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Table 1 shows the numbers of patients undergoing surgery and the numbers who died in the
hospital following surgery in two areas of the USA, broken down by age-group and sex. The data
are taken from Mosteller and Tukey (1977).

We propose the following model. There are four area-sex groups:

Group 1 : Males in Area 1.

Group 2 : Females in Area 1.

Group 3 : Males in Area 2.

Group 4 : Females in Area 2.

Given the model parameters, the number of deaths in Area-Sex Group j and Age-group k has
a binomial(nj,k, pj,k) distribution where nj,k is the number of patients undergoing surgery and

log
(

pj,k

1− pj,k

)
= αj + βj(xk − 50)

where xk is the mid-point of the age-range for age-group k.
We need to make inferences about the eight model parameters, α1, . . . , α4, β1, . . . , β4.

1. Suppose that we consider “typical” patients aged 50. Suppose that for such patients, the
probability p0 of death is α0 and we give α0 a normal prior distribution. Suppose that, in
our prior beliefs, Pr(p0 < 0.02) = Pr(p0 > 0.10) = 0.025.

For a “typical” patient aged 50 we have

log
(

p0

1− p0

)
= α0 + β0(50− 50) = α0.

We have a symmetric 95% interval for p0 which is

0.02 < p0 < 0.1.

Hence a symmetric 95% interval for α0 is

log
(

0.02
0.98

)
< α0 < log

(
0.1
0.9

)
.

That is
−3.892 < α0 < −2.197.

Hence our prior mean for α0 is −(3.892 + 2.197)/2 = −3.0445 and our prior variance is(
3.892− 2.197

2× 1.96

)2

= 0.1870.
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2. Our joint prior distribution for α1, . . . , α4 can be represented as follows. We write

αj | ᾱ ∼ N(ᾱ, Vα,1) for j = 1, . . . , 4.

ᾱ ∼ N(mα, Vα,0).

Here α1, . . . , α4 are conditionally independent given ᾱ. We choose to make Vα,0 = Vα,1 and
Vα,0 + Vα,1 gives the prior variance of α0.

Since we have Vα,0 + Vα,1 = var(α0) = 0.1870 and Vα,0 = Vα,1, we must have Vα,0 = Vα,1 =
0.0935.

3. We propose a matching structure for β1, . . . , β4 with β1, . . . , β4 independent of α1, . . . , α4 in
the prior.

βj | β̄ ∼ N(β̄, Vβ,1) for j = 1, . . . , 4.

β̄ ∼ N(mβ , Vα,0).

Here β1, . . . , β4 are conditionally independent given β̄. We choose to make Vβ,0 = Vβ,1 and
Vβ,0 + Vβ,1 = 0.0004.

Since we have Vβ,0 + Vβ,1 = 0.0004 and Vβ,0 = Vβ,1, we must have Vβ,0 = Vβ,1 = 0.0002.

The value of mβ is 0.0.

4. A suitable BRugs model specification is shown in Figure 1. Note that, for the precisions,
1/0.0935 = 10.7 and 1/0.0002 = 5000.

5. The data are available in a file called surgicaldata.txt. The data have been arranged
into four columns as follows.

• group: the area-sex group number as above.

• age: the midpoint of the age range for the age-group.

• patients: the number of patients undergoing surgery.

• deaths: the number of deaths.

Use BRugs to find the posterior distribution of the model parameters. Check convergence of
the sampler.

An initial run of BRugs was used to check the convergence behaviour as follows.

> modelCheck("surgicalbug.txt")
> modelData("surgicaldata.txt")
> modelCompile(2)
> modelGenInits()
> samplesSet(c("alphabar","betabar","alpha","beta"))
> modelUpdate(2000)
> samplesHistory("alphabar")
> samplesHistory("betabar")
> samplesHistory("alpha")
> samplesHistory("beta")
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Area 1
Total undergoing surgery Number dying

Age Males Females Males Females
5-14 4272 3911 9 11

15-24 2835 2989 23 5
25-34 2785 2606 19 8
35-44 1930 1886 16 15
45-54 1497 1524 59 40
55-64 960 1013 101 52
65-75 652 855 185 118
76-83 186 287 97 108

Area 2
Total undergoing surgery Number dying

Age Males Females Males Females
5-14 1739 1758 5 2

15-24 1233 1244 14 1
25-34 989 1004 8 3
35-44 897 922 9 13
45-54 921 961 28 15
55-64 686 739 68 37
65-75 611 784 159 73
76-83 189 290 86 88

Table 1: Deaths following surgery in two areas of the USA

The graphs showed that convergence was rapid and that mixing was reasonably good. (The
graphs are omitted). Therefore a burn-in of 1000 iterations would be sufficient and 10000
further samples should provide a reasonable approximation to the posterior distribution.
(There are further checks of these things available but we have not covered them).

6. Posterior summaries were calculated as follows.

> modelCheck("surgicalbug.txt")
> modelData("surgicaldata.txt")
> modelCompile()
> modelGenInits()
> modelUpdate(1000)
> samplesSet(c("alphabar","betabar","alpha","beta"))
> modelUpdate(10000)
> samplesStats(c("alphabar","betabar","alpha","beta"))

The results are presented in Table 2.

The “Monte Carlo Error” gives an indication of the likely accuracy of the numerical approx-
imation obtained using the Gibbs sampler. This could be reduced by increasing the number
of iterations.

7. To find the posterior distribution of log(p∗1/p∗3) where p∗1 is the probability of death for a
fifty-year-old male in area 1 and p∗3 is the probability of death for a fifty-year-old male in
area 2, one way is simply to add the following lines

for (k in 1:4)
{pstar[k]<-exp(alpha[k])/(1+exp(alpha[k]))
}
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model surgical

{
for (i in 1:32)

{deaths[i]~dbin(p[i],patients[i])
logit(p[i])<-alpha[group[i]]+beta[group[i]]*(age[i]-50)
}

for (j in 1:4)
{alpha[j]~dnorm(alphabar,10.7)
beta[j]~dnorm(betabar,5000)
}

alphabar~dnorm(-3.0445,10.7)
betabar~dnorm(0.0,5000)

}

Figure 1: BRugs model specification.

Quantity Mean Std.dev. Monte Carlo Median 95% Interval
Error Lower Upper

ᾱ -3.30200 0.140700 0.00489 -3.30200 -3.58400 -3.02300
β̄ 0.07341 0.006413 0.00008 0.07346 0.06069 0.08598
α1 -3.01000 0.057340 0.00072 -3.00800 -3.12700 -2.89800
α2 -3.60600 0.071930 0.00090 -3.60500 -3.74700 -3.46600
α3 -3.01800 0.076160 0.00091 -3.01800 -3.16900 -2.87200
α4 -3.81600 0.103000 0.00146 -3.81400 -4.02000 -3.62000
β1 0.09599 0.003170 0.00004 0.09595 0.08970 0.10230
β2 0.09183 0.003596 0.00004 0.09183 0.08485 0.09883
β3 0.09031 0.003985 0.00005 0.09027 0.08267 0.09820
β4 0.08875 0.004838 0.00007 0.08863 0.07952 0.09855

Table 2: Posterior summaries.
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Figure 2: Posterior density of log(p∗1/p∗3).

z<-log(pstar[1]/pstar[3])

to the BRugs model specification and monitor this quantity. (Alternatively we could also
extract samples and do the necessary calculations in R rather than running the sampler
again). The calculations were done as follows.

> modelCheck("surgicalbug.txt")
> modelData("surgicaldata.txt")
> modelCompile()
> modelGenInits()
> modelUpdate(1000)
> samplesSet("z")
> modelUpdate(10000)
> samplesStats("z")

The posterior mean was found to be 0.01124 and the posterior standard deviation was found
to be 0.08921. The posterior density is shown in Figure 2. We can see that the posterior
distribution is centred close to zero so there is no strong suggestion that the risk for a 50-year-
old male patient is greater in Area 1 or in Area 2. In fact 95% of the posterior probability is
between about −0.135 and 0.185. This range corresponds to a range of p∗1/p∗3 (i.e. a relative
risk) of between 0.87 and 1.20.

The graph was produced as follows.

> z<-samplesSample("z")
> pdf("relrisk.pdf",height=4)
> plot(density(z),main="Posterior density of log relative risk")
> dev.off()
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