, 0, 0, 2,-1,-1),b)

X[,9]<-rep(c(0, 0, 0, 0, 1,-1),b)

v<-rep(4,3)

x<-rep(c(2,-1,-1),v)

X[,10]<-rep(x,6)

x<-rep(c(0, 1,-1),v)

X[,11]<-rep(x,6)

The first four columns of X correspond to the four levels of manure. Columns 5-9 are for the
block effects. (There are five degrees of freedom between the six blocks). Columns 10-11 are
for the variety effects. (There are two degrees of freedom between the three varieties). (We
could also fit interaction effects but we will leave that for now).

Let the parameters corresponding to the eleven columns of X be β1, . . . , β11. Then the mean
yield, µm,b,v, for manure level m in block b with variety v is defined as follows.

µm,b,v = βm +

9∑
j=5

βjwb,j +

11∑
j=10

βjzv,j

Here wb,j and zv,j are defined as follows.

wb,j j = 5 j = 6 j = 7 j = 8 j = 9
b = 1 1 2 0 0 0
b = 2 1 −1 1 0 0
b = 3 1 −1 −1 0 0
b = 4 −1 0 0 2 0
b = 5 −1 0 0 −1 1
b = 6 −1 0 0 −1 −1
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zv,j j = 10 j = 11
v = 1 2 0
v = 2 −1 1
v = 3 −1 −1

The actual yield for for manure level m in block b with variety v is

ym,b,v = µm,b,v + εm,b,v

where εm,b,v ∼ N(0, τ−1) and εm,b,v is independent of εm′,b′,v′ unless (m, b, v) = (m′, b′, v′).

Our prior distribution is as follows.

We give τ a gamma prior, τ ∼ Ga(d0/2, d0v0/2) with d0 = 2.1 and v0 = 250. Conditional
on τ we give β = (β0, . . . , β11)T a multivariate normal prior distribution with mean vector

b0 = 100(1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0)T

and precision matrix τC0 where C0 = (V0/v0)−1 and

V0 =
1

6



24 12 12 12 0 0 0 0 0 0 0
12 24 12 12 0 0 0 0 0 0 0
12 12 24 12 0 0 0 0 0 0 0
12 12 12 24 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0 0
0 0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 6 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 6 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 3


.

You can construct V0 in R, for example using the following commands.

V0<-matrix(0,nrow=11,ncol=11)

V0[1:4,1:4]<-matrix(2,nrow=4,ncol=4)+diag(2,4)

V0[5:11,5:11]<-diag(c(2,2,6,2,6,1,3))/6

(a) Find the posterior distribution of β0, . . . , β11, τ (in the same form as the prior distribu-
tion).

(6 marks)

(b) Find a symmetric 95% posterior interval for the mean yield for Manure level 1 in Block
1 with Variety 1.

(6 marks)

(c) Present, explain and comment on your findings clearly.

(8 marks)


