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This is a collection of practical exercises from old courses, mostly my old module in “Bayesian
Computation”. Unless otherwise stated, references to lecture notes refer to the “Bayesian Compu-
tation” notes. The exercises use R and BUGS. Both R and BUGS are available in the School of
Mathematics and Statistics.

You can download R from the Web, at no cost. There are versions for several operating systems
including Unix, Mac OS and Windows. For further information see the following web site.

http://cran.r-project.org/

You can download BUGS from the Web, at no cost. There is a Windows version, WinBUGS,
as well as the Unix version. The practicals are written in terms of the Unix version. For further
information see the following web site.

http://www.mrc-bsu.cam.ac.uk/bugs/

1 Introduction

1.1 Smoking Students

1. Recall the experiment which involves finding twenty students and counting the number who
smoke. Let us first look at the binomial distributions for this number, given various different
possible values for the true proportion of smokers. Try making plots with θ = 0.1, 0.2, . . . , 0.5.
Look at how the probability of three smokers changes. Just plot numbers of smokers from 0
to 8.

R

Defining a function saves on repetitive typing. Don’t forget to reset the mfrow parameter
in the last line.

smokers<-seq(0,8)
ylim<-c(0.0,0.3)
theta<-0.1*seq(1,5)
probplot<-function(sm,th,yl)
{par(mfrow=c(3,2))
for (i in 1:5)
{prob<-dbinom(sm,20,th[i])
plot(sm,prob,type="h",ylim=yl)
}
par(mfrow=c(1,1))
}
probplot(smokers,theta,ylim)

2. Plot the prior and posterior probability density functions for θ in the smoking students
example, with three smokers observed in the sample of twenty. Use each of the following
prior distributions.
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(a) A beta distribution with a = 1, b = 1.

(b) A beta distribution with a = 2, b = 1.

(c) A beta distribution with a = 1, b = 2.

(d) A beta distribution with a = 2, b = 2.

(e) A mixture of two beta distributions with p = 0.5, a1 = 3, b1 = 2, a2 = 2, b2 = 3.

(f) Anything else you would like to try.

See notes section 1.3.3.

R

> theta<-0.01*seq(1,99)
> prior<-dbeta(theta,1,1)
> density<-dbeta(theta,4,18)
> plot(theta,density,type="l")
> lines(theta,prior)
> text(0.32,3,"posterior")
> text(0.6,1.2,"prior")

2 Probability in Models

1. We will reproduce Figure 2 from the notes. Note that we need to divide the density by n
because of the transformation from log(n). See “Supplementary Theory.”

R

> n<-seq(1,1000)
> logn<-log(n)
> var0<-0.3751
> sd0<-sqrt(var0)
> before<-dnorm(logn,5.605,sd0)
> before<-dnorm(logn,5.605,sd0)/n
> plot(n,before,type="l")
> var1<-0.04096
> sd1<-sqrt(var1)
> density<-dnorm(logn,5.863,sd1)/n
> plot(n,density,type="l")
> lines(n,before)
> text(100,0.003,"Before")
> text(500,0.003,"After")

3 Bayes’ Rule

1. Try the calculations described in Section 3.4 of the lecture notes for the Chester Road data.

2. Try changing the prior. For example you could try the following for the prior.

(a) A gamma distribution with α = 2, β = 10.

(b) A gamma distribution with α = 8, β = 40.

(c) A mixture of two gamma distributions with p = 0.5, α1 = 2, β1 = 20, α2 = 18, β2 = 60.

3. To illustrate the principles involved in using a non-conjugate prior, try using a uniform(0.0, 0.5)
prior. The calculations are quite simple in this case but we will do them using a general
method. The likelihood is proportional to

λ115e−1200λ.
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It is usually better to work in terms of logs, for numerical reasons. The log likelihood, apart
from an additive constant, is

115 log(λ)− 1200λ.

We will also take logs of the prior density. Note that we could not do this where the prior
density is zero but we really do not need to.

Having added the log prior to the log likelihood we subtract the maximum of this so that the
maximum becomes zero. We then take exponentials and the maximum of this will be 1.0.
The reason for doing this is to avoid very large or very small numbers. We then normalise
by finding the integral and dividing by this. The integral is found numerically using a simple
trapezium rule.

R

> lambda<-0.05+0.001*seq(1,100)
> prior<-rep(2.0,100)
> logprior<-log(prior)
> loglik<-115*log(lambda)-1200*lambda
> logpos<-logprior+loglik
> logpos<-logpos-max(logpos)
> posterior<-exp(logpos)
> density<-posterior/(sum(posterior)*0.001)
> plot(lambda,density,type="l")
> lines(lambda,prior)

4. We can, of course, calculate the statistics we need for the likelihood from the raw data. In
this case it is actually just the number of vehicles which passed. However we can also draw
a histogram of the data, for example. First you should obtain a copy of the file containing
the raw data. The data are available in the file chester.dat which can be obtained from
my “Additional Teaching Information” Web Page.

R

> headway<-read.table("chester.dat")
> headway<-headway[,1]
> n<-length(headway)
> n
[1] 115
> hist(headway)

4 Practical: More Than One Parameter and Normal Dis-
tribution

4.1 Introduction

In this practical we are going to look at some calculations of posterior distributions where there is
more than one parameter and where it is necessary to use numerical integration.

4.2 Normal distribution with unknown mean and variance, done numer-
ically

Here we illustrate a two-parameter case analysed numerically so that we are not restricted to using
the conjugate prior distribution.

Use as data the following 30 observations from a normal distribution. Enter these into a vector
y . You can do this by typing the data into a single column in a text file, called, for example,
example.dat . Then, in R, type.
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ytable<-read.table("example.dat")
y<-ytable[,1]

21.3 19.9 22.6 22.7 18.8 19.5
18.1 23.0 18.7 26.3 23.2 23.4
26.1 24.7 20.0 25.4 18.6 25.2
24.2 23.3 22.9 25.0 22.9 23.8
20.2 21.4 22.9 19.5 24.7 26.4

Suppose the prior distribution for p = 1/σ2, where σ2 is the population variance, is negative
exponential with mean 0.1.

Suppose the prior distribution for the population mean µ is normal with mean 20 and variance
16, independently of p.

Now you can use the procedure in Section 5.2 of the lecture notes. In fact you might like
to define a R function so that you can change the range of values used without having to type
everything again.

Alternatively, we can use a purely numerical procedure as follows.
Set up a grid of µ and p values, with µ between 21 and 24 in steps of 0.05 and p between 0 and

0.3 in steps of 0.005, as follows.

muvals<-seq(21,24,0.05)
> muvals
[1] 21.00 21.05 21.10 21.15 21.20 21.25 21.30 21.35 21.40 21.45 21.50 21.55
[13] 21.60 21.65 21.70 21.75 21.80 21.85 21.90 21.95 22.00 22.05 22.10 22.15
[25] 22.20 22.25 22.30 22.35 22.40 22.45 22.50 22.55 22.60 22.65 22.70 22.75
[37] 22.80 22.85 22.90 22.95 23.00 23.05 23.10 23.15 23.20 23.25 23.30 23.35
[49] 23.40 23.45 23.50 23.55 23.60 23.65 23.70 23.75 23.80 23.85 23.90 23.95
[61] 24.00
> mu<-rep(muvals,61)
> x<-rep(61,61)
> pvals<-seq(0.0,0.3,0.005)
> pvals
[1] 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055
[13] 0.060 0.065 0.070 0.075 0.080 0.085 0.090 0.095 0.100 0.105 0.110 0.115
[25] 0.120 0.125 0.130 0.135 0.140 0.145 0.150 0.155 0.160 0.165 0.170 0.175
[37] 0.180 0.185 0.190 0.195 0.200 0.205 0.210 0.215 0.220 0.225 0.230 0.235
[49] 0.240 0.245 0.250 0.255 0.260 0.265 0.270 0.275 0.280 0.285 0.290 0.295
[61] 0.300
> p<-rep(pvals,x)

Now calculate the natural logarithm of the joint prior density as follows.

> muprior<-dnorm(mu,20,4)
> pprior<-dexp(p,10)
> logprior<-log(muprior)+log(pprior)

Now the likelihood function is

L =
n∏

i=1

(2πσ2)−1/2 exp
{
− 1

2σ2
(yi − µ)2

}

= (2πσ2)−n/2 exp

{
− 1

2σ2

n∑
i=1

(yi − µ)2
}

and the log likelihood is

l = −(n/2) ln(2π) + (n/2) ln(p)− (1/2)p(
∑

y2
i − 2µ

∑
yi + nµ2).

So we calculate (up to a constant) the log posterior as follows.

4



Age-group Mid-point Patients Deaths
1 10 4272 9
2 20 2835 23
3 30 2785 19
4 40 1930 16
5 50 1497 59
6 60 960 101
7 70 652 185
8 80 186 97

Table 1: Deaths in surgery

> n<-length(y)
> sy<-sum(y)
> syy<-sum(y*y)
> loglik<-(n/2)*log(p) - (p/2)*(syy - 2*mu*sy + n*mu*mu)
> logpos<-logprior+loglik

Before exponentiating (i.e. taking antilogs) we add a constant to rescale so that the calculations
do not overflow.

> logpos<-logpos-max(logpos)
> posterior<-exp(logpos)

We now integrate numerically to find the missing constant of proportionality and rescale the
posterior density. This can now be displayed, for example, in a contour plot.

> k<-sum(posterior)*0.05*0.005
> posterior<-posterior/k
> dim(posterior)<-c(61,61)
> contour(muvals,pvals,posterior)
> persp(muvals,pvals,posterior)
> image(muvals,pvals,posterior)

To calculate the marginal posterior density of µ or p it is convenient to rearrange the array so
that we can integrate along the rows or columns. In fact we already did this to make the 3-d plots.

> mupost<-rowSums(posterior)*0.005
> plot(muvals,mupost,type="l")
> ppost<-colSums(posterior)*0.05
> plot(pvals,ppost,type="l")

We can use the marginal density to calculate the posterior mean of µ.

> mumupost<-muvals*mupost
> pmmu<-sum(mumupost)*0.05
> pmmu
[1] 22.45547

4.3 Logistic regression

Table 1 gives a subset of some data given by Mosteller and Tukey (1977). The data refer to male
patients undergoing surgery at a particular location in the USA. For each of a number of age
groups, the total number undergoing surgery and the number of these who died are given. The
mid-point of the age-range is given for each group.

Suppose that we adopt the following model. Let the mid-point for age-group i be xi. Let the
number undergoing surgery be ni and the number of deaths be di in group i. Then we propose
that di is an observation from the binomial(ni, pi) distribution. Furthermore, we propose that
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log
(

pi

1− pi

)
= α + βxi,

where xi is the age-group mid-point minus 40, so that the probability of death depends on age.
This is called a logistic regression. The reason why we subtract 40 is simply because it is probably
easier to construct a prior by thinking about the middle of the age range than one of the ends. In
this way α refers to the 40-year-old group.

Suppose that we give α a N(−3.0, 1.0) prior distribution and β, independently, a N(0.0, 1.0)
prior distribution.

The likelihood is proportional to

L =
8∏

i=1

pdi
i (1− pi)ni−di

=
8∏

i=1

(
pi

1− pi

)di

(1− pi)ni

Therefore, apart from an additive constant, the log likelihood is

8∑
i=1

di[α + βxi] + ni log(1− pi)

and log(1− pi) = − log[1 + exp(α + βxi)].
The data are in a file on the computer system. Obtain a copy of the file surgery.dat from my

“Additional Teaching Information” Web Page.
Start R then read the data and subtract 40 from the ages as follows.

data<-read.table("surgery.dat")
data[,1]<-data[,1]-40

We will define some functions to save having to type things more than once.

> valgen<-function(lower,upper,nstep)
+ {step<-(upper-lower)/nstep
+ values<-seq(lower,upper,step)
+ values
+ }
> alpha<-valgen(-5,-2,100)
> beta<-valgen(0,0.2,100)

Define some vectors containing the prior means and variances.

> aprior<-c(-3,1)
> bprior<-c(0,1)

Now define a function to calculate the posterior density.

> logreg<-function(alpha,beta,data,aprior,bprior)
+ {astep<-alpha[2]-alpha[1]
+ bstep<-beta[2]-beta[1]
+ n<-data[,2]
+ y<-data[,3]
+ x<-data[,1]
+ na<-length(alpha)
+ nb<-length(beta)
+ nd<-length(n)
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+ amat<-rep(alpha,nb)
+ bmat<-rep(beta,na)
+ amat<-matrix(amat,nrow=na)
+ bmat<-matrix(bmat,nrow=na,byrow=T)
+ sda<-sqrt(aprior[2])
+ sdb<-sqrt(bprior[2])
+ logprior<-log(dnorm(amat,aprior[1],sda))+log(dnorm(bmat,bprior[1],sdb))
+ logpos<-logprior
+ for (i in 1:nd)
+ {q<-1+exp(amat+bmat*x[i])
+ logpos<-logpos+y[i]*(amat+bmat*x[i]) - n[i]*log(q)
+ }
+ logpos<-logpos-max(logpos)
+ posterior<-exp(logpos)
+ int<-sum(posterior)*astep*bstep
+ posterior<-posterior/int
+ posterior
+ }
> posterior<-logreg(alpha,beta,data,aprior,bprior)
> contour(alpha,beta,posterior)

We see that our ranges are too wide so we change them.

> alpha<-valgen(-4.5,-3.5,100)
> beta<-valgen(0.07,0.12,100)
> posterior<-logreg(alpha,beta,data,aprior,bprior)
> contour(alpha,beta,posterior)
> persp(alpha,beta,posterior)

You might try further refinement of the range.
Now we could calculate, for example, the predictive probability of death for a patient aged, say

48. Perhaps you might like to try this.

4.4 Telephone queues

Try solving Inference Problems number 1.

5 Practical: An Old Miniproject

5.1 Miniproject 1994

What follows is the 1993-4 miniproject from the module “Modelling with Probability” in the
M.Sc. Decision Support Systems course. See how far you can get with this. The data are in the
file assign94.dat. You can obtain a copy of this file from my “Additional Teaching Information”
Web Page.

You should be able to do the computations and plotting in R. It is probably best to define
functions so that you can change the ranges of integration and plotting without having to type
everything again.

Task 3 is actually a discrimination problem and we will be looking at such problems in a later
lecture but you may be able to figure out what to do here.

Please ask for help if you need it.

5.2 Background

Components supplied to a company have lifetimes, in hours, which follow a Weibull distribution
with probability density function

f(t) = αρ(ρt)α−1 exp{−(ρt)α}
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If the supplier uses the correct manufacturing method then the lifetimes are relatively long. How-
ever suppliers sometimes use a cheaper method which tends to lead to shorter lifetimes.

Samples of 50 components made using each method were obtained and tested.

5.3 Prior beliefs

Suppose that when the current method is used the parameters are α1, ρ1 and when the cheap
method is used the parameters are α2, ρ2. The prior distributions for α1 and α2 are independent
and negative exponential with mean 1.0. The prior distributions for ρ1 and ρ2 are independent of
those for α1 and α2 and of each other and are gamma(3,1000) for ρ1 and gamma(3,800) for ρ2 (in
the notation used in the course notes).

5.4 Tasks

1. Find and display the posterior distributions of the parameters.

(40 marks)

2. Find the predictive distribution of the lifetime of a new component

(a) given that it was manufactured correctly,

(b) given that it was manufactured by the cheap method.

(20 marks)

3. (a) A new component is tested and lasts for t hours before failing. We are not sure whether
the correct method was used in its manufacture. Investigate how the posterior proba-
bility that it was manufactured correctly depends on t and on the prior probability of
correct manufacture.

(b) Repeat this investigation with the difference that the new component is still working
after t hours.

(c) Illustrate how these results are affected if we test several new components instead of
just one.

(20 marks)

5.5 Reports and Marking

You should discuss and explain your work carefully and illustrate your report with suitable graphs.
The marks available are divided equally between:

• Method

• Discussion of method

• Results

• Conclusions

• Presentation

5.6 Data

Fifty correctly manufactured components failed after the following numbers of hours.

67 313 1391 630 627 573 2093 28 492 482
206 1166 165 1088 496 313 437 815 436 17
32 131 340 939 247 1859 57 132 813 254

950 1615 463 258 2285 672 506 50 637 246
178 431 306 662 33 254 858 187 344 545
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Fifty cheaply manufactured components failed after the following numbers of hours.

74 239 565 840 793 97 128 35 71 40
63 359 783 4 120 1004 521 902 129 569

323 194 109 145 1292 147 323 57 517 480
210 145 30 320 77 187 157 108 439 365
289 1958 277 586 102 973 65 466 729 73

6 BUGS

6.1 A first BUGS program

Let us do the logistic regression example of Section 4.3 in Practical 4 using BUGS. (It is not really
necessary to use BUGS to do this but doing so provides a simple first example).

1. Create a file called surgery.bug and type the following BUGS model into it.

model surgery;

const N=8;

var y[N],age[N],patients[N],p[N],alpha,beta;

data age,patients,y in "surgery.dat";

{for (i in 1:N)
{y[i]~dbin(p[i],patients[i]);
logit(p[i])<-alpha+beta*(age[i]-40);
}

alpha~dnorm(-3.0,1.0);
beta~dnorm(0.0,1.0);

}

2. Run Bugs and enter the following commands.

(a) Compile the model by typing:

compile("surgery.bug")

(b) Execute 1000 iterations as a “burn-in.”

update(1000)

(c) Monitor α and β and execute 5000 more iterations.

monitor(alpha)
monitor(beta)
update(5000)

(d) Look at a summary of the results so far and leave BUGS.

stats(alpha)
stats(beta)
q()
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3. Now you should have a file called bugs.out which will contain the output of your monitored
iterations. There will be two columns. The first half of each column refers to α and the
second half to β. Column 1 gives the iteration number and Column 2 the sampled value. It
is not difficult to read these into R and look at the results.

(a) Read the data and rearrange them.

> bugsout<-read.table("bugs.out")
> samples<-bugsout[,2]
> iteration<-bugsout[,1]
> samples<-matrix(samples, ncol=2)
> iteration<-matrix(iteration, ncol=2)
> alpha<-samples[,1]
> beta<-samples[,2]
> iteration<-iteration[,1]

(b) Check convergaence by plotting the sampled values against the iteration numbers. Also
plot α against β to get an idea of the bivariate posterior distribution.

> plot(iteration,alpha, type="l")
> plot(iteration, beta, type="l")
> plot(alpha,beta)

We see that the “trace” plots suggest that the chain has converged but there is a
suggestion of slow “mixing”. This might be caused by the negative correlation between
α and β which can be seen in the bivariate scatter plot. (This is despite our subtraction
of 40 from the ages).

(c) Plot an approximation to the posterior marginal densities by applying a density esti-
mator.

> plot(density(alpha))
> plot(density(beta))

You may feel that these densities look odd in some way. This may be because we need
to modify the density estimator or it may be that we need to run the Gibbs sampler for
longer (because of the poor mixing).

(d) We can add the prior densities to the marginal posterior plots.

> plot(density(alpha))
> lines(alpha,dnorm(alpha,-3,1))
> plot(density(beta))
> lines(beta,dnorm(beta,0,1))

We see that the priors are very flat compared to the posteriors.

4. We might want to find the predictive probability that a new patient with a particular age,
say 48, will die in surgery.

(a) Modify the BUGS model as follows.

model surgery;

const N=8;

var y[N],age[N],patients[N],p[N],alpha,beta,pred;

data age,patients,y in "surgery.dat";

{for (i in 1:N)
{y[i]~dbin(p[i],patients[i]);
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logit(p[i])<-alpha+beta*(age[i]-40);
}

alpha~dnorm(-3.0,1.0);
beta~dnorm(0.0,1.0);

logit(pred)<-alpha+beta*8;

}

(b) Run BUGS as before except that this time you should monitor pred rather than α
and β.

compile("surgery.dat")
update(1000)
monitor(pred)
update(5000)
stats(pred)

The predictive probability is the posterior mean of pred, i.e. about 0.04.

6.2 Further BUGS exercises

The BUGS Web Site provides documentation, including a manual and a large set of examples. If
you have difficulty obtaining any of these things, please let me know. The documentation can be
obtained from:

http://www.mrc-bsu.cam.ac.uk/bugs/documentation/contents.shtml

The files for the examples can be obtained from:

http://www.mrc-bsu.cam.ac.uk/bugs/examples/contents.shtml

Try working your way through the BUGS examples. You will probably not want to do all of
them but do as many as you like. Please ask for assistance if you need it. Those of you who are
working on survival analysis might be particularly interested in the following three examples in
Volume 1.

16. Mice. Weibull regression in censored survival analysis.

17. Kidney. Weibull regression with random effects.

18. Leuk. Survival analysis using Cox regression.

However you might like to try some of the easier examples first.

7 Discrimination and Classification: The Iris Data

7.1 Introduction

The data on specimens of three species of iris, given in Table 1.1, are taken from Fisher (1936).
They seem to be a popular example.

The data are in the file irises.dat which is available from my “Additional Teaching Informa-
tion” Web Page.

7.2 “Plug-in” analysis

We could do a fully Bayesian discriminant analysis. The conjugate prior is a little artificial and, if
we use a non-conjugate prior, we need to use numerical methods, e.g. MCMC using BUGS. First
we will look at the “plug-in” method which can be computed in R.
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Iris Setosa Iris versicolor Iris virginica
Sepal Sepal Petal Petal Sepal Sepal Petal Petal Sepal Sepal Petal Petal
length width length width length width length width length width length width

5.1 3.5 1.4 0.2 7.0 3.2 4.7 1.4 6.3 3.3 6.0 2.5
4.9 3.0 1.4 0.2 6.4 3.2 4.5 1.5 5.8 2.7 5.1 1.9
4.7 3.2 1.3 0.2 6.9 3.1 4.9 1.5 7.1 3.0 5.9 2.1
4.6 3.1 1.5 0.2 5.5 2.3 4.0 1.3 6.3 2.9 5.6 1.8
5.0 3.6 1.4 0.2 6.5 2.8 4.6 1.5 6.5 3.0 5.8 2.2
5.4 3.9 1.7 0.4 5.7 2.8 4.5 1.3 7.6 3.0 6.6 2.1
4.6 3.4 1.4 0.3 6.3 3.3 4.7 1.6 4.9 2.5 4.5 1.7
5.0 3.4 1.5 0.2 4.9 2.4 3.3 1.0 7.3 2.9 6.3 1.8
4.4 2.9 1.4 0.2 6.6 2.9 4.6 1.3 6.7 2.5 5.8 1.8
4.9 3.1 1.5 0.1 5.2 2.7 3.9 1.4 7.2 3.6 6.1 2.5
5.4 3.7 1.5 0.2 5.0 2.0 3.5 1.0 6.5 3.2 5.1 2.0
4.8 3.4 1.6 0.2 5.9 3.0 4.2 1.5 6.4 2.7 5.3 1.9
4.8 3.0 1.4 0.1 6.0 2.2 4.0 1.0 6.8 3.0 5.5 2.1
4.3 3.0 1.1 0.1 6.1 2.9 4.7 1.4 5.7 2.5 5.0 2.0
5.8 4.0 1.2 0.2 5.6 2.9 3.6 1.3 5.8 2.8 5.1 2.4
5.7 4.4 1.5 0.4 6.7 3.1 4.4 1.4 6.4 3.2 5.3 2.3
5.4 3.9 1.3 0.4 5.6 3.0 4.5 1.5 6.5 3.0 5.5 1.8
5.1 3.5 1.4 0.3 5.8 2.7 4.1 1.0 7.7 3.8 6.7 2.2
5.7 3.8 1.7 0.3 6.2 2.2 4.5 1.5 7.7 2.6 6.9 2.3
5.1 3.8 1.5 0.3 5.6 2.5 3.9 1.1 6.0 2.2 5.0 1.5
5.4 3.4 1.7 0.2 5.9 3.2 4.8 1.8 6.9 3.2 5.7 2.3
5.1 3.7 1.5 0.4 6.1 2.8 4.0 1.3 5.6 2.8 4.9 2.0
4.6 3.6 1.0 0.2 6.3 2.5 4.9 1.5 7.7 2.8 6.7 2.0
5.1 3.3 1.7 0.5 6.1 2.8 4.7 1.2 6.3 2.7 4.9 1.8
4.8 3.4 1.9 0.2 6.4 2.9 4.3 1.3 6.7 3.3 5.7 2.1
5.0 3.0 1.6 0.2 6.6 3.0 4.4 1.4 7.2 3.2 6.0 1.8
5.0 3.4 1.6 0.4 6.8 2.8 4.8 1.4 6.2 2.8 4.8 1.8
5.2 3.5 1.5 0.2 6.7 3.0 5.0 1.7 6.1 3.0 4.9 1.8
5.2 3.4 1.4 0.2 6.0 2.9 4.5 1.5 6.4 2.8 5.6 2.1
4.7 3.2 1.6 0.2 5.7 2.6 3.5 1.0 7.2 3.0 5.8 1.6
4.8 3.1 1.6 0.2 5.5 2.4 3.8 1.1 7.4 2.8 6.1 1.9
5.4 3.4 1.5 0.4 5.5 2.4 3.7 1.0 7.9 3.8 6.4 2.0
5.2 4.1 1.5 0.1 5.8 2.7 3.9 1.2 6.4 2.8 5.6 2.2
5.5 4.2 1.4 0.2 6.0 2.7 5.1 1.6 6.3 2.8 5.1 1.5
4.9 3.1 1.5 0.2 5.4 3.0 4.5 1.5 6.1 2.6 5.6 1.4
5.0 3.2 1.2 0.2 6.0 3.4 4.5 1.6 7.7 3.0 6.1 2.3
5.5 3.5 1.3 0.2 6.7 3.1 4.7 1.5 6.3 3.4 5.6 2.4
4.9 3.6 1.4 0.1 6.3 2.3 4.4 1.3 6.4 3.1 5.5 1.8
4.4 3.0 1.3 0.2 5.6 3.0 4.1 1.3 6.0 3.0 4.8 1.8
5.1 3.4 1.5 0.2 5.5 2.5 4.0 1.3 6.9 3.1 5.4 2.1
5.0 3.5 1.3 0.3 5.5 2.6 4.4 1.2 6.7 3.1 5.6 2.4
4.5 2.3 1.3 0.3 6.1 3.0 4.6 1.4 6.9 3.1 5.1 2.3
4.4 3.2 1.3 0.2 5.8 2.6 4.0 1.2 5.8 2.7 5.1 1.9
5.0 3.5 1.6 0.6 5.0 2.3 3.3 1.0 6.8 3.2 5.9 2.3
5.1 3.8 1.9 0.4 5.6 2.7 4.2 1.3 6.7 3.3 5.7 2.5
4.8 3.0 1.4 0.3 5.7 3.0 4.2 1.2 6.7 3.0 5.2 2.3
5.1 3.8 1.6 0.2 5.7 2.9 4.2 1.3 6.3 2.5 5.0 1.9
4.6 3.2 1.4 0.2 6.2 2.9 4.3 1.3 6.5 3.0 5.2 2.0
5.3 3.7 1.5 0.2 5.1 2.5 3.0 1.1 6.2 3.4 5.4 2.3
5.0 3.3 1.4 0.2 5.7 2.8 4.1 1.3 5.9 3.0 5.1 1.8

Table 2: Iris Data
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7.2.1 Linear discriminant

1. Read the data.

> irises<-read.table("irises.dat")

2. Calculate (non-Bayesian) point estimates of the means for each variety.

> means<-mean(irises)
> setosa<-means[1:4]
> versicolor<-means[5:8]
> virginica<-means[9:12]
> meantab<-data.frame(setosa,versicolor,virginica)

3. Calculate (non-Bayesian) point estimates of the variances and covariances.

(a) First we need to eliminate the differences in means between the varieties.

nrows<-length(irises[,1])
adjust<-rep(means,rep(nrows,12))
adjust<-array(adjust,c(nrows,12))
irisadj<-irises-adjust

(b) Next we extract the four variables.

> seplen<-c(irisadj[,1],irisadj[,5],irisadj[,9])
> sepwid<-c(irisadj[,2],irisadj[,6],irisadj[,10])
> petlen<-c(irisadj[,3],irisadj[,7],irisadj[,11])
> petwid<-c(irisadj[,4],irisadj[,8],irisadj[,12])
> longvars<-data.frame(seplen,sepwid,petlen,petwid)

(c) Finally we calculate the estimated variance matrix.

> varmat<-var(longvars)

4. We can now calculate likelihoods for the three varieties, assuming that our point estimates
can be treated as the “true” values, multiply these by our prior probabilities for the varieties
and hence calculate posterior probabilities for the groups. This is best done using a function
such as the following.

> lindprob<-function(new,means,variance,prior)
+ {ngroup<-length(means)
+ prob<-1:ngroup
+ for (i in 1:ngroup)
+ {diff<-new-means[,i]
+ prob[i]<- -(diff%*%solve(variance,diff))/2
+ }
+ adj<-max(prob)
+ prob<-prior*exp(prob-adj)
+ prob<-prob/sum(prob)
+ prob
+ }

5. We can try this out by calculating the posterior probabilities for the first specimen in the
data. We also need to set up our prior probabilities. These need not sum to 1. We just need
proportionality.

> prior<-c(1,1,1)
> test<-c(5.1,3.5,1.4,0.2)
> lindprob(test,meantab,varmat,prior)
[1] 0.83193835 0.12400496 0.04405669
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We see a posterior probability (with equal prior probabilities) of 0.832 that this specimen is
Setosa, which is, in fact, what it is.

We could try testing all of the specimens in the data set, perhaps by writing a function,
which would call the function lindprob, to do this.

7.2.2 Quadratic discriminant (R version)

1. Read the data (if necessary).

> irises<-read.table("/home/cs0mfa/data/datasets/irises.dat")

2. Collect the data into the three varieties.

> v1<-data.frame(irises[,1:4])
> v2<-data.frame(irises[,5:8])
> v3<-data.frame(irises[,9:12])

3. Calculate (non-Bayesian) point estimates of the variances and covariances.

> varmat1<-var(v1)
> varmat2<-var(v2)
> varmat3<-var(v3)
> variances<-list(varmat1,varmat2,varmat3)

4. Calculate (non-Bayesian) point estimates of the means for each variety (if necessary).

> means<-mean(irises)
> setosa<-means[1:4]
> versicolor<-means[5:8]
> virginica<-means[9:12]
> meantab<-data.frame(setosa,versicolor,virginica)

5. We can now calculate likelihoods for the three varieties, assuming that our point estimates
can be treated as the “true” values, multiply these by our prior probabilities for the varieties
and hence calculate posterior probabilities for the groups. This is best done using a function
such as the following. (You can easily make this by editing lindprob. There is only a slight
change).

> quaddprob<-function(new,means,variance,prior)
+ {ngroup<-length(means)
+ prob<-1:ngroup
+ for (i in 1:ngroup)
+ {diff<-new-means[,i]
+ prob[i]<- -(log(det(variance))+diff%*%solve(variance[[i]],diff))/2
+ }
+ adj<-max(prob)
+ prob<-prior*exp(prob-adj)
+ prob<-prob/sum(prob)
+ prob
+ }

6. We can try this out by calculating the posterior probabilities for the first specimen in the
data. We also need to set up our prior probabilities. These need not sum to 1. We just need
proportionality.
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> prior<-c(1,1,1)
> test<-c(5.1,3.5,1.4,0.2)
> quadprob(test,meantab,variance,prior)
[1] 1.000000e+00 4.918517e-26 2.981541e-41

We see that (with equal prior probabilities) we are virtually certain that this specimen is
Setosa, which is, in fact, what it is.

We could try testing all of the specimens in the data set, perhaps by writing a function,
which would call the function quaddprob, to do this.

7.3 Fully Bayesian quadratic discriminant (BUGS)

Now we will turn to a fully Bayesian analysis using BUGS. The following BUGS model specification
fits a multivariate normal distribution for each variety. The mean vector and the variance matrix
both vary between varieties. The multivariate normal distribution is built step-by-step, using the
k[,] coefficients to generate the covariances.

The data, in a format suitable for BUGS, are in the file iris.dat which is available from my
“Additional Teaching Information” Web Page. As well as reading the training data from iris.dat,
BUGS will read the measurements for a new specimen from iristest.dat. I suggest that you try
putting the numbers

5.9
3.0
5.1
1.8

in a single column in this file. It also reads the prior probabilities for the variety of the new
specimen from irisprior.dat. In fact, the values in this file do not need to sum to 1 as they will
be rescaled. They should not be negative though. For equal prior probabilities, put the numbers

1.0
1.0
1.0

in a single column in this file.
If you monitor testcount and obtain the posterior mean of this vector then this gives the

posterior probabilities for the variety of the test specimen.

model iris;

const N=150;

var sn[N],variety[N],y[N,4],m[3,4],tau[3,4],k[3,6],mean[N,4],
musl,musw,mupl,mupw,
test[4],prior[3],p[3],testvar,testmean[4],testcount[3];

data sn,variety,y in "iris.dat", test in "iristest.dat",
prior in "irisprior.dat";

{for (i in 1:N)
{for (j in 1:4)

{y[i,j]~dnorm(mean[i,j],tau[variety[i],j]);
}

mean[i,1]<-m[variety[i],1];
mean[i,2]<-m[variety[i],2]+k[variety[i],1]*(y[i,1]-mean[i,1]);
mean[i,3]<-m[variety[i],3]+k[variety[i],2]*(y[i,1]-mean[i,1])

+k[variety[i],3]*(y[i,2]-mean[i,2]);
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mean[i,4]<-m[variety[i],4]+k[variety[i],4]*(y[i,1]-mean[i,1])
+k[variety[i],5]*(y[i,2]-mean[i,2])
+k[variety[i],6]*(y[i,3]-mean[i,3]);

}

for (j in 1:3)
{m[j,1]~dnorm(musl,0.2);
m[j,2]~dnorm(musw,1.0);
m[j,3]~dnorm(mupl,0.1);
m[j,4]~dnorm(mupw,1.0);
tau[j,1]~dgamma(1,1);
tau[j,2]~dgamma(1,1);
tau[j,3]~dgamma(1,1);
tau[j,4]~dgamma(1,0.5);
for (i in 1:6)

{k[j,i]~dnorm(0,0.01);
}

}

musl~dnorm(6,0.1);
musw~dnorm(3,0.1);
mupl~dnorm(4,0.1);
mupw~dnorm(1,0.1);

# Try the test specimen.

for (i in 1:3)
{p[i]<-prior[i]/sum(prior[]);
testcount[i]<-equals(i,testvar);
}

testvar~dcat(p[]);

for (j in 1:4)
{test[j]~dnorm(testmean[j],tau[testvar,j]);

}
testmean[1]<-m[testvar,1];
testmean[2]<-m[testvar,2]+k[testvar,1]*(test[1]-testmean[1]);
testmean[3]<-m[testvar,3]+k[testvar,2]*(test[1]-testmean[1])

+k[testvar,3]*(test[2]-testmean[2]);
testmean[4]<-m[testvar,4]+k[testvar,4]*(test[1]-testmean[1])

+k[testvar,5]*(test[2]-testmean[2])
+k[testvar,6]*(test[3]-testmean[3]);

}

}

In fact BUGS allows direct specification of a multivariate normal distribution and a second
model specification is given below showing its use. Unfortunately this one does not work. The
multivariate normal specification sometimes leads to difficulties, at least in thsi version of BUGS.
If you can get this to work then please let me know!

model iris;
# Not working properly. I don’t know why. 14/10/03.

const N=150;
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var sn[N],variety[N],y[N,4],m[3,4],T[3,4,4],R[4,4],
musl,musw,mupl,mupw;

data sn,variety,y in "iris.dat", R in "iriscov.dat";

{for (i in 1:N)
{y[i,]~dmnorm(m[variety[i],],T[variety[i],,]);
}

for (j in 1:3)
{m[j,1]~dnorm(musl,0.2);
m[j,2]~dnorm(musw,1.0);
m[j,3]~dnorm(mupl,0.1);
m[j,4]~dnorm(mupw,1.0);
T[j,,]~dwish(R[,],5);
}

musl~dnorm(6,0.1);
musw~dnorm(3,0.1);
mupl~dnorm(4,0.1);
mupw~dnorm(1,0.1);

}

8 Practical: Road Vehicle Headways

This is an example of using MCMC when there are many unknowns. The data are taken from
Cowburn (2003) and the model and analysis are based on work in Cowburn (2003) and Cowburn
and Farrow (2003).

We are modelling the times, known as “headways”, between successive vehicles travelling in
the same direction along a road. The basic idea is that some vehicles are unaffected by the vehicle
in front (i.e. they are “free-flowing”) while others are constrained by the vehicle in front (i.e. they
are “congested”). The overall distribution of headways is therefore a mixture distribution. There
is a probability p that a particular vehicle will be free-flowing and a probability 1−p that it will be
congested. The value of p is unknown. Different probability distributions apply to the free-flowing
and congested headways. In the model considered here the free-flowing headways are given an
exponential distribution with pdf

f1(t) = β1e
−β1t

and the congested headways are given a gamma distribution with pdf

f2(t) =
βα2

2 tα2−1e−β2t

Γ(α2)
.

In each case the pdf applies for t ≥ 0.
For the purpose of this exercise, successive headways are independent.
Prior distributions are given to the parameters p, β1, β2, α2. The constraints α2 > 1 and β2 >

α2β1 are applied. The second constraint ensures that the mean headway for congested vehicles
is less than the mean headway for free-flowing vehicles. Such constraints help to overcome the
problems of identifiability and poor mixing which may occur in such models. Nevertheless, this is
a difficult problem, especially as the data do not exhibit two clear modes. You should use suitable
plots to check convergence.

The way that this problem is handled is to define an indicator variable Si for each observation,
such that, if Si = 1, headway i is free-flowing, i.e. pdf f1(t) applies. If Si = 2, headway i is
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congested, i.e. pdf f2(t) applies. These indicators are unknowns. Thus there are n + 3 unknowns
for n observations. In this case n = 150.

The data are available in the file dd01.dat and there is also an initial value file. This is
headway0b.in. Both of these are available from the “Additional Teaching Information” Web
Page.

You may use the following BUGS model specification.

model headway;

# This version is for independent headways.
# a[2] has to be greater than 1.

const
N=150;

var t[N], p, aa, a[2], bb, b[2], s[N], sdash[N];

data t in "dd01.dat";
inits in "headway0b.in";

{

for (i in 1:N) {
sdash[i]~dbern(p);
s[i]<-2-sdash[i];
t[i]~dgamma(a[s[i]],b[s[i]]);
}

a[1]<-1;
a[2]<-1+aa;
aa~dgamma(4,1);
b[1]~dgamma(2,8) I(,bb);
b[2]<-a[2]*bb;
bb~dgamma(4,4) I(b[1],);
p~dbeta(1,2);

}

Investigate the posterior distribution of the parameters. You may also like to investigate the
probabilities that individual headways are “congested.”

9 A simple Bayesian Network, using BUGS

The task here is to create a small Bayesian network for diagnosis of disease. The network will
contain some binary variables and some continuous variables. We will use BUGS to evaluate
probabilities given various diagnostic information.

Consider a clinic for people suffering from diseases of a particular type. Any person attending
this clinic must be suffering from either disease A or disease B. It is so unlikely that someone would
have both diseases when they first attend the clinic that this event can be given zero probability.

The clinic has available to it two diagnostic aids as follows.

• A simple test which either gives a positive result or a negative result.

• Measurement of the concentration of a certain protein P in the patient’s blood.
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The outcomes of the test and P concentration are conditionally independent of all other vari-
ables given the disease.

In addition the patient’s age and sex would normally be known.
From examination of records past cases where the correct diagnosis is known we conclude the

following about patients who arrive at the clinic.

• The prior probability that a patient has disease A is 0.7.

• The probability that the test result is positive is 0.1 for patients with disease A and 0.8 for
patients with disease B.

• The concentration of the protein P, in appropriate units, has a normal distribution. For
patients with A the mean is 120 and the variance is 400. For patients with B the mean is 60
and the variance is 400.

• The proportion of patients with A who are male is 0.3. The proportion of patients with B
who are male is 0.5.

• The distribution of age depends on the diseas and the sex of the patient. In each case the
natural logarithm of age has a normal distribution. The parameters are as follows.

Disease Sex Mean Variance
A Male 4.0 0.01
A Female 4.2 0.01
B Male 3.5 0.04
B Female 3.6 0.04

1. Draw a directed acyclic graph for this set of beliefs.

2. Specify a model in BUGS. You will need to read data on the test result, P concentration,
age and sex from a file.

3. Run BUGS and find the probability of disease A. Try various different input data. You can
omit a piece of data by entering “NA” for its value.
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