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Chapter 0

Inference for More Than One
Unknown

0.1 More than one unknown

0.1.1 Basic ideas

MAS3301 mostly looked at Bayesian inference in the case where we have a single unknown quantity,
usually a parameter. In MAS8303 we will typically look at models with two or more, sometimes
many more, unknowns. So, in this lecture, we will look at what happens when we have more
than one unknown parameter. The principle is the same when we have more than one parameter.
We simply obtain a joint posterior distribution for the parameters. For example, if there are two
parameters, we might produce a contour plot of the posterior pdf, as shown in figure 1, or a “3-d”
plot, as shown in figure 2. If there are more than two parameters we need to “integrate out” some
of the parameters in order to produce graphs like this.

As usual, the basic rule is posterior ∝ prior × likelihood. If necessary, the normalising
constant is found by integrating over all parameters. Posterior means, variances, marginal proba-
bility density functions, predictive distributions etc. can all be found by suitable integrations. In
practice the integrations are often carried out numerically by computer. Apart from being the only
practical means in many cases, this removes the pressure to use a convenient conjugate prior.

Sometimes our beliefs might be represented by a model containing several parameters and we
might want to answer questions about a number of them. For example, in a medical experiment,
we might be interested in the effect of a new treatment on several different outcome measures so we
might want to make inferences about the change in the mean for each of these when we move from
the old to the new treatment. In frequentist statistics this can give rise to the “multiple testing
problem.” This problem does not arise for Bayesians. For a Bayesian the inference always consists
of the posterior distribution. Once we have calculated the posterior distribution we can calculate
whatever summaries we want from it without any logical complications. For example, we could
calculate a posterior probability that the mean outcome measure has increased from one treatment
to the other for each outcome, or a joint probability that it has increased for every member of
some subset of the outcomes or any or all of many other summaries.

0.1.2 The bivariate normal distribution

The normal distribution can be extended to deal with two variables. (In fact, we can extend this
to more than two variables).

If Y1 and Y2 are two continuous random variables with joint pdf

f(y) = (2π)−1|V |−1/2 exp

{
−1

2
(y − µ)TV −1(y − µ)

}
for −∞ < y1 < ∞ and −∞ < y2 < ∞ then we say that Y1 and Y2 have a bivariate normal
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Figure 1: Posterior density of two unknowns: Contour plot
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Figure 2: Posterior density of two unknowns: Wireframe plot

distribution with mean vector µ = (µ1, µ2)T and variance matrix

V =

(
v1,1 v1,2
v1,2 v2,2

)
where µ1 and µ2 are the means of Y1 and Y2 respectively, v1,1 and v2,2 are their variances, v1,2 is
their covariance and |V | is the determinant of V.

If Y1 and Y2 are independent then v1,2 = 0 and, in the case of the bivariate normal distribution,
the converse is true.

Note that, if X and Y both have normal marginal distributions it does not necessarily follow
that their joint distribution is bivariate normal, although, in practice, the joint distribution often
is bivariate normal. However, if X and Y both have normal distributions and are independent
then their joint distribution is bivariate normal with zero covariance.

If Y1 and Y2 have a bivariate normal distribution then a1Y1 +a2Y2 is also normally distributed,
where a1 and a2 are constants. For example, if X ∼ N(µx, σ

2
x) and Y ∼ N(µy, σ

2
y) and X and Y

are independent then X + Y ∼ N(µx + µy, σ
2
x + σ2

y).

0.1.3 Functions of continuous random variables (Revision)

Theory

As we shall see in the example below, we sometimes need to find the distribution of a random
variable which is a function of another random variable. Suppose we have two random variables X
and Y where Y = g(X) for some function g(). In this section we will only consider the case where
g() is a strictly monotonic, i.e. either strictly increasing or strictly decreasing, function.
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Suppose first that g() is a strictly increasing function so that if x2 > x1 then y2 = g(x2) > y1 =
g(x1). In this case the distribution functions FX(x) and FY (y) are related by

FY (y) = Pr(Y < y) = Pr(X < x) = FX(x).

We can find the relationship between the probability density functions , fY (y) and fX(x), by
differentiating with respect to y. So

fY (y) =
d

dy
Fy(y) =

d

dy
FX(x) =

d

dx
FX(x)× dx

dy
= fX(x)

dx

dy
= fX(x)

(
dy

dx

)−1
.

Similarly, if g() is a strictly decreasing function so that if x2 > x1 then y2 = g(x2) < y1 = g(x1),

FY (y) = Pr(Y < y) = Pr(X > x) = 1− FX(x)

and

fY (y) = −fX(x)
dx

dy

but here, of course, dx/dy is negative.
So, if g() is a strictly monotonic function

fY (y) = fX(x)

∣∣∣∣dxdy
∣∣∣∣ where

∣∣∣∣dxdy
∣∣∣∣ is the modulus of

dx

dy
.

A simple way to remember this is to remember that an element of probability fX(x)δx is
preserved through the transformation so that (for a strictly increasing function)

fY (y)δy = fX(x)δx.

Example

0.1.4 The multivariate normal distribution

Suppose that X has a multivariate normal Nn(M, V ) distribution. This distribution has a mean
vector M = (m1, . . . ,mn)T where mi is the mean of Xi, and a covariance matrix V. The diagonal
elements of V are the variances of X1, . . . , Xn with the element in row and column i, vii being the
variance of Xi. The covariance of Xi and Xj is vij , the element in row i and column j. Clearly
vji = vij and V is symmetric. It is also positive semi-definite.
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The pdf is

fX(x) = (2π)−n/2|V |−1/2 exp

{
−1

2
(x−M)TV −1(x−M)

}
.

(Here xT denotes the transpose of x). We often work in terms of the precision matrix P = V −1.
In this case, of course, we replace (x−M)TV −1(x−M) with (x−M)TP (x−M).

If X has a multivariate normal Nn(M, V ) distribution and V is a diagonal matrix, that is if
covar(Xi, Xj) = 0 when i 6= j, then X1, . . . , Xn are independent.

0.1.5 Numerical Methods for More Than One Parameter

It is often necessary to use numerical methods to do the necessary integrations for computing
posterior distributions and summaries. Such methods can be used when we have more than one
unknown. We will look at this first in the case of two unknown parameters.

If we have two unknown parameters θ1, θ2 then we often need to create a two-dimensional grid
of values, containing every combination of θ1,1, . . . , θ1,m1 and θ2,1, . . . , θ2,m2 , where θj,1, . . . , θj,mj
are a set of, usually equally spaced, values of θj . We therefore have m1m2 points and two step sizes,
δθ1, δθ2. Figure 3 shows such a grid diagramatically. Instead of a collection of two-dimensional rect-
angular columns standing on a one-dimensional line, we now have a collection of three-dimensional
rectangular columns standing on a two-dimensional plane. The contours in figure 3 represent the
function being integrated. The small circles represent the points at which the function is evaluated.
The dashed lines represent the boundaries of the columns. Of course we would really have many
more function evaluations placed much more closely together. Notice that some of the function
evaluations are in regions where the value of the function is very small. It is inefficient to waste
too many function evaluations in this way and some more sophisticated methods avoid doing this.

The approximate integral becomes∫ ∫
h(θ1, θ2) dθ1 dθ2 ≈

m1∑
j=1

m2∑
k=1

h(θ1,j , θ2,k)δθ1δθ2.

We can extend this to three or more dimensions but it becomes impractical when the number of
dimensions is large. If we use a 100×100 grid in two dimensions this gives 104 function evaluations.
If we use a 100×100×100 grid in three dimensions this requires 106 evaluations and so on. Clearly
the number of evaluations becomes prohibitively large quite quickly as the number of dimensions
increases. In such cases we would usually use Markov chain Monte Carlo methods which are beyond
the scope of this module.

It is sometimes possible to reduce the dimension of the numerical integral by integrating ana-
lytically with respect to one unknown.

0.1.6 Example: The Weibull distribution

Model

The Weibull distribution is often used as a distribution for lifetimes. We might be interested, for
example, in the lengths of time that a machine or component runs before it fails, or the survival
time of a patient after a serious operation. A number of different families of distributions are used
for such lifetime variables. Of course they are all continuous distributions and only give positive
probability density to positive values of the lifetime. The Weibull distribution is an important
distribution of this type. We can think of it as a generalisation of the exponential distribution.
The distribution function of an exponential distribution is F (t) = 1− exp(−λt). The distribution
function of a Weibull distribution is

F (t) = 1− exp (−λtα) (t ≥ 0) (1)

where the extra parameter α > 0 is called a shape parameter. It is often convenient to write λ = ρα

and then
F (t) = 1− exp (−[ρt]α) (t ≥ 0) (2)

and ρ > 0 is a scale parameter.
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Figure 3: Numerical integration in two dimensions.
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Differentiating (2) with respect to t, we obtain the pdf

f(t) = αρ(ρt)α−1 exp{−(ρt)α} (3)

for 0 ≤ t <∞.
If we use α, λ instead of α, ρ as the parameters, as in (1), then the pdf is

f(t) = αλtα−1 exp(−λtα). (4)

Evaluating the posterior distribution

Suppose, for example, that we give α and ρ independent gamma prior distributions so that

f (0)α,ρ(α, ρ) ∝ αaα−1e−bααρaρ−1e−bρρ.

Then the posterior pdf is proportional to

hα,ρ(α, ρ) = αn+aα−1ρnα+aρ−1

(
n∏
i=1

ti

)α−1
exp

{
−

[
bαα+ bρρ+ ρα

n∑
i=1

tαi

]}
.

Figure 1 shows the posterior density of α and ρ when n = 50, aα = 1, bα = 1, aρ = 3, bρ = 1000
and the data are as given in table 1. Figure 2 shows the same thing as a perspective plot except
that, to make the axes more readable, ρ has been replaced with R = 1000ρ.

To find, for example, the posterior mean of ρ we evaluate∫ ∞
0

∫ ∞
0

ρ f (1)α,ρ(α, ρ) dα dρ = C−1
∫ ∞
0

∫ ∞
0

ρ hα,ρ(α, ρ) dα dρ.

To find a 95 % hpd region for α, ρ we can either choose a value k and evaluate
∫ ∫

f
(1)
α,ρ(α, ρ) dα dρ

over all points in a grid for which f
(1)
α,ρ(α, ρ) > k then adjust k and repeat until the value of 0.95
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67 313 1391 630 627 573 2093 28 492 482

206 1166 165 1088 496 313 437 815 436 17

32 131 340 939 247 1859 57 132 813 254

950 1615 463 258 2285 672 506 50 637 246

178 431 306 662 33 254 858 187 344 545

Table 1: Data for Weibull example.

is obtained or rank all of the points in our grid in decreasing order of f
(1)
α,ρ(α, ρ) and cumulatively

integrate over them until 0.95 is reached.
To find the marginal pdf for α we evaluate∫ ∞

0

f (1)α,ρ(α, ρ) dρ.

0.1.7 Transformations

Theory

It has probably become apparent by now that sometimes it may be helpful to use a transformation
of the parameters. For example, sometimes a posterior distribution where we need to use numerical
integration might have an awkward shape which makes placing a suitable and efficient rectangular
grid difficult.

In section 0.1.3 we saw how to change the pdf when we transform a single random variable.
Sometimes, of course, we need a more general method for transforming between one set of pa-
rameters and another. Let θ and φ be two alternative sets of parameters where there is a 1 - 1
relationship between values of θ and values of φ, and therefore each contains the same number of
parameters. (There could appear to be more parameters in θ than in φ, for example, but, in that
case, there would have to be constraints on the values of θ so that there was the same effective
number of parameters in θ and φ). Let θ = (θ1, . . . , θk)T and φ = (φ1, . . . , φk)T . Suppose also that
we can write, for each i,

φi = gi(θ1, . . . , θk)

where g is a differentiable function. Then, if the density of θ is fθ(θ) and the density of φ is fφ(φ),

fθ(θ) = fφ(φ)|J |

where J is the Jacobian determinant, often just called “the Jacobian,”∣∣∣∣∣∣∣∣∣∣

∂φ1

∂θ1

∂φ1

∂θ2
· · · ∂φ1

∂θk
∂φ2

∂θ1

∂φ2

∂θ2
· · · ∂φ2

∂θk
...

...
...

...
∂φk
∂θ1

∂φk
∂θ2

· · · ∂φk
∂θk

∣∣∣∣∣∣∣∣∣∣
and |J | is its modulus.

For example, we could transform the (0,∞) ranges of the parameters α, ρ of a Weibull distri-
bution to (0, 1) by using

β =
α

α+ 1
, γ =

ρ

ρ+ 1
.

The Jacobian is

J =

∣∣∣∣∣ ∂β
∂α

∂β
∂ρ

∂γ
∂α

∂γ
∂ρ

∣∣∣∣∣ = (α+ 1)−2(ρ+ 1)−2.

Suppose that the joint posterior density of α and ρ is proportional to hα,ρ(α, ρ). So we define
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hβ,γ(β, γ) = (α+ 1)2(ρ+ 1)2hα,ρ(α, ρ),

where

α =
β

1− β
, ρ =

γ

1− γ

so

hβ,γ(β, γ) = (1− β)−2(1− ρ)−2hα,ρ

(
β

1− β
,

γ

1− γ

)
.

Then let

C =

∫ 1

0

∫ 1

0

hβ,γ(β, γ) dβ dγ.

The posterior mean of ρ is then

C−1
∫ 1

0

∫ 1

0

γ

1− γ
hβ,γ(β, γ) dβ dγ.

A hpd region for α, ρ can then be found by integrating C−1hβ,γ(β, γ) with respect to β, γ over
the points with the greatest values of

hα,ρ

(
β

1− β
,

γ

1− γ

)
= hα,ρ(α, ρ).

Example: A clinical trial

The Anturane Reinfarction Trial Research Group (1980) reported a clinical trial on the use of the
drug sulfinpyrazone in patients who had suffered myocardial infarctions (“heart attacks”). The
idea was to see whether the drug had an effect on the number dying. Patients in one group
were given the drug while patients in another group were given a “placebo,” that is an inactive
substitute. The following table gives the number of all “analysable” deaths up to 24 months after
the myocardial infarction and the total number of eligible patients who were not withdrawn and
did not suffer a “non-analysable” death during the study.

Deaths Total
Group 1 (Sulfinpyrazone) 44 560
Group 2 (Placebo) 62 540

We can represent this situation by saying that there are two groups, containing n1 and n2
patients, and two parameters, θ1, θ2, such that, given these parameters, the distribution of the
number of deaths Xj in Group j is binomial(nj , θj).

Now we could give θj a beta prior distribution but it seems reasonable that our prior beliefs
would be such that θ1 and θ2 would not be independent. There are various ways in which we
could represent this. One of these is as follows. We transform from the (0, 1) scale of θ1, θ2
to a (−∞,∞) scale and then give the new parameters, η1, η2, a bivariate normal distribution
(see section 0.1.2). We can use a transformation where θj = F (ηj) and F (x) is the distribution
function of a continuous distribution on (−∞, ∞), usually one which is symmetric about x = 0.
One possibility is to use the standard normal distribution function Φ(x) so that θj = Φ(ηj). We
write ηj = Φ−1(θj) where this function, Φ−1(x), the inverse of the standard normal distribution
function, is sometimes called the probit function. If we use this transformation then it is easily
seen that

fθ(θ1, θ2) = fη(η1, η2)/|J |,

where fθ(θ1, θ2) is the joint density of θ1, θ2, fη(η1, η2) is the joint density of η1, η2 and
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|J | = |

∣∣∣∣∣ ∂θ1
∂η1

∂θ1
∂η2

∂θ2
∂η1

∂θ2
∂η2

∣∣∣∣∣ | = φ(η1)φ(η2),

where φ(x) is the standard normal pdf.

Suppose that, from past experience, we can give a 95% symmetric prior interval for θ2 (placebo)
as 0.05 < θ2 < 0.20. (This is actually quite a wide interval considering that there may be a lot of
past experience of such patients). This converts to a 95% interval of −1.645 < η2 < −0.842. For
example, in R, we can use

> qnorm(0.025,0,1)

[1] -1.959964

If we give η2 a normal prior distribution then we require the mean to be µ2 = ([−1.645] +
[−0.842])/2 ≈ −1.24 and the standard deviation to be σ2 = ([−0.842]−[−1.645])/(2×1.96) ≈ 0.21,
since a symmetric 95% normal interval is the mean plus or minus 1.96 standard deviations. Let us
use the same mean for a normal prior distribution for η1 (sulfinpyrazone) so that we have equal prior
probabilities for an increase and a decrease in death rate when the treatment is given. However it
seems reasonable that we would be less certain of the death rate given the treatment so we increase
the prior standard deviation to σ1 = 2σ2 = 0.42. This implies a 95% interval −2.06 < η1 < −0.42
which, in turn, implies 0.02 < θ1 < 0.34. (This is a wide interval so we are really not supplying
much prior information).

We also need to choose a covariance or correlation between η1 and η2. At this point we will
not discuss in detail how to do this except to say that, if we choose the correlation to be r, then
the conditional variance of one of η1, η2 given the other will be 100r2% of the marginal variance.
For example, if we choose r = 0.7, then the variance of one is roughly halved by learning the
value of the other. Suppose that we choose this value. Then the covariance between η1 and η2 is
0.7× 0.21× 0.42 = 0.0617.

In evaluating the joint prior density of η1, η2, we can make use of the fact, which is easily
confirmed, that, if δj = (ηj − µj)/σj and r = covar(η1, η2)/(σ1σ2), then the joint density is
proportional to

exp

{
− 1

2(1− r2)
(δ21 + δ22 − 2rδ1δ2)

}
.

Figure 4 shows a R function to evaluate the posterior density. Figure 5 shows the resulting
posterior density. The dashed line is the line θ1 = θ2. We see that most of the probability lies on
the side where θ2 > θ1 which suggests that the death rate is probably greater with the placebo
than with sulfinpyrazone, which, of course, suggests that sulfinpyrazone has a beneficial effect.

To investigate further what the posterior tells us about the effect of sulfinpyrazone, we can
calculate the posterior probability that θ1 < θ2. This is done by integrating the joint posterior
density over the region where θ1 < θ2. This calculation is included in the function shown in figure
4. The calculated probability is 0.972. We can also find the posterior density of the relative risk,
θ1/θ2, or the log relative risk, log(θ1/θ2). Let γ be the log relative risk. We can modify the function
in figure 4 so that it uses a grid of γ and θ2 values, evaluates the joint posterior density of γ and
θ2 and then integrates out θ2. Of course we need to transform between θ1, θ2 and γ, θ2 where the
densities are related by

fθ1,θ2(θ1, θ2) = fγ,θ2(γ, θ2)|J |

and J = θ−11 is the appropriate Jacobian. Figure 6 shows the prior and posterior densities of the log
relative risk, γ. Values of γ less than zero correspond to a smaller death rate with sulfinpyrazone
than with the placebo. Notice that the prior density is not quite symmetric about zero. It is
symmetric on the η scale but not on the γ scale. The prior median is zero, however.

There are other methods available to deal with problems of this sort, some involving approxi-
mations and fairly simple calculations.
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function(theta1,theta2,n,x,prior)

{# Evaluates posterior density for probit example.

# prior is mean1, mean2, sd1, sd2, correlation

n1<-length(theta1)

n2<-length(theta2)

step1<-theta1[2]-theta1[1]

step2<-theta2[2]-theta2[1]

theta1<-matrix(theta1,nrow=n1,ncol=n2)

theta2<-matrix(theta2,nrow=n1,ncol=n2,byrow=T)

eta1<-qnorm(theta1,0,1)

eta2<-qnorm(theta2,0,1)

delta1<-(eta1-prior[1])/prior[3]

delta2<-(eta2-prior[2])/prior[4]

r<-prior[5]

d<-1-r^2

logprior<- -(delta1^2 + delta2^2 - 2*r*delta1*delta2)/(2*d)

J<-dnorm(eta1,0,1)*dnorm(eta2,0,1)

logprior<-logprior-log(J)

loglik<-x[1]*log(theta1)+(n[1]-x[1])*log(1-theta1)+x[2]*log(theta2)+(n[2]-x[2])*log(1-theta2)

logpos<-logprior+loglik

logpos<-logpos-max(logpos)

posterior<-exp(logpos)

int<-sum(posterior)*step1*step2

posterior<-posterior/int

prob<-sum(posterior*(theta1<theta2))*step1*step2

ans<-list(density=posterior,prob=prob)

ans

}

Figure 4: R function for probit example (0.1.7).
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Figure 5: Posterior density of θ1 and θ2 in probit example (0.1.7). The dashed line is θ1 = θ2.
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Figure 6: Posterior density (solid) and prior density (dashes) of log relative risk in probit example
(0.1.7).
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0.2 The Dirichlet distribution and multinomial observations

0.2.1 The Dirichlet distribution

The Dirichlet distribution is a distribution for a set of quantities θ1, . . . , θm where θi ≥ 0 and∑m
i=1 θi = 1. An obvious application is to a set of probabilities for a partition (i.e. for an exhaustive

set of mutually exclusive events).
The probability density function is

f(θ1, . . . , θm) =
Γ(A)∏m
i=1 Γ(ai)

m∏
i=1

θai−1i

where A =
∑m
i=1 ai and a1, . . . , am are parameters with ai > 0 for i = 1, . . . ,m. We write

Dm(a1, . . . , am) for this distribution.
Clearly, if m = 2, we obtain a Beta(a1, a2) distribution as a special case.
The mean of θj is

E(θj) =
aj
A

the variance of θj is

var(θj) =
aj

A(A+ 1)
−

a2j
A2(A+ 1)

and the covariance of θj and θk, where j 6= k, is

covar(θj , θk) = − ajak
A2(A+ 1)

.

Also the marginal distribution of θj is Beta(aj , A− aj).
Note that the space of the parameters θ1, . . . , θm has only m − 1 dimensions because of the

constraint
∑m
i=1 θi = 1, so that, for example, θm = 1 −

∑m−1
i=1 θi. Therefore, when we integrate

over this space, the integration has only m− 1 dimensions.

Proof (mean)
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Proof (variance)

Proof (covariance)

Proof (marginal)

We can write the joint density of θ1, . . . , θm as

f1(θ1)f2(θ2 | θ1)f3(θ3 | θ1, θ2) · · · fm−1(θm−1 | θ1, . . . , θm−2).

(We do not need to include a final term in this for θm because θm is fixed once θ1, . . . , θm−1 are
fixed).

In fact we can write the joint density as

Γ(A)

Γ(a1)Γ(A− a1)
θa1−11 (1− θ1)A−a1−1 × Γ(A− a1)

Γ(a2)Γ(A− a1 − a2)

θa2−12 (1− θ1 − θ2)A−a1−a2−1

(1− θ1)A−a1−1

× · · · × Γ(A− a1 − · · · − am−2)

Γ(am−1)Γ(A− a1 − · · · − am−1)

θ
am−1−1
m−1 θam−1m

(1− θ1 − · · · θm−2)am−1+am−1
.

A bit of cancelling shows that this simplifies to the correct Dirichlet density.
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Thus we can see that the marginal distribution of θ1 is a Beta(a1, A − a1) distribution and
similarly that the marginal distribution of θj is a Beta(aj , A−aj) distribution. We can also deduce

the distribution of a subset of θ1, . . . , θm. For example if θ̃3 = 1−θ1−θ2−θ3, then the distribution
of θ1, θ2, θ3, θ̃3 is Dirichlet Dd(a1, a2, a3, ã3) where ã3 = A− a1 − a2 − a3.

0.2.2 Multinomial observations

Model

Suppose that we will observe X1, . . . , Xm where these are the frequencies for categories 1, . . . ,m,
the total N =

∑m
i=1Xi is fixed and the probabilities for these categories are θ1, . . . , θm where∑m

i=1 θi = 1. Then, given θ, where θ = (θ1, . . . , θm)T , the distribution of X1, . . . , Xm is multinomial
with

Pr(X1 = x1, . . . , Xm = xm) =
N !∏m
i=1 xi!

m∏
i=1

θxii .

Notice that, with m = 2, this is just a Bin(N, θ1) distribution.
Then the likelihood is

L(θ; x) =
N !∏m
i=1 xi!

m∏
i=1

θxii

∝
m∏
i=1

θxii .

The conjugate prior is a Dirichlet distribution which has a pdf proportional to

m∏
i=1

θai−1i .

The posterior pdf is proportional to

m∏
i=1

θai−1i ×
m∏
i=1

θxii =

m∏
i=1

θai+xi−1i .

This is proportional to the pdf of a Dirichlet distribution with parameters a1 +x1, a2 +x2, . . . am+
xm.

Example

In a survey 1000 English voters are asked to say for which party they would vote if there were
a general election next week. The choices offered were 1: Labour, 2: Liberal, 3: Conservative,
4: Other, 5: None, 6: Undecided. We assume that the population is large enough so that the
responses may be considered independent given the true underlying proportions. Let θ1, . . . , θ6
be the probabilities that a randomly selected voter would give each of the responses. Our prior
distribution for θ1, . . . , θ6 is a D6(5, 3, 5, 1, 2, 4) distribution.

This gives the following summary of the prior distribution.

Response ai Prior mean Prior var. Prior sd.
Labour 5 0.25 0.008929 0.09449
Liberal 3 0.15 0.006071 0.07792
Conservative 5 0.25 0.008929 0.09449
Other 1 0.05 0.002262 0.04756
None 2 0.10 0.004286 0.06547
Undecided 4 0.20 0.007619 0.08729
Total 20 1.00

Suppose our observed data are as follows.
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Labour Liberal Conservative Other None Undecided
256 131 266 38 114 195

Then we can summarise the posterior distribution as follows.

Response ai + xi Posterior mean Posterior var. Posterior sd.
Labour 261 0.2559 0.0001865 0.01366
Liberal 134 0.1314 0.0001118 0.01057
Conservative 271 0.2657 0.0001911 0.01382
Other 39 0.0382 0.0000360 0.00600
None 116 0.1137 0.0000987 0.00994
Undecided 199 0.1951 0.0001538 0.01240
Total 1020 1.0000


