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1 Principles of Experimental Design

1.1 Why plan experiments?

• Planned experiments save time and money and help make the best use of limited resources.

– Experiment too large? — waste of resources

– Experiment too small? — waste of time and resources

• In a well-planned experiment practical significance will be very likely to lead to statistical
significance.

1.2 Communication

• Experimentation often involves both an investigator and a statistician. They need to work
closely together and communicate well.

• A good experimenter will recognize the importance of statistics in providing a valid interpre-
tation of results. A good statistician will try to understand the context of the experiment
and will attempt to explain statistical concepts in non-technical language.

Stages of an experiment

1. The idea.

2. The plan.

3. The execution.

4. The analysis of data.

5. The interpretation.

6. The report.

7. The next idea.

The statistician’s contribution

1. Avoidance of bias

2. Choice of design

3. Choice of sample size (to meet stated objectives)

4. Variability reduction techniques

5. Use of controls, choice of treatment levels

6. Data checking (assumptions), detection of “outliers”

7. Analysis of data

Also, valuable cross-disciplinary experience.
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1.3 What do we need to know

Before starting to plan an experiment, it is essential to collect certain information. Often, earlier
experiments can help. We need to know:

• The expected scale and variablity of the response.

• The size of effect worth detecting: practical significance.

• Any factors which may affect the response or limit the validity of the conclusions.

• Any limitations on time, cost, space or other resources.

1.4 Will it do the job?

Finally, we must ensure that the proposed design will be capable of answering the questions posed
and meeting the purpose of the experiment. we require:

• Certainty of interpretation (avoidance of confounding).

• Avoidance of bias or subjectivity (or even any suspicion of these).

• Simplicity of structure and analysis within the constraints of the investigation.

Often a trial analysis, perhaps using data from a previous or pilot study, can help to check for
possible pitfalls.

1.5 Observational studies and planned experiments

In many investigations, e.g. in social sciences, in economics, in ecological field studies, there is no
control over the way that data arise. No interventions are made. we simply observe. These are
observational studies. The standard methods of analysis (ANOVA, regression etc.) are valid but
the wider applicability of conclusions is limited.

In experiments, such as laboratory experiments, we can deliberately vary the conditions and
observe the changing responses. Such planned experiments allow conclusions to be drawn which
can not be drawn from observational studies, e.g. about cause and effect.

1.6 Features of planned experiments

Because these methods are used in a wide range of areas of application, a standard terminology is
used.

Experimental Unit : The basic set of conditions/materials on which a single element of the
experiment is carried out (e.g. a plot of ground, plant pot, patient, blood sample, reaction
vessel, piece of material etc.).

Treatment : What we do to the experimental unit. In various situations a treatment can be a
type of plant, a watering regime, a drug, a catalyst, a type of fertiliser, a methodology etc.

Trial : A single, independent application of a treatment to an experimental unit.

Response : The outcome of a trial - also known as an observation, or collectively as data.

Block : A set of experimental units with some common property, e.g. neighbouring plots, patients
with similar characteristics, time of day, samples from a common source.

Factor : A common, underlying aspect of a set of treatments, e.g. in an experiment to find out
how to achieve the best yield in a chemical reaction, we could vary temperature, pressure,
duration of reaction, quality of catalyst, etc. Each of these is a factor. A particular set of
values for the factors would be a treatment (or treatment combination).

(Sometimes we use “factor” for a categorical explanatory variable rather than a quantitative
explanatory variable).
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Nuisance factor : As above but outside the control of the experimenter, e.g. environmental
variables.

Replication : A single replication is the application of every treatment (or combination of treat-
ments) once. Most experiments have several replications. To be genuine replications, each
replication must be carried out independently on distinct sets of experimental units.

False replication : If the replications are not carried out on independent experimental units, we
do not have genuine replication and error estimates may be misleading. This can happen if,
for example, observations are made on the same unit over a period of time or when repeat
measurements are taken to improve accuracy.

Unless care is taken, false replication can lead to spurious sensitivity and an increase in the
probability of rejecting the null hypothesis when it is true (Type I error).

1.7 Randomisation

At various stages during an experiment, there are decisions to be made which are essentially
arbitrary. these include, for example, which order to carry out the trials and how to allocate a
particular treatment to an experimental unit.

It is considered to be a key principle of good design that any arbitrary choice of action should
be determined by a process of randomisation. This ensures:

1. Objectivity (i.e. lack of subjective bias or even the suspicion of it).

2. Some protection against unexpected variability in the experimental units.

3. Avoidance of false replication.

4. That a valid analysis can be performed.

2 Student’s t-test and the One-Way Analysis of Variance
(Revision)

2.1 The one-sample t-test

2.1.1 Example 1

The mean amount of a certain impurity in an industrial mineral is supposed to be not greater than
50 ppm. Samples are taken from twenty wagonloads and analysed. The data are as follows (ppm):

55.1 49.4 54.5 55.3 53.4 55.8 50.9 49.3 55.2 53.5
54.9 53.1 47.8 55.3 51.9 51.7 51.6 51.7 50.3 48.2

Is there any evidence that the mean impurity concentration is greater than 50 ppm?

2.1.2 Theory

Let us suppose that we can make the following assumptions about the data in the example:

• They are independent observations.

• They are taken from a normal distribution.

Suppose we call the mean of this normal distribution µ. We can then test the null hypothesis that
µ = 50 against the alternative hypothesis µ > 50. (This is a one-sided alternative. The two-sided
alternative would be µ 6= 50). We call this a one-sample test because we are comparing the sample
mean, ȳ, from one sample with a theoretical population mean, µ0 = 50.

We can write our model in this case as

Yi = µ + εi
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where Yi is obervation i and εi ∼ N(0, σ2) with εi independent of εj for i 6= j.
To find the significance of the difference we must standardise it by dividing by the standard

deviation (called the standard error) of ȳ. The actual standard error of ȳ is
√

σ2/n (where n is the
number of observations in the sample, in this case 20, and σ2 is the variance of the distribution from
which the observations were taken) but the value of σ2 is unknown so we use instead an estimate√

s2/n. Because of this the distribution of our test statistic, t, is not normal but Student’s t on
n − 1 degrees of freedom or tn−1 for short. We compare our value for t with figures given in a
t-table for the appropriate number of degrees of freedom.

2.1.3 Example 1 continued

We calculate ∑
y = 1048.9∑

y2 = 55132.33
ȳ = 52.445

s2 = 6.4615526

To test the null hypothesis H0 : µ = 50 against the alternative HA : µ > 50 we calculate the test
statistic

t19 =
52.445− 50√
6.4615526/20

= 4.30.

The upper 0.1 % point of the t19 distribution is 3.579 so the result is significant at the 0.1 % level.
We therefore reject H0 and conclude that µ > 50.

We can calculate a 95 % lower confidence bound for µ as

µ > ȳ − 1.729
√

6.4615526/20.

That is µ > 51.5.
Note that for a two-sided test the 0.1 % critical value is 3.883 so the result would still be

significant at the 0.1 % level. A two-sided 95 % confidence interval would be ȳ ± 2.093
√

s2/20.
That is 51.3 < µ < 53.6.

2.1.4 General one-sample t-test

Suppose Y1, . . . , Yn are independent and identically distributed observations from the N(µ, σ2)
distribution. That is they are a random sample from N(µ, σ2). Our model is Yi ∼ N(µ, σ2) or,
equivalently Yi = µ + εi where εi ∼ N(0, σ2).

Under H0 : µ = µ0,
Ȳ − µ0√

S2/n
∼ tn−1,

where

Ȳ =
1
n

n∑
i=1

Yi

and

S2 =
1

n− 1

n∑
i=1

(Yi − Ȳ )2.

Hence we can test H0 by comparing the observed value of the test statistic

t =
ȳ − µ0√

s2/n

with critical points of the tn−1 distribution. Similarly we can construct confidence intervals.
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2.1.5 Example 2

The amounts of milk in 20 bottles from a dairy are measured and the amounts in pints are such that
the sample mean is x̄ = 0.9978 and the sample variance is s2 = 5.34 × 10−4. Test the hypothesis
that the mean amount is one pint (assuming that the observations are independent and identically
distributed and normal).

The test statistic is
t19 =

0.9978− 1√
5.34× 10−4/20

= −0.426.

For a two-tailed test (against the alternative µ 6= 1) the 5 % point of t19 is ±2.093 so the result
is not significant and we do not reject the null hypothesis that µ = 1.

For a one-tailed test against the alternative µ < 1 the 5 % point of t19 is −1.729 so again the
result is not significant.

2.2 Example 3

In ten tests involving a new type of car the following miles per gallon figures were achieved.

30.5 29.7 35.3 29.1 37.8 32.3 39.8 25.4 29.8 30.1

Assuming that these may be thought of as independent and identically distributed normal
observations, give a symmetric 95 % confidence interval for the population mean miles per gallon.

The summary statistics are x̄ = 31.98 and s2 = 19.27 on 9 degrees of freedom. The appropriate
critical value from the t9 distribution is 2.262 so our confidence interval is given by

x̄− 2.262

√
19.27
10

< µ < x̄ + 2.262

√
19.27
10

.

That is
28.84 < µ < 35.12.

2.3 The two-sample t-test

2.3.1 Introduction

We have already looked at making inferences about the mean of a normal distribution. Now we
turn our attention to the difference between the means of two normal distributions. For example,
in an experiment to examine whether a food additive affects the rate of absorption of sugar, we
may wish to compare the mean blood sugar concentrations in blood samples from two groups of
volunteers where one group has been given the additive and the other has not.

Suppose we have two samples of observations. The n1 observations, Y11, . . . , Yn11, in the first
sample are independent and identically distributed from a N(µ1, σ

2) distribution. The n2 obser-
vations, Y12, . . . , Yn22, in the second sample are independent and identically distributed from a
N(µ2, σ

2) distribution. The observations in the two sample are independent of each other. The
three parameters, µ1, µ2 and σ2, are all unknown. Notice that we are assuming:

• Independence,

• Normality,

• The two distributions have the same variance.

We can use the t distribution to test, for example, the hypothesis that µ1 = µ2.
(For what to do when we can not assume that the variances are equal see, for example, Wetherill,

G.B. (1967) “Elementary Statistical Methods”, Section 6.6.)
Our model is

Yij = µj + εij ,

where
εij ∼ N(0, σ2).
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We can test the null hypothesis H0 : µ1 = µ2 by comparing ȳ1 − ȳ2 with zero. (Here ȳ1 and ȳ2

are the sample means for the two samples.
Alternatively, we can write

Yij = µ + αj + εij .

We then impose the constraint that α1 +α2 = 0 so that we staill have only two independent mean
parameters. We call α1 and α2 effects and we test the null hypothesis that α1 = α2 = 0.

The actual variance of ȳ1 − ȳ2 is

σ2

n1
+

σ2

n2
= σ2

(
1
n1

+
1
n2

)
where σ2 is the variance of the normal distributions and n1 and n2 are the numbers of observations
in the samples. We need an estimator for σ2. We use the following which pools information from
both samples.

S2 =
∑n1

i=1(Yi1 − Ȳ1)2 +
∑n2

i=1(Yi2 − Ȳ2)2

n1 + n2 − 2
,

where Ȳ1 is the sample mean of the first sample etc. This estimator is unbiassed, it has n1 +n2−2
degrees of freedom and

(n1 + n2 − 2)
S2

σ2
∼ χ2

n1+n2−2.

To test the hypothesis H0 : µ1 = µ2 we use the following test statistic:

Tn1+n2−2 =
Ȳ1 − Ȳ2√

S2
(

1
n1

+ 1
n2

)
which is compared with critical points of the tn1+n2−2 distribution which it follows under H0.
Observe that S2(1/n1 + 1/n2) is an unbiassed estimator of the variance of Ȳ1 − Ȳ2.

Similarly we can construct confidence intervals.

2.3.2 Example 4

A new supplier of the industrial mineral in Example 1 (2.1.1) is tried. Fifteen samples are analysed
giving the following amounts in ppm.

50.8 48.6 51.9 52.1 52.2 53.0 49.8 47.5 52.0 53.8
53.4 54.1 49.5 50.6 49.6

Is there any evidence of a difference in the mean amount of impurity between the two suppliers?
For the new data ∑

y = 768.9∑
y2 = 39468.33
ȳ2 = 51.26

The value of
∑

(y − ȳ)2 for this new sample is thus

39468.33− (768.9)2/15 = 54.526.

The corresponding value for Sample 1 is 122.7695. We calculate the pooled variance estimate

s2 =
122.7695 + 54.516

33
= 5.3722879.

Our test statistic for the test against the two-sided alternative HA : µ1 6= µ2 is

t33 =

∣∣∣∣∣ 52.445− 51.26√
5.3722879(1/20 + 1/15)

∣∣∣∣∣ = 1.497.
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For a 5 % two-sided test the critical value of t33 is 2.034 so the result is not significant. We do not
reject H0. There is no strong evidence of a difference.

A 95 % confidence interval for µ1 − µ2 is given by 52.445 − 51.26 ± 2.034
√

s2(1/20 + 1/15).
That is −0.43 < µ1 − µ2 < 2.80.

(We can also have one-sided tests and confidence intervals).

2.3.3 Example 5

In an experiment to see whether there was evidence that an additive in the lubricant affected the
amount of wear on certain bearings, twenty five bearings were subjected to the same amount of use
and then weighed. Ten of the bearings were tested with the additive and the remainder without.
The results were as follows (weight loss):

With additive 10.77 9.47 10.96 11.02 10.30 11.19 10.24 10.26 11.02 8.88
Without additive 11.28 11.34 9.21 10.53 11.79 11.90 11.58 11.78 11.16 12.04

11.17 11.34 10.61 10.41 10.92

Assuming that the observations are independent and approximately normally distributed and
that the variance is the same under the two conditions, test the hypothesis that the mean amount
of wear is unchanged and give a 95 % confidence interval for the difference between the means
under the two conditions.

In sample 1:

we have
∑

1 y = 104.11 and
∑

1 y2 = 1088.9619
so ȳ1 = 10.411 and

∑
1(y − ȳ)2 = 5.07269 .

In sample 2:

we have
∑

2 y = 167.06 and
∑

2 y2 = 1868.0762
so ȳ2 = 11.137 and

∑
2(y − ȳ)2 = 7.47329 .

This leads to
s2 =

5.07269 + 7.47329
23

= 0.54548

and hence
t23 =

10.411− 11.137√
0.54548

(
1
10 + 1

15

) = −2.408.

Critical points (2-tailed) of t23 are ±2.069 at 5 % and ±2.807 at 1 % so the result is significant
at the 5 % level. At this level we would reject the null hypothesis and conclude that there is
evidence that the mean weight loss is less for bearings with the additive.

The confidence interval is:

10.411− 11.137± 2.069s

√
1
n1

+
1
n2

.

That is
−1.350 < µ1 − µ2 < −0.102.

2.4 The paired-sample t-test

2.4.1 Introduction

Sometimes, when we wish to compare the effects of two “treatments” by observing samples of
individuals, or experimental units, subjected to the two treatments, each member of one sample
can be paired, in some natural way, with a corresponding member of the other sample. In cases
where the variation between observations in the same sample can be expected to be greater than
the variation between members of the same pair the pairing can be used to increase the power of
the test or, equivalently, reduce the number of observations necessary to achieve a given power.
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2.4.2 Analysis

Let the first sample be Y11, . . . , Yn1 and the second sample be Y12, . . . , Yn2 so that Yi1, Yi2 form a
pair for i = 1, . . . , n.

The model is
Yij = µj + τi + ηij ,

where ηij ∼ N(0, σ2
j ).

The usual null hypothesis is H0 : µ1 = µ2.
In a paired sample test we eliminate the between-pair variation by looking at the differences

Di = Yi1 − Yi2. We now have, in our model:

Di = µ1 − µ2 + εi,

where εi = (ηi1 − ηi2) ∼ N(0, σ2) and σ2 = σ2
1 + σ2

2 . That is:

Di ∼ N(µ1 − µ2, σ
2).

We can write the usual null hypothesis as H0 : µ1 − µ2 = 0 and apply a one-sample t test to
the differences.

Alternatively we can write
Yij = µ + αj + τi + ηij ,

with α1 + α2 = 0.. Then
Di = Yi1 − Yi2 = 2α1 + εi

and our null hypothesis is that α1 = α2 = 0.

2.4.3 When to use the paired test

The following conditions govern the use of the paired sample test:

• The pairing is done before the experiment is carried out, as part of the design of the experi-
ment.

• The pairing is, in some way, “natural” (if possible), for example “before” and “after” on
some individual.

• The within-pair variation is expected to be much less than the between-pair variation.

If these conditions are satisfied then the paired-sample test can be much more sensitive than the
two-sample test because of the elimination of between-pair variation, even though some information
is lost in just looking at the differences.

2.4.4 Example 6

Samples of blood taken from eight patients were used in a test to compare two methods of measuring
the amount of a certain blood constituent in the samples. Each sample was divided into two parts
which were then allocated at random to the two methods. Assuming that the observations can be
taken to be normally distributed with a variance which is constant between patients, test whether
there is evidence that one method tends to give greater values than the other.

Patient number 1 2 3 4 5 6 7 8
Method 1 13.6 12.0 12.4 12.8 13.3 12.7 12.2 13.0
Method 2 13.0 11.3 11.6 12.5 12.4 12.2 12.7 11.7

The eight differences (Method 1 - Method 2) are

di 0.6 0.7 0.8 0.3 0.9 0.5 -0.5 1.3
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Hence
∑

di = 4.6 and
∑

d2
i = 4.58.

We find the sample mean difference d̄ = 4.6/8 = 0.575.
We estimate the variance of the differences

s2
d =

1
7

[
4.58− (4.6)2

8

]
= 0.276.

Our test statistic is

t7 =
d̄− 0√
s2

d/8
=

0.575√
0.276/8

= 3.09.

Critical points of t7 (two-sided) are 2.36 (5 %) and 3.50 (1 %) so our test statistic is significant
at the 5 % level so we reject H0 : µ1 = µ2 and conclude that the first method tends to give greater
values.

(Analysis of the same data as a two-sample t test gives t14 = 2.025 which is not significant).

2.5 Use of Minitab for t-tests

The t-test functions can be found from the Stat menu by selecting Basic Statistics.

One-sample Use 1-sample t.

Two-sample Use 2-sample t. You can either have each of the two samples in a separate column
or have all of the observations in one column with the subscript, i.e. the sample number, in
a second column. By default, Minitab does an analysis where the variances are not assumed
equal. To use the equal-variance analysis, select the Assume variances equal box.

Paired Use Paired t. You can either have the two observations in separate columns of just supply
summary statistics. If you just have a column of differences then you can use a one-sample
test.

2.6 The One-Way Analysis of Variance

2.6.1 Introduction

In the two-sample t-test we compared the means of two normal samples. In the one-way analysis of
variance we can compare the means of several normal samples. The analysis of variance (ANOVA)
works by splitting up the variation between the data into components which are assigned to various
sources. In the one-way ANOVA these sources include differences among the population means
and random errors.

Suppose we have k samples. Sample j contains nj independent observations. Our model for
Yij , the ith observation in sample j, is

Yij = µj + εij

or, equivalently,
Yij = µ + τj + εij .

In each case the errors εij are independent and identically distributed N(0, σ2). In the second
parameterisation µ is an overall mean and τj is a treatment effect. In order not to have too many
parameters we apply the constraint

k∑
j=1

τj = 0.

(Alternatively we may make µ represent the mean for the first population and set τ1 = 0. In this
case τ2, . . . , τk represent differences of the other population means from the first). Notice that the
error variance σ2 is assumed to be the same in all populations.

We thus have three key assumptions:

• normality,
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• independence,

• equal variances.

The usual null hypothesis is H0 : µ1 = µ2 = · · · = µk or, equivalently, H0 : τ1 = τ2 = · · · =
τk = 0.

2.6.2 Analysis

Whether or not H0 is true, we can estimate σ2 by an estimator which pools information from all
samples:

s2 =

∑k
j=1

∑nj

i=1(Yij − Ȳj)2∑k
j=1(nj − 1)

on
k∑

j=1

(nj − 1) = N − k

degrees of freedom, where N is the total number of observations and Ȳj is the sample mean for
sample j. (Compare with the two-sample t-test).

If H0 is true then Ȳj ∼ N(µ, σ2/nj) so

B =

∑k
j=1 nj(Ȳj − Ȳ )2

k − 1
,

where Ȳ is the overall mean of the data, gives an unbiassed estimator of σ2 on k − 1 degrees of
freedom.

Now (N − k)s2/σ2 ∼ χ2
N−k and, when H0 is true, (k − 1)B/σ2 ∼ χ2

k−1. We call (N − k)s2

the within samples sum of squares or the residual sum of squares. We call (k − 1)B the between
samples sum of squares. Moreover B and s2 are independent so, when H0 is true,

B

s2
∼ Fk−1,N−k.

When H0 is false B is increased by the variation between the population means while s2 remains
unaffected. Therefore a large value of B/s2, when compared with critical points of Fk−1,N−k,
would lead to rejection of the null hypothesis.

Now

(N − k)s2 + (k − 1)B =
k∑

j=1

nj∑
i=1

(Yij − Ȳj)2 +
k∑

j=1

nj∑
i=1

(Ȳj − Ȳ )2

=
k∑

j=1

nj∑
i=1

(Yij − Ȳj + Ȳj − Ȳ )2 − 2
k∑

j=1

nj∑
i=1

(Yij − Ȳj)(Ȳj − Ȳ )

=
k∑

j=1

nj∑
i=1

(Yij − Ȳ )2

This is called the total sum of squares.
We usually calculate the total sum of squares

k∑
j=1

nj∑
i=1

(Yij − Ȳ )2 =
k∑

j=1

nj∑
i=1

Y 2
ij −G2/N,

where G is the grand total

G =
k∑

j=1

nj∑
i=1

Yij ,
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and the between samples sum of squares

k∑
j=1

nj(Ȳj − Ȳ )2 =
k∑

j=1

T 2
j /nj −G2/N.

where Tj is the sample total

Tj =
nj∑
i=1

Yij ,

and find the residual sum of squares by subtraction.
We present the results in an analysis of variance table.

Source of variation Degrees of Sum of squares Mean square Variance
freedom ratio

Between samples k − 1
∑k

j=1 T 2
j /nj −G2/N B B/s2

Residual N − k (by subtraction) s2

Total N − 1
∑k

j=1

∑nj

i=1 Y 2
ij −G2/N

The sums of squares are divided by the degrees of freedom to obtain the mean squares. The
variance ratio test statistic is compared with critical points of Fk−1,N−k.

Note that subtracting a constant from every observation will not affect either B or s2 and
multiplying every observation by a constant will not affect the ratio B/s2. This can be useful to
simplify calculations.

2.6.3 Example

The following data are from an experiment to compare the effects of four catalysts on the yield of
a chemical process.

Catalyst observations nj Tj =
∑nj

i=1 yij

∑nj

i=1 y2
ij

A 4.85 4.89 5.60 5.08 3.42 5 23.84 116.2974
B 9.43 6.77 5.39 7.39 4 28.98 218.4220
C 4.67 5.49 5.96 3.71 5.51 5 25.34 131.5948
D 5.50 4.90 6.00 5.81 4.68 5 26.89 145.9185

N = 19 G = 105.05 612.2327

G2

N
= 580.81592

• Total sum of squares 612.2327− 580.81592 = 31.417.

• Between samples sum of squares (23.842/5)+(28.982/4)+(25.342/5)+(26.892/5)−580.81592 =
15.851.

• Residual sum of squares 31.417− 15.851 = 15.566.

Source of variation Degrees of Sum of squares Mean square Variance
freedom ratio

Between catalysts 3 15.851 5.284 5.09
Residual 15 15.566 1.038
Total 18 31.417

The upper 5% point of F3,15 is 3.287 so 5.09 is significant at the 5% level and, at that level, we
would reject the hypothesis that the population means are the same for all four catalysts.
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2.6.4 Minitab

You can find the ANOVA functions by slecting ANOVA from the Stat menu. There are two functions
specifically for the one-way ANOVA.

• One-Way: You need two columns of data. One contains the response Y and the other contains
the level j of the factor.

• One-Way (Unstacked): In this case each sample is in a separate column.

Problems 1

2.7 Problems

1. The actual voltages produced by ten nominally 6-volt batteries were measured. The obser-
vations were as follows.

5.81 6.33 6.15 6.07 6.10
6.44 6.14 6.03 5.88 6.06

Assuming a normal model, give a symmetric 95% confidence interval for the true mean
voltage. Are the data consistent with the nominal voltage?

2. Ten observations on the time (in minutes) taken to perform a certain task gave the following
data.

13.5 19.0 18.0 14.0 17.0
20.5 13.5 15.5 19.0 15.0

Assuming normality, test the hypothesis that the population mean time is 15 minutes.

Give a 95% confidence interval for the population mean.

3. Measurements were taken on various characteristics of two populations of the common star-
ling (sturnus vulgaris), the resident birds and continental migrants. They include the follow-
ing on wing length in cm.

Residents 10.7 10.9 11.4 10.9 11.1 11.7
11.0 10.9 11.1 10.6 10.7

Migrants 11.0 11.8 11.9 11.2 10.9 11.5
11.8 12.0 11.6

Assuming normality and that the population variances are equal, test the hypothesis that
the mean wing lengths for the two populations are equal. Give a 95% confidence interval for
the difference in mean wing length for the two populations.

4. The marks attained by a class of twelve students on two assignments were as follows. (The
marks are real but anonymised).

Student 1 2 3 4 5 6 7 8 9 10 11 12
Assignment 1 50 70 69 64 63 64 69 58 54 70 17 56
Assignment 2 61 62 54 61 61 60 64 51 53 71 33 50

Assuming normality, test the hypothesis that the population mean mark for students is the
same in each assignment. Give a 95% confidence interval for the difference in population
mean marks between the assignments.

5. The blood concentrations of C-peptide in a sample of fifteen elderly diabetic subjects before,
and thirty minutes after, being given some glucose were as follows.
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Subject 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Before 0.5 2.6 6.0 0.9 6.0 2.2 5.4 1.6 2.1 0.8 2.6 2.0 0.3 1.5 0.9
After 0.8 2.7 6.1 1.0 6.6 2.6 5.9 1.6 2.4 0.9 3.8 2.7 0.4 1.8 1.0

Assuming normality, give a 95% confidence interval for the population mean increase in
C-peptide concentration and test the hypothesis that this mean is zero.

6. The following data come from an experiment to study the gain in weight of rats fed on four
different diets, distinguished by amount of protein (low and high) and by source of protein
(beef and cereal). Each diet was fed to a separate sample of ten rats.

Use a one-way analysis of variance to test the hypothesis that the mean weight gain is the
same for each diet.

Protein source Beef Beef Cereal Cereal
Protein amount Low High Low High

90 73 107 98
76 102 95 74
90 118 97 56
64 104 80 111
86 81 98 95
51 107 74 88
72 100 74 82
90 87 67 77
95 117 89 86
78 111 58 92

Assignment 1

Please submit solutions to questions 1, 3, 5, 6, in the homework box, by 5.00pm on Wednesday
February 8th.
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3 Completely Randomised Design

3.1 The design

The completely randomised design is very simple. It is also known as the one-way classification.
We have N independent and identical (interchangeable) experimental units. We wish to com-

pare k different treatments. Very often we want the sample sizes to be as nearly equal as possible
(i.e. nj ≈ N/k), but this is not essential and there may be good reasons not to do this.

We choose n1, n2, . . . , nk with

k∑
j=1

nj = N.

Because allocation of the treatments to units is arbitrary, we use randomisation.
A single observation is taken on each unit and (subject to appropriate distributional assump-

tions) we use the one-way ANOVA to analyse the resulting data. Multiple comparison methods
may also be used. (See later).

3.2 Example

In an experiment on the effect of various treatments on the growth of plants, ten plants were
randomly assigned to each of four treatments, as follows.

A Control.

B Addition of dilute boric acid to irrigation water.

C Addition of nutrient supplement to irrigation water.

D Addition of both dilute boric acid and nutrient supplement to irrigation water.

After 20 weeks, the heights of the plants were measured as follows, in cm.

Treatment A Treatment B Treatment C Treatment D
23.8 25.3 26.8 27.9 21.1 23.3 25.9 26.8
24.4 25.5 27.3 26.8 21.8 24.6 26.3 21.2
24.5 20.3 25.5 27.0 20.0 25.5 24.2 25.3
22.7 24.4 27.0 26.1 25.3 25.3 24.1 27.2
25.1 24.8 27.0 24.7 22.9 22.8 27.3 25.9

3.3 The design matrix

We can write the model as
Yij = µj + εij

where Yij is observation i of sample j and εij ∼ N(0, σ2) with εij independent of εi′j′ unless i = i′

and j = j′.
Alternatively, we can number all of the observations consecutively with a single subscript i. In

the example Yi, . . . , Y10 receive treatment A, Y11, . . . , Y20 receive treatment B and so on. We can
then write

Yi = xi1µ1 + xi2µ2 + · · ·+ xipµp + εi

if there are p treatments, where xij = 1 if observation i receives treatment j and xij = 0 otherwise.
In the example there are four treatments so

Yi = xi1µ1 + xi2µ2 + xi3µ3 + xi4µ4 + εi.

Now we can collect the observations into a vector Y = (Y1, Y2, . . . , Yn)T and collect the errors into
a vector ε = (ε1, ε2, . . . , εn)T . In the example, n = 40. We can also collect the parameters into
a vector µ = (µ1, µ2, . . . , µp)T . In the example p = 4. Finally we can arrange the coefficients xij
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into a matrix X in which row i corresponds to the observation Yi and column j corresponds to the
parameter µj . We can then write the model as

Y = Xµ + ε.

The matrix X is called the design matrix.
In the example, the design matrix is as follows. (To save space only three rows are written in

full for each sample).

X =



1 0 0 0
1 0 0 0
· · · · · · · · · · · ·
1 0 0 0
0 1 0 0
0 1 0 0
· · · · · · · · · · · ·
0 1 0 0
0 0 1 0
0 0 1 0
· · · · · · · · · · · ·
0 0 1 0
0 0 0 1
0 0 0 1
· · · · · · · · · · · ·
0 0 0 1


It is sometimes convenient to write the model in a different way. For example, we could write

Yi = µ + xi2α2 + · · ·+ xipαp + εi

where µ = µ1, and, for j = 2, . . . , p, αj = µj − µ1. Then we can write

Y = X̃β + ε

where β = (µ, α2, . . . , αp)T . In the example we have

X̃ =



1 0 0 0
1 0 0 0
· · · · · · · · · · · ·
1 0 0 0
1 1 0 0
1 1 0 0
· · · · · · · · · · · ·
1 1 0 0
1 0 1 0
1 0 1 0
· · · · · · · · · · · ·
1 0 1 0
1 0 0 1
1 0 0 1
· · · · · · · · · · · ·
1 0 0 1


3.4 Analysis

The analysis of the results of the experiment is just the usual one-way analysis of variance. This
is easily done by hand or using Minitab.

After fitting the model, the assumptions can be checked. Minitab provides some graphs which
can be requested and used for this purpose.

15



Histogram of the residuals : This can be used to check the normality of the residuals.

Normal probability plot of the residuals : This can also be used to check the normality of
the residuals.

Plot of residuals against fitted values : The fitted values are just the sample means. The
variance of the residuals should be the same for each treatment. The sample variances will
not be exactly the same, of course.

Examination of these plots might suggest the need for transformation of the response variable.
We can make a confidence interval for the mean of a treatment using

ȳj ± tν

√
s2/nj

where ȳj is the sample mean for the treatment in question, tν is a suitable critical value of the
t-distribution on ν degrees of freedom, the number of degrees of freedom, ν, is the number of
residual degrees of freedom in the analysis of variance, s2 is the residual mean square and nj is
the number of observations in sample j.

Similarly a confidence interval for the difference between two means would have the form

ȳj − ȳk ± tν

√
s2

(
1
nj

+
1
nk

)
.

In the example, the analysis is as follows.
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4 Multiple Comparisons

4.1 Introduction

In the one-way analysis of variance we get an overall test of the null hypothesis that µ1 = µ2 =
· · · = µk, where µj is the mean for population j. If we reject this hypothesis and conclude that
there is at least one difference, it is natural to want to go a bit further and say something about
which means differ from which others.

There are difficulties with this, however:

Multiple testing : If we carry out several pairwise comparisons then, even if the null hypothesis
is true, the probability that we get at least one “significant” result is greater than the apparent
significance level of the tests.

Post hoc testing : If we carry out tests suggested by the data themselves then the significance
level of this procedure, seen as a whole, is not the apparent significance level of the test.
For example, suppose that we have k samples and we decide to compare the two samples
with the largest and smallest means. Clearly the distribution of the difference between the
largest and smallest means in a collection of k means is not the same as the distribution of
the difference between the means of two pre-specified samples.

The post-hoc problem does not arise if we decide on the tests in advance. Such pre-planned
tests usually use contrasts. (See Lecture 5).

4.2 Studentised range: Tukey’s test

This test allows for the distribution of the range of a set of k sample means, for equally sized
samples of size n. Let s2 be an estimate of the error variance, on ν degrees of freedom (usually the
residual mean square from the Anova table).

The studentized range, Qk,ν , is a generalisation of Student’s tν . Tables of critical values qk,ν(α%)
can be found in Biometrika tables. An abridged table is provided as a handout. If the range of
the sample means exceeds

R = qk,ν(α%)
s√
n

then we have a result, significant at the α% level, indicating that differences exist between the
population means. In fact, any pair of sample means differing by more than this amount can be
taken as a significant result at the α% level indicating that the corresponding population means
are different.

Example (3.2)
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4.3 Least significant difference

The least significant difference (LSD) is simply based on the two sample t-test. It is

L = tν(α%)s

√
2
n

.

The LSD does not take into account the number of comparisons to be made and, unlike Tukey’s
test, it does not imply significance. It does, however, give a lower bound to the difference between
sample means required for significance. Any pair of means which do not differ by more than this
amount will not correspond to a significant difference.

Example (3.2)

5 Contrasts

5.1 Introduction

In section 3.3 we saw an example of reparameterising. That is we wrote the model in terms
of a different, though equivalent set of parameters. This is often useful. In particular we can
reparameterise using contrasts and this allows us to test for differences between particular means
or groups of means. That is we can contrast these means.

Consider a one-way ANOVA where the sample size in sample j is nj = n for all j. (We can
also form contrasts when the nj are not all equal but this is a little more complicated). Let the
number of treatments be k and the total sample size be N = kn.

For example, suppose there are k = 5 treatments. We can use the parameters

βT = (µ, β2, β3, β4, β5).

The design matrix might be as follows. (It is written as the transpose to save space).

XT =


1 1 . . . 1 1 1 . . . 1 1 1 . . . 1 1 1 . . . 1 1 1 . . . 1
1 1 . . . 1 −1 −1 . . . −1 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0 1 1 . . . 1 −1 −1 . . . −1 0 0 . . . 0
1 1 . . . 1 1 1 . . . 1 −1 −1 . . . −1 −1 −1 . . . −1 0 0 . . . 0
1 1 . . . 1 1 1 . . . 1 1 1 . . . 1 1 1 . . . 1 −4 −4 . . . −4

 .
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• Columns 2 to k = 5 of X here are examples of orthogonal contrasts.

• Each is a contrast because the sum of the elements in each case is zero.

• The contrasts are orthogonal because each column cj of X is orthogonal to every other
column. That is cT

j cl = 0 for j 6= l. Thus

XT X =


N 0 0 0 0
0

∑
c2
i2 0 0 0

0 0
∑

c2
i3 0 0

0 0 0
∑

c2
i4 0

0 0 0 0
∑

c2
i5


where cT

j = (c1j , . . . , cnj).

Notice that, for example, the means for observations in samples 1 and 2 are

µ1 = µ + β2 + β4 + β5

µ1 = µ− β2 + β4 + β5

So µ1 − µ2 = 2β2 and the hypothesis that µ1 = µ2 is equivalent to the hypothesis that β2 = 0.
So we can test H0 : β2 = 0 to compare the means for treatments 1 and 2.

Each contrast has a contrast sum of squares. Because the contrasts are orthogonal we can split
the between-treatments sum of squares into k− 1 independent components, each on one degree of
freedom, and test each separately if we wish. For example, suppose that n = 3, k = 4 and the first
two samples correspond to one group of treatments and the other two to another. We can contrast
the two groups as follows.

XT =


1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 −1 −1 −1 −1 −1 −1
1 1 1 −1 −1 −1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 −1 −1 −1

 .

Here

• c1 is for µ,

• c2 contrasts the two groups of treatments,

• c3 and c4 are two other contrasts, orthogonal to c2, for the remaining between-treatments
variation (on 2 d.f.), that is within groups.

Source of variation D.f.
Group 1 v Group 2 1
Within group 1,2 2

Between treatments 3
Residual 8

Total 11

The sum of squares associated with cj is easily shown to be

(
∑

cijyi)2∑
c2
ij

on one degree of freedom. We can divide this by the residual mean square to obtain a variance
ratio to test the contrast.

Usually, c1j = c2j = · · · = cnj = cj . In this case we can write the contrast sum of squares as

(
∑

cjTj)2

n
∑

c2
j

where Tj is the total for sample j.
The two-way ANOVA etc. can also be derived using these ideas.
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5.2 Example (3.2)

5.3 Post-experiment contrasts: Scheffé’s method

If the contrasts are decided after the experiment, that is they are suggested by the data, then we
can use an adjusted test which makes allowance for this. We compare

(
∑

cjTj)2

n(k − 1)s2
∑

c2
j

with critical values of Fk−1,ν , where k is the number of samples and s2 is an estimate of the
error variance on ν degrees of freedom. Usually s2 would be the residual mean square from the
ANOVA table.

Scheffé’s test is more widely applicable than Tukey’s test (see 4.2) but is less efficient if used
purely for paired comparisons. It is a much weaker test than that for pre-experiment contrasts
described in 5.1 above.

Example (3.2)
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6 The Two-Way Analysis of Variance

6.1 Introduction

In the one-way ANOVA we look for the effect of one “factor”. In the two-way ANOVA we look for
the effects of two factors. The second factor may also be of interest or it may be a “nuisance factor”.
(Compare with the paired sample t-test).

A further complication arises because of the possibility of “interactions” between the factors.
The different values of a factor are called “levels”. Both the “one-way ANOVA” and “two-way
ANOVA” refer to examples of factorial experiments. A factorial experiment is one where all of the
explanatory variables are qualitative factors rather than quantitative variables.

Suppose we have two factors and Factor 1 has five levels while Factor 2 has six levels. There
are thus 30 means in the model, one for each combination of a level of Factor 1 and a level of
Factor 2. Let Yijk be observation i of the observations made at level j of Factor 1 and level k of
Factor 2. Then

Yijk = µjk + εijk.

Sometimes we make a simplifying assumption and write

µjk = αj + βk.

This is called an additive model. The assumption is that there are no interactions between the
factors. So the mean for, say, the combination of level 2 of Factor 1 with level 4 of Factor 2 could
be written α2+β4. We would appear to need only 5+6 = 11 parameters, α1, . . . , α5 and β1, . . . , β6,
to specify all 30 means. In fact we only need 10. This is because we could add a fixed amount δ to
each αj and subtract the same amount from each βk and still have the same µjk. So, if we have 11
parameters, they are not well defined and, without loss of generality, we can reduce the number of
parameters to 10. We could do this, for example, by fixing one of the βk to be 0. In fact, instead,
we often constrain the βk to sum to zero. Furthermore we constrain the αj to sum to zero as well
and add an extra parameter µ in compensation. Thus µjk = µ + αj + βk and

Yijk = µ + αj + βk + εijk

with
5∑

j=1

αj =
6∑

k=1

βk = 0.

If we allowed interaction between the factors then we would not impose this simplifying structure
and each of the 30 combinations of levels of the factors could have a separate parameter for its
mean. In fact we tend to write the model in terms of other parameters. See 6.3.

6.2 Single replication

Suppose factor 1 has t1 levels and factor 2 has t2 levels.
Suppose first that there is only one observation per treatment combination (i.e. one observation

in each cell). We say that there is a single replication. Suppose that we can assume additivity.
Then the model is

yjk = µ + αj + βk + εjk

where
yjk is the observation at level j of factor 1 and level k of factor 2
µ is an overall mean or constant term
αj is a factor 1 effect (for level j)
βk is a factor 2 effect (for level k)
εjk is the random “error” such that εjk ∼ N(0, σ2)
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In order to avoid over-parameterising we need to put some restrictions on the parameters.

t1∑
j=1

αj =
t2∑

k=1

βk = 0.

We can now calculate sums of squares as follows. Let

Aj =
t2∑

k=1

yjk

be the total for level j of factor 1, formed from t2 observations,

Bk =
t1∑

j=1

yjk

be the total for level k of factor 2, formed from t1 observations, and

G =
t1∑

j=1

t2∑
k=1

yjk

be the overall total, formed from t1t2 observations.
Then let

ST =
t1∑

j=1

t2∑
k=1

y2
jk −G2/(t1t2)

S1 =
t1∑

j=1

{A2
j}/t2 −G2/(t1t2)

S2 =
t2∑

k=1

{B2
k}/t1 −G2/(t1t2)

SR = ST − S1 − S2

Here
ST is the total sum of squares on t1t2 − 1 degrees of freedom
S1 is the factor 1 sum of squares on t1 − 1 degrees of freedom
S2 is the factor 2 sum of squares on t2 − 1 degrees of freedom
SR is the residual sum of squares on (t1 − 1)(t2 − 1) degrees of freedom.

No degrees of freedom are left for an interaction sum of squares.

6.3 Multiple replications

Suppose now that we have more than one observation per cell. Provided that there is the same
number of observations in each cell then the calculations are again straightforward. If we wish to
allow the possibility of an interaction then we adopt the following model.

yijk = µ + αj + βk + γjk + εijk

where

• yijk is observation i on level j of factor 1 and level k of factor 2,

• αj is the effect of level j of factor 1,

• βk is the effect of level k of factor 2,
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• γjk is an interaction effect.

We impose the additional constraints

t1∑
j=1

γjk = 0

for all k and
t2∑

k=1

γjk = 0

for all j.
(If we assume additivity then we simply omit the interaction terms and the analysis is similar

to that for the one-observation-per-cell case above, in an obvious way).

6.4 Example

Suppose we have 4 levels of factor 1, 3 levels of factor 2 and 2 replications in each cell so that there
are 24 observations.

Total sum of squares ST =
∑∑∑

y2
ijk −G2/24

Total between treatments sum of squares SF = (1/2){T 2
11 + · · ·+ T 2

43} −G2/24
Factor 1 sum of squares S1 = (1/6){A2

1 + A2
2 + A2

3 + A2
4} −G2/24

Factor 2 sum of squares S2 = (1/8){B2
1 + B2

2 + B2
3} −G2/24

Interaction sum of squares SI = SF − S1 − S2

Residual sum of squares SR = ST − SF

The total for the observations at level j of factor 1 and level k of factor 2 is

Tjk = y1jk + y2jk.

The total for level j of factor 1 is

Aj =
3∑

k=1

2∑
i=1

yijk.

The total for level k of factor 2 is

Bk =
4∑

j=1

2∑
i=1

yijk.

Source of variation Degrees of Sum of Mean Variance
freedom squares square ratio

Factor 1 3 S1

Factor 2 2 S2

Interaction 6 SI

Total between treatments 11 SF

Residual 12 SR

Total 23 ST

If the interaction variance ratio is significant then compare the main effects (factor 1, factor 2)
mean squares with the interaction mean square to see which is the biggest effect. If the interaction
variance ratio is not significant then test factors individually in the usual way.

6.5 Minitab

You can do a two-way ANOVA using Minitab as follows. Put all of the response (y) values in a single
column. Put the levels of factor 1 in another column and the levels of factor 2 in another. It is often
useful in doing this to use select Make Patterned Data then Simple Set of Numbers from
the Calc menu. Then, form the Stat menu, selct ANOVA then Two-Way .
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6.6 Numerical example

See Problems 1, Question 6.
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Problems 2

1. A measure of the yield of a certain industrial electrolytic process was observed for one week’s
operation of 30 electrolytic cells. Fifteen of the cells were operated using the standard control
scheme (A) while eight of the others were operated under a modified control scheme (B) and
the remaining seven were operated under a third control scheme (C). The results were as
follows.

Control Scheme Yields
A 81.4 82.8 80.9 84.6 83.0 81.3 82.9 80.8

80.3 86.4 81.5 79.2 83.4 81.6 84.9
B 79.8 85.3 84.8 86.0 81.2 82.9 81.9 85.4
C 85.0 80.3 81.0 79.5 82.1 80.9 81.5

Making the usual assumptions for an analysis of variance, test whether there is evidence in
the results to suggest that there are differences between the mean yields given by these three
control schemes.

Use a suitable contrast to compare the standard scheme (A) with the new schemes (B,C)
and hence also compare B with C.

2. The following data (from R. Till, 1974, “Statistical Methods for the Earth Scientist”) are
salinity values (parts per thousand) for the three separate water masses in the Bimini Lagoon,
Bahamas.

Water Mass 1 Water Mass 2 Water Mass 3
37.54 37.01 36.71 40.17 40.80 39.76 39.04 39.21 39.05
37.03 37.32 37.01 39.70 40.79 40.44 38.24 38.53 38.71
37.03 37.70 37.36 39.79 39.38 38.89 38.66 38.51
36.75 37.65 38.85 40.08

Test the hypothesis that the mean salinity is the same in all three water masses.

3. The following data (from Amess et al., 1978) are the red cell folate levels (µg/l) in three
groups of cardiac bypass patients given different levels of nitrous oxide ventilation.

Group 1 Group 2 Group 3
243 206 241
251 210 258
275 226 270
291 249 293
347 255 328
354 273
380 285
392 295

309

(a) Compare the three using an analysis of variance.

(b) Give a 95% confidence interval for the population mean for treatment 1.

(c) Give a 95% confidence interval for the difference in population means between group 1
and group 2.

4. The following table (from Till) gives the strontium content ( % Sr) of a set of carbonate
sediments obtained by three different analytical methods:

• I – flame photometry.

• II – spectrographic analysis.
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• III – atomic absorption.

Sediment Method Method Method
Specimen no. I II III

1 0.96 0.94 0.98
2 0.96 0.98 1.01
3 0.85 0.87 0.86
4 0.86 0.84 0.90
5 0.86 0.87 0.89
6 0.89 0.93 0.92

(a) Analyse these data using an analysis of variance.

(b) Compare the first two methods using a suitable contrast. Comment on how this com-
parison differs from a t-test.

5. The following data are from an experiment to compare the effects of four catalysts on the
yield of a chemical process.

Catalyst observations
A 4.85 4.89 5.60 5.08 3.42
B 9.43 6.77 5.39 7.39 6.98
C 4.67 5.49 5.96 3.71 5.51
D 5.50 4.90 6.00 5.81 4.68

(a) Analyse the data using and analysis of variance to test for differences between the effects
of the catalysts.

(b) Compare the sample means using the Studentized range.

(c) Compare the sample means used the method of least significant difference.

References:

Amess, J.A.L., Burman, J.F., Rees, G.M. et al. (1978), Megaloblastic haemopoiesis in patients
receiving nitrous oxide. Lancet, ii, 1483-6.

Till, R. (1974), “Statistical Methods for the Earth Scientist”.

Assignment 2

Please submit solutions to questions 1, 3, 5 in the homework box, by 5.00pm on Wednesday
February 22nd.
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7 Randomized Blocks I

7.1 Blocking

Often we can not assume that all experimental units are identical. There may be a “nuisance
factor,” that is some factor or variable which is associated with the response and where we can not
avoid differences between units but which is not of interest in itself. There are two approaches to
this:

Regression approach : Measure an auxiliary variable which is known to be correlated with the
response variable. Use this to adjust the responses. This leads to the “analysis of covariance.”

Design approach : Group the units into relatively homogeneous blocks. Plan the experiment
to balance the treatments across blocks and hence cancel out the “nuisance factor.” This is
“blocking.”

7.2 Randomised blocks design

Suppose that there are not enough homogeneous experimental units for a complete experiment but
we can group the units into relatively homogeneous “blocks” – e.g. litters of mice. The variation
between blocks can be eliminated and, if this is large compared to the between-treatments variation,
this will lead to a more powerful test.

Each treatment occurs once within each block. Within the blocks the treatments are allocated
at random to the experimental units. This is an example of “restricted randomisation.”

E.g. 4 treatments, A,B,C, D, 3 blocks.

This design requires b blocks of t units, where t is the number of treatments. This can often be
achieved easily when the material is “continuous” (batches of liquid or powder, strips of material,
time units etc.). There will be more of a constraint with “discrete” material and other designs
(e.g. balanced incomplete blocks) may be needed.

We can think of the usual situation in which a paired-sample t-test is used as a randomized
blocks experiment in which there are just two treatments and each treatment is applied once within
each block.

7.3 Illustrative examples

Medicine : Match patients according to medical history, age, sex etc.

Split blood samples into t subsamples for analysis.

Multi-centre trial where experiment takes place at several hospitals.

Agriculture : Divide a field into zones of fertility. Split each zone into t plots.

Compare dietary additives on pigs from different litters.

Industry : Blocks might be, for example, machines or operators.

Paint traffic signs using t types of paint and expose these at b locations.
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7.4 Pros and cons

Disadvantages of randomised blocks designs:

1. Limitation of block size to t units can cause problems when the natural block size is k 6= t.

2. Estimation of block effects uses up a few degrees of freedom and reduces the number of
residual degrees of freedom. This might lead to a reduction in sensitivity in some cases.

Advantages of randomised blocks designs:

1. Variability in units caused by the blocking factor is identified and removed, often resulting
in large gains in sensitivity.

2. Opportunity to vary the experimental units deliberately and allow a wider comparison of the
treatments and greater generality of the results.

7.5 Model

The model associated with the randomised blocks design is

yij = µ + τi + βj + εij

where

• yij is the response to treatment i in block j.

• µ is the overall mean.

• τi is the treatment effect for treatment i, (i = 1, . . . , t).

• βj is the block effect for block j, (j = 1, . . . , b).

• εij is the error in the observation for treatment i and block j.

• N = bt is the total number of observations.

There are constraints:

t∑
i=1

τi = 0 and
b∑

j=1

βj = 0

and assumptions:

εij ∼ N(0, σ2)

with εij independent of εi′j′ unless i = i′ and j = j′. (Normality, independence, equal variance).
There is also an implicit assumption that τi and βj are additive effects. That is, the effect of

changing from one treatment to another is the same in each block. This is sometimes described as
the assumption of no interactions or independence of blocks and treatments.

If the additivity assumption is not valid, the residual sum of squares will be inflated and the
sensitivity of the test will be reduced. Interaction is discussed in more detail later.
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7.6 Analysis

We can test the treatment effects using a two-way ANOVA. There are no degrees of freedom for
interaction so the additive model is assumed.

7.7 Example

An experiment is conducted to investigate the effects of various treatments on the storage properties
of apples. There are four treatments, A, B, C, D. Each treatment is applied to one batch of apples.
Each batch of apples is then divided into three sub-batches for storage. Three “blocks” of apples
are formed, each consisting of one sub-batch from each of the four batches. The apples in each block
are stored together for two months. At the end of this period, one observation on the concentration
of a chemical in the skin of the apples is made on each sub-batch. The data are as follows.

Treatment A Treatment B Treatment C Treatment D
Block 1 72.4 53.1 72.2 57.1
Block 2 51.4 38.5 49.3 47.7
Block 3 65.9 52.1 64.6 51.6
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8 Randomized Blocks II

8.1 Deriving estimates in a randomized blocks design
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8.2 Example

We continue Example 7.7.
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9 Latin Squares I

9.1 Introduction

In a randomised blocks design we allow for one nuisance factor by “blocking.” In a Latin square
design we allow for two nuisance factors by a more complicated system of blocking. The two
nuisance factors must be balanced with respect to each other. We often represent the nuisance
factors as rows and columns in a diagram of the design. Each treatment then occurs exactly one
in each row and exactly once in each column.

Suppose that there are t treatments. Then we need t2 experimental units and the t treatments
are balanced across both factors using a Latin square layout.

Example

The design is called a “Latin square design” and it could represent, for example, the layout of
plots in a field but it need not necessarily have such a direct physical interpretation.

9.2 Advantages and disadvantages

The advantages and disadvantages are broadly the same as for the randomized blocks design but
the restriction to t2 units can be a difficulty.

9.3 Planning the layout – randomisation

For a given value of t, several designs may be constructed. Some are simple permutations of the
rows and columns and treatments, others are “essentially” different. In order to regularise this, we
define a standard square in which the treatments come in alphabetical order in the first row and
first column. If two standard squares are different then they must be essentially different. Other
squares may be produced from standard squares by permuting the rows and columns.

Example: Two essentially different squares.

The number of different standard squares increases rapidly with t. The number of permutations
of each standard square is t!× (t− 1)!, as in the following table.
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Hence there are only two 2 Latin squares but the number of 6× 6 Latin squares is 812,851,200.

9.4 Randomisation

To randomise, first choose a standard square at random from a list. Then randomise by permuting
the rows and columns. It is sufficient to choose one of the t! permutations of the columns and then
one of the (t− 1)! permutations of rows 2 to t.

9.5 Analysis

We can write the model as

yjk = µ + τi(jk) + ρj + κk + εjk

where

• yjk is the observation in row j and column k.

• µ is the overall mean.

• τi is the treatment effect for treatment i. The treatment assigned to row j and column k is
i(jk).

• ρj is the effect of the “row” nuisance factor in row j.

• κk is the effect of the “column” nuisance factor in column k.

• εjk ∼ N(0, σ2) is the error in the observation in row j and column k.

As usual the various effects sum to zero

t∑
i=1

τi =
t∑

j=1

ρj =
t∑

k=1

κk = 0

and the errors are independent with εjk independent of εj′k′ unless j = j′ and k = k′.
Let

Ti be the total of the observations for treatment i.
Rj be the total of the observations for row j.
Ck be the total of the observations for column k.
G be the overall total of the observations
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10 Latin Squares II

10.1 Example

The effects of four different “recipes” for making cement on the compressive strength of cement
cubes was investigated. The cement could be “gauged” (i.e. mixed) by each of four gaugers and
the strength measured by each of four “breakers.” A Latin square design was used with results as
follows.

Breaker 1 Breaker 2 Breaker 3 Breaker 4
Gauger 1 A 503 B 478 D 411 C 536
Gauger 2 D 485 C 606 A 586 B 531
Gauger 3 C 452 A 490 B 370 D 467
Gauger 4 B 432 D 510 C 510 A 547
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10.2 Interpretation

This is similar to the randomised blocks design. We test treatments formally but comment infor-
mally on the effectiveness of the row and column nuisance factors.

10.3 Residuals

It can be shown (Exercise) that a residual (Observed-Fitted) is

ε̂jk = yjk − ȳT,i)jk) − ȳR,j − ȳC,k + 2ȳ

where ȳT,i(jk) is the mean for treatment i(jk),
ȳR,j is the mean for row j,
ȳC,k is the mean for column k,
ȳ is the overall mean of the data,

i(jk) is the treatment applied in row i and column j.
Residuals can be plotted by rows, columns and treatments and against fitted values.

10.4 Minitab

In Minitab you can use the General Linear Model function. Select the Stat menu then
ANOVA and then General Linear Model.

To use this function you need four columns of data. In one column, put the response, y. You
then need three columns for the factor levels. One of these is for the row factor, one for the
column factor and one for the treatments. Assuming that you enter the data in a straightforward
order, you can get Minitab to generate the levels of the row and column factors by selecting
Make Patterned Data and then Simple Set of Numbers from the Calc menu. You will

need to type the treatment levels (using numbers: 1, 2, 3, . . . ) into another column.
You can request residual plots, multiple comparisons (e.g. Tukey) etc.

10.5 Replicated Latin squares

For small t there are few residual degrees of freedom. In some cases it may be possible to improve
matters by repeating the whole Latin square (re-randomised).

• Calculate a Rows sum of squares for each replication and add them.

• Calculate a Columns sum of squares for each replication and add them.

• “Replications” becomes a third nuisance factor.

Example: A field experiment, to compare three varieties of wheat, is carried out at four sites,
each using an independent randomisation. This is called a replicated Latin square.

Site 1 Site 2
B 59.8 A 58.9 C 56.8 C 54.3 B 53.8 A 57.6
A 64.4 C 58.1 B 63.0 A 60.8 C 47.4 B 55.7
C 52.3 B 57.2 A 56.9 B 58.0 A 49.7 C 49.2

Site 3 Site 4
A 67.0 B 61.6 C 53.2 C 60.9 A 65.4 B 63.0
C 50.3 A 53.4 B 52.9 A 64.4 B 64.7 C 56.0
B 58.3 C 51.2 A 58.3 B 58.9 C 55.1 A 59.6
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Solution:
Treatment and site totals:

Treat A Treat B Treat C Total
Site 1 180.2 180.0 167.2 537.4
Site 2 168.1 167.5 150.9 486.5
Site 3 178.7 172.8 154.7 506.2
Site 4 189.4 186.6 172.0 548.0
Total 716.4 706.9 644.8 1068.1

Row totals:

Row 1 Row 2 Row 3 Total Sum of squares
Site 1 175.5 185.5 166.4 527.4 60.84666
Site 2 165.7 163.9 156.9 486.5 14.40889
Site 3 181.8 156.6 167.8 506.2 106.37556
Site 4 189.3 185.1 173.6 548.0 44.04222

Total 225.57333

Column totals:

Col 1 Col 2 Col 3 Total Sum of squares
Site 1 176.5 174.2 176.7 527.4 1.28667
Site 2 173.1 150.9 162.5 486.5 82.19556
Site 3 175.6 166.2 164.4 506.2 24.11556
Site 4 184.2 185.2 178.6 548.0 8.43556

Total 116.03335
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10.6 Tied Latin squares

In some cases it may be possible to use the same levels of one nuisance factor.
Example: An experiment in the chemical industry uses three reaction vessels at a time. each

run lasts several days. Three catalysts are compared over twelve runs in the form of four 3×3 Latin
squares. These are called tied Latin squares. In this case they are tied by the factor “Reaction
Vessel.”

Run
1 2 3 4 5 6 7 8 9 10 11 12

Reaction 1 A B C B A C C A B B C A
Vessel 87 82 98 81 91 96 89 78 71 69 93 84

2 B C A A C B B C A A B C
81 99 100 95 99 88 80 86 85 85 86 94

3 C A B C B A A B C C A B
82 86 80 87 78 88 79 65 78 77 86 71

Solution:
Totals:

Vessel Run
1 1019 1 250
2 1078 2 267
3 957 3 278

Total 3054 4 263
5 268

Catalyst 6 272
A 1044 7 248
B 932 8 229
C 1078 9 234

Total 3054 10 231
11 265
12 249

Total 3054
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10.7 Graeco-Latin squares

It is often possible to construct designs which will eliminate further nuisance factors by introducing
them in an orthogonal way.

Consider the following design.

A α 1 B β 2 C γ 3 D δ 4
B γ 4 A δ 3 D α 2 C β 1
C δ 2 D γ 1 A β 4 B α 3
D β 3 C α 5 B δ 1 A γ 2

There are 4 treatments: A, B, C, D.
There are 4 nuisance factors: rows, columns, Greek letters, numbers. If we ignored the numbers,

this would be called a “Graeco-Latin square.”
N.B. There are some sizes of square, e.g. 6, 10, for which this is impossible.

Problems 3

1. The data are taken from Snee (1985). A randomized blocks experiment was carried out
to investigate the effect of a drug added to the feed of chickens in an attempt to promote
growth. The comparison is between three treatments: standard feed (control), standard feed
plus low dose of drug, standard feed plus high dose of drug. The experimental unit is a group
of chickens, reared together in the birdhouse. The experimental units are grouped three to
a block, with physically adjacent units being in the same block. The response is the average
weight, in pounds, per bird at maturity for the group of birds in the experimental unit.

(I wonder why the weights of individual birds were not used).

Block Control Low dose High dose
1 3.93 3.99 3.96
2 3.78 3.96 3.94
3 3.88 3.96 4.02
4 3.93 4.03 4.06
5 3.84 4.10 3.94
6 3.75 4.02 4.09
7 3.98 4.06 4.17
8 3.84 3.92 4.12

Analyse these data to test for evidence of differences between the effects of the treatments.
What assumptions are you making about the distributions of the data?

2. In a fertiliser experiment on potatoes there were six treatments, labelled A-F, defined as
follows.

A: Control B: Sulphate of ammonia (N)
C: N+phosphate (P) D: N+Lime
E: N+P+potash (K) F: Special NPK mixture

There were four sites, each having six plots. A randomised blocks design was used with the
following layout and results.

Site 1 Site 2
F: 331 B: 286 E: 312 D: 292 F: 323 A: 185
C: 311 D: 280 A: 177 C: 294 B: 278 E: 322

Site 3 Site 4
F: 313 C: 266 A: 182 C: 291 B: 253 E: 328
E: 319 D: 284 B: 258 A: 193 D: 233 F: 319
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(a) Carry out a basic randomised blocks analysis on these data and draw up the ANOVA
table. Test the null hypothesis that there are no differences between treatments and
comment on the effectiveness of the blocking on the experiment.

(b) Use a suitable set of independent pre-experiment contrasts to investigate differences
among treatments.

(c) Evaluate residuals for all of the observations and use them to check the assumptions
made in the analysis.

3. Show that the residual for the observation yij in row i and column j of a Latin square design
is

ε̂jk = yjk − ȳT,i(jk) − ȳR,j − ȳC,k + 2ȳ

where ȳT,i(jk) is the mean for treatment i(jk), ȳR,j is the mean for row j, ȳC,k is the mean
for column k and ȳ is the overall mean for the data.

4. An experiment was carried out to compare four varieties of wheat, A, B, C and D. A large
field was divided into 16 plots and a Latin square design was used. The layout and results
are given below. The yields are in kg for each plot. Analyse the data and write a brief report
summarising your conclusions.

A 4.0 D 3.7 C 4.5 B 5.1
D 3.6 A 4.4 B 5.2 C 4.7
C 5.4 B 6.5 A 4.4 D 3.9
B 6.4 C 5.6 D 3.8 A 4.0

You can use Minitab to analyse the data if you wish. You will need to use the General linear
model function.

5. An experiment was conducted to measure the effect of factory music on the output of produc-
tion line workers. Four different music programs (A, B, C, D) were compared with no music
(E). A single replication occupied the five working days of a week, a different program being
tested on each day. A Latin square design was used to rotate the programs from week to week
so that, over a five-week period, each program appeared once on any specific working day
of the week. The whole design was replicated in three separate but comparable production
lines.

The data, in percentages of target output, are as follows. They may also be found in the file
music.txt in the MAS353 folder on the Campus Windows system. The design, with A,

B, C, D, E replaced by 1, 2, 3, 4, 5, may be found in the file musicplan.txt .

Line 1

Week Monday Tuesday Wednesday Thursday Friday
1 E: 82 A:123 B:118 D:114 C:108
2 B: 88 C: 83 A: 98 E: 85 D: 78
3 D: 69 E: 81 C: 96 B:102 A: 87
4 A: 94 D:101 E:106 C:104 B:109
5 C: 80 B:109 D: 90 A:100 E: 85

Line 2

Week Monday Tuesday Wednesday Thursday Friday
1 B:109 D:102 A:114 E:111 C: 97
2 E: 73 C: 90 B: 94 D: 74 A: 93
3 C: 90 B:102 D: 90 A: 95 E: 81
4 A: 88 E:116 C:107 B:115 D: 98
5 D: 78 A:103 E: 92 C: 95 B: 99
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Line 3

Week Monday Tuesday Wednesday Thursday Friday
1 C: 96 E:112 B:122 A:124 D: 88
2 E: 69 A: 89 D: 87 B: 97 C: 74
3 D: 66 B:105 A: 94 C: 96 E: 81
4 A: 97 D:110 C:110 E:113 B:115
5 B: 88 C: 88 E: 90 D: 88 A: 88

Analyse the data to test for differences in the effects of the treatments A, B, C, D, E. (Fit
main effects only, i.e. Treatments, Days, Weeks, Lines. Do not attempt to measure any
interaction effects).

Use a suitable contrast to compare “No music” (E) with “Music” (A, B, C, D) and hence
also test for differences between the music programs (A, B, C, D).

Write a brief report on your findings. Comment on the design.

6. In an experimental design to compare the tensile strengths of tubes manufactured by differ-
ent methods there are four different methods, A,B, C, D, where A is a control. These are
arranged in a Latin square with four different manufacturing plants as the row factor and
the day of manufacture as the column factor. To provide a better estimate of experimental
error, the entire experiment is repeated using the same plants but on different days.

Analyse the results (in units of tensile strength), given below, to determine whether or not
there are significant differences between the methods and, in particular, to compare the
control with the other three methods. Comment on your results.

Day of manufacture
1 2 3 4 5 6 7 8
A B C D C A B D

1 16.6 16.9 17.4 17.4 17.6 17.8 18.1 16.5
D C B A A C D B

Plant 2 17.1 16.8 19.2 16.6 17.1 17.5 17.4 19.6
C D A B D B A C

3 17.4 17.0 16.8 19.2 17.6 19.4 17.1 18.3
B A D C B D C A

4 18.6 17.4 17.4 19.2 17.6 17.8 18.9 17.1

References

Snee, R.D., 1985. Graphical display of results of three-treatment randomized block experiments.
Applied Statistics, 47, 71-7.

Assignment 3

Please submit solutions to questions 2 and 4 in the homework box, by 5.00pm on Wednesday 8th
March.
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11 Missing data and outliers

11.1 Introduction

Observations may be missing or anomalous (i.e. outliers) for variuos reasons:

Missing experimental units: In certain blocks there may be one or more missing units, e.g.
two few patients in a particular category.

Failed trials: The designed experiment is complete but one or more observations are lost subse-
quently, e.g. a test tube is dropped, a plot is found to be contaminated, an animal dies, a
patient refuses to continue a trial. We must distinguish two cases:

1. The loss is unconnected with the treatment.

2. The loss may be linked with the treatment.

Outliers: the experiment is complete and all data are recorded. It is subsequently found that one
or more observations are “outliers”, i.e. inconsistent with other data.

11.2 Dealing with outliers

If an outlier is found, the first step is to check for a misrecording or transcription error. (Retain
original records and field notes for this possibility).

If this fails, check whether a faulty experimental unit (e.g. a blocked drain) is responsible. If
this is the case, discard the observation and treat as missing (unconnected with treatment).

A third possibility is that the model is incorrect or inadequate (e.g. non-normality, non-constant
variance). In this case a transformation (e.g. log, square root, power) might solve the problem.

If the outlier is unresolved, use the missing observation method (below) to reanalyse without
it. In this case the influence of the doubtful observation on the conclusions must be considered
and reported.

11.3 Dealing with missing observations

Missing observations will often cause a design to become unbalanced. This will mean that effects
are no longer orthogonal. The data may still be analysed, for example using the Minitab GLM
function, but the simple formulae for sums of squares will no longer apply and the various sums
of squares will not add up to the total. (The situation is similar to a multiple regression where
changes in the residual sum of squares due to adding factors to the model depend on the order in
which the factors are added). If only one or two observations are missing, it might be helpful to
acrry out an approximate analysis by “estimating” the missing values by least squares.

11.4 Estimation of a missing value

11.4.1 Procedure

Step 1: Let x denote the missing value.

Step 2: Write down an expression for the residual sum of squares as a function of x.

Step 3: Find the value x̂ for x which minimises the residual sum of squares.

11.4.2 Example: Randomised blocks

Notation:
There are t treatments and b blocks. The missing observation is on treatment i′ in block j′.

41



S1 Treatments sum of squares
SB Blocks sum of squares
SR Residual sum of squares
ST Total sum of squares
Ti′ = T ′

i′ + x Treatment total for treatment i′.
Bj′ = B′

j′ + x Block total for block j′.

G = G′ + x Overall total.

We know that
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12 Sample size

12.1 Introduction

An important aspect of the design of experiments is the determination of sample size. How many
observations should be made? Taking too many observations may lead to unnecessary cost or
delay and may be unethical if human or animal subjects are involved. Taking too few observations
may mean that we are unlikely to get a useful result and may also be unethical if we are involving
human or animal subjects in an experiment which is likely to be a waste of time. Sample size
calculations are often required by ethics committees in hospitals, universities etc. before approval
is given for an experiment involving human or animal subjects.

The usual approach is to find the smallest sample size which will give a specified power to a
test at a specified significance level under certain specified conditions. The calculations can be
complicated but computer software is often available. In fact Minitab will do sample size and
power calculations in some cases.

12.2 Practical significance and statistical significance

Statistical significance refers to the significance level of a test. That is the probability of reject-
ing the null hypothesis when it is true. This is a measure of the strength of evidence against
a null hypothesis.

Practical significance refers to whether an effect, that is a difference between population means,
has any real importance. Two treatments might have effects which are not exactly the same
but are so similar that the difference is of no importance. A practically significant difference
is one which is of real interest to the experimenter.

In determining sample size we use both of these kinds of significance. A very large experiment might
give a statistically significant result even when the real difference is of no practical significance.
An experiment which is too small might fail to give a statistically significant result even when a
difference of practical significance exists.

12.3 Required information

Discussion between the statistician and the experimenter should establish the following.

1. What is the smallest difference of practical significance, i.e. worth detecting?

∆

2. What value of error standard deviation is anticipated?

σ

3. What significance level, i.e. Type I error probability, will be used?

α

4. What power is required when the true difference is ∆, i.e. how sure do we wish to be of
detecting a difference as large as ∆? The power is 1 − β where β is the Type II error
probability.

β

5. What type of design is to be used? What nuisance factors are there? This affects the number
of residual degrees of freedom.

ν

N.B. We will assume here that sample sizes are to be equal. The size of each sample is r.
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12.4 Example: Two-sample t-test

In this case ν = 2(r − 1). Note that ν depends on r.
Model:

X̄1 − X̄2 ∼ N

(
µ1 − µ2,

2σ2

r

)
If H0 is true,

X̄1 − X̄2 ∼ N

(
0,

2σ2

r

)
and

T =
X̄1 − X̄2

S
√

2/r
∼ tν

where S2 is based on ν d.f.
Under HA : µ1 − µ2 = ∆, we have

T ′ =
X̄1 − X̄2 −∆

S
√

2/r
∼ tν .

We reject H0 at the 100α% level if |T | > k1 where k1 is the two-sided α critical point of tν .
We wish the probability of rejection when µ1−µ2 = ∆ to be 1−β. We reject if |T | > k1. That

is we reject if ∣∣∣∣∣T ′ +
∆

S
√

2/r

∣∣∣∣∣ > k1.

That is, we reject if

T ′ > k1 −
∆

S
√

2/r

or
T ′ < −k1 −

∆
S

√
2/r

.

The latter has a very small probability so we ignore it. The rejection probability is then 1− β if

k1 −
∆

S
√

2/r
= −k2,

where −k2 is the lower β critical point of tν . (See diagram). Of course, in sample size calculations,
we need to supply an anticipated value s for S.

So, we set

∆
s
√

2/r
= k1 + k2

which implies

r =
2s2

∆2
(k1 + k2)2

where k1 is the two-sided α point of tν and k2 is the one-sided β point of tν . Unfortunately the
right hand side also depends on r through ν so we need to solve the equation iteratively. We guess
a value for r to find ν and then use the equation to find a new value for r. We continue until the
process converges.
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12.5 Numerical example

A t-test is to be used to compare a drug treatment and a control. Past experiments suggest a
typical mean response of 150 and standard deviation of about 10. Testing at the 5% level, the
investigator wishes to be 95% sure of detecting a change of 15 units. How many observations
should be taken?

Solution
Here ∆ = 15, s = 10, and 2s2/∆2 = 0.8889.
Guess r0 = 10 so ν = 18, k1 = 2.101, and k2 = 1.734.
Then r1 = 0.8889(2.101 + 1.734)2 ≈ 13 so ν = 24, k1 = 2.064 and k2 = 1.711.
Then r2 = 0.8889(2.064 + 1.711)2 ≈ 13.
So r = 13.

12.6 Comparing several treatments

One approach to dealing with the case when we have more than two treatments is as follows. We
will wish to detect a difference greater than ∆ between any pair of population means. So we modify
the previous method by using the studentised range. This change only affects k1, the critical value
under H0. We replace tν × s

√
2/r by qt,ν × s

√
1/r. Hence we replace k1 by

k′1 =
qt,ν(α)√

2

where t is the number of treatments being compared.

12.7 Numerical example
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12.8 Adjusting the sample size required

Sometimes the suggested sample size might seem to be too large to the experimenter. What can
be done? There are various possibilities.

1. Increase ∆. Doubling ∆ divides the sample size by 4.

2. Increase β or α.

3. Reduce σ. Halving σ will divide the sample size by 4.

Options 1 and 2 involve weakening the requirements. Option 3 is more desirable if it is possible,
for example by improved technique or better design.

13 Factorial experiments I

13.1 Introduction

The “two-way ANOVA” is a simple example of a factorial experiment. A factorial experiment is
simply an experiment where the explanatory variables are factors, i.e. categorical.

There is no need to stop at two factors. There is no theoretical limit to the number of factors but
designs can become very complicated if there are many factors and there can be lots of interaction
effects to consider.

For example, an experiment with three factors at 3, 4, 5 levels respectively is called a 3× 4× 5
factorial experiment. It would need 60 observations for a single replication. There would be main
effects, 2-way interactions between pairs of factors and a 3-way interaction between the three
factors. this would leave no degrees of freedom for the residual. We would need

either to assume that some of the interactions are zero and use their sums of squares as the
residual

or have more than one replication

(or both)

Instead of a single large factorial experiment with several factors we might consider a series
of single-factor experiments in which one factor is varied while others are held constant. The
approach using one factorial experiment is usually preferred because

1. (economy/efficiency). Fewer observations in total will be needed.

2. (flexibility). The results are more widely applicable.

3. (more information). Interaction can only be measured in multi-factor experiments.

Main effect : The main effect of a factor is its direct effect, as opposed to any interactions.

Interaction : An interaction occurs when the difference in the response to levels of one factor
depends on the levels of other factors. It is characterised by a non-additive response to
combinations of levels of factors.

Examples of interaction :

• The effect of a fertiliser may vary with the type of soil.

• The effect of a drug may vary with the activity of a patient.

• The effect of a catalysts may vary with the temperature of a reaction.
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13.2 Some terminology and notation

Levels of factors : The various values which a factor can take are called levels.

Factor names : The names of factors are denoted by upper case letters: A, B, C, . . . .

Factor levels : the levels of factors are denoted by lower case letters: a1, a2, a3, . . . , b1, b2, b3, . . . .

Treatment combinations : A treatment combination can be represented by, e.g., a1b3c2.

Cross-classification : A cross-classification is a full set of treatment combinations.

Replications : One observation taken at each possible treatment combination makes a single
replication. An experiment with 3 factors, A, B, C, with 2, 4, 3 levels respectively (a 2×4×3
factorial experiment) would require 24 units per replication. Several replications can be
arranged in a completely randomised, randomised blocks or Latin square design.

N.B. Designs can become very large. To get round this problem, techniques such as confounding
and fractional replication can be used. These will be described in a later lecture.

13.3 Analysis

We illustrate the principles using the two-factor case.
The model now incorporates an interaction term. Observation k of those taken at level i of

factor A and level j of factor B is written

yijk = µ + αi + βj + γij + εijk

The overall mean is µ.

The factor A effect is αi.

The factor B effect is βj .

The interaction effect is γij .

The treatment combination effect is τij = αi + βj + γij .

Here
i = 1, 2, . . . , a (a levels)
j = 1, 2, . . . , b (b levels)
k = 1, 2, . . . , r (r replications)

Unless r > 1, it is impossible to distinguish between γij and εijk. that is we can not measure
interaction.

The usual constraints and assumptions are

a∑
i=1

αi =
b∑

j=1

βj =
a∑

i=1

γij =
b∑

j=1

γij = 0

εijk ∼ N(0, σ2)

(independently).
For a randomised blocks design, the model also includes a block term δl with

∑d
l=1 δl = 0. We

assume that block effects are additive. That is they do not interact with other factors.
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13.4 Analysis of variance (two-factor case)

There are two stages:

1. First regard each treatment combination as a separate treatment. Analyse the data as in a
completely randomised, randomised blocks or Latin square design as appropriate. This leads
to a between-treatments sum of squares on t − 1 degrees of freedom, where t = ab, and a
residual sum of squares.

In the completely randomised case:

The total sum of squares is

ST =
a∑

i=1

b∑
j=1

r∑
k=1

y2
ijk −

G2

abr

on abr − 1 degrees of freedom.

The total between-treatments sum of squares is

SF =
1
r

a∑
i=1

b∑
j=1

T 2
ij −

G2

abr

on ab− 1 degrees of freedom.

Here Tij is the total for observations at level i of factor A and level j of factor B. That is

Tij =
r∑

k=1

yijk.

The overall total of the observations is

G =
a∑

i=1

b∑
j=1

r∑
k=1

yijk =
a∑

i=1

b∑
j=1

Tij .

The residual sum of squares is then SR = ST −SF on (abr−1)− (ab−1) = ab(r−1) degrees
of freedom.

2. Next calculate the sums of squares for main effects and interactions.

The factor A sum of squares is

SA =
1
br

a∑
i=1

A2
i −

G2

abr

on a− 1 degrees of freedom, where the total for level i of factor A is

Ai =
b∑

j=1

r∑
k=1

yijk =
b∑

j=1

Tij .

The factor B sum of squares is

SB =
1
ar

b∑
j=1

B2
j −

G2

abr

on b− 1 degrees of freedom, where the total for level j of factor B is

Bj =
a∑

i=1

r∑
k=1

yijk =
a∑

i=1

Tij .

The interaction sum of squares is SI = SF−SA−SB on (ab−1)−(a−1)−(b−1) = (a−1)(b−1)
degrees of freedom.
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Source of variation Degrees of Sum of Mean Variance
freedom squares square ratio

Factor A a− 1 SA

Factor B b− 1 SB

Interaction (a− 1)(b− 1) SI

Between treatments ab− 1 SF

Residual ab(r − 1) SR

Total abr − 1 ST

13.5 Example

Volunteers are given one of three diets (Factor A) and one of three drug treatments (Factor B).
The levels of Factor A are a1 : Food supplement 1, a2 : Food supplement 2, a3 : Control (normal
diet). The levels of Factor B are b1 : Drug 1, b2 : Drug 2, B3 : Control (no drug). There are four
replications. The data are as follows.

Level of Level of Factor B
Factor A b1 b2 b3

a1 3.4 3.8 4.0 4.2 2.8 2.8
4.4 3.9 3.3 2.7 3.8 3.4

a2 6.5 6.7 4.9 4.9 6.1 5.2
6.0 5.7 5.4 4.8 6.1 5.5

a3 4.6 5.8 3.9 3.7 6.5 6.2
4.9 5.0 3.5 3.9 6.4 6.4
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Problems 4

1. Derive a formula for estimating a single missing value in a Latin square design.

2. An ecologist wishes to compare the diameters of shells on adult snails of the same species
bred in captivity from specimens caught in two different locations. The ecologist will use a
two-sample t-test, with the assumption of equal variances. If the standard deviation of shell
diameters is expected to be about 3mm, find the sample size required to give a power of 90%
for a two-sided test at the 5% significance level when the difference in population means is
2mm.

3. Suppose now that the ecologist in question 2 wants to use a one-way analysis of variance to
compare the shell diameters in four groups of snails. If the standard deviation is expected
to be about 3mm, find the sample size required to be 90% sure of detecting a difference of
2mm between any pair of population means, using the 5% significance level.

Assignment 4

Please submit solutions to questions 1, 2, 3 in the homework box, by 5.00pm on Wednesday 22nd
March.
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14 Factorial experiments II

14.1 Hypothesis testing

Stage 1 Test the overall treatment effects using the between-treatment variance ratio. Test infor-
mally for block effects if applicable. Provided that it is not clear that there are no significant
effects present, proceed to stage 2.

Stage 2 Test for interaction (H0 : γij = 0, i = 1, . . . , a, j = 1, . . . , b) using the interaction
variance ratio which is the interaction mean square divided by the residual mean square. If
the result is not significant, go to stage 3a. If the result is significant, go to stage 3b.

Stage 3a If the test for interaction does not give a significant result, test the main effect of each
factor independently by comparing the each mean square to the residual mean square in a
separate variance ratio.

Multiple comparisons may be applied separately to each factor.

Stage 3b If the test for interaction gives a significant result then the main effects tests may
be applied as formal procedures but we are more interested in comparing the factor mean
squares informally with the interaction mean square. This will tell us whether main effects or
interactions dominate. In this case, use of multiple comparisons is more awkward. If we wish
to apply multiple comparisons, we would usually apply them to the treatment combinations.
However, if a main effect is dominant, it might still be informative to compare the mean
levels for that factor.

14.2 Example (13.5)

14.3 More than two factors

In a model with three factors, A, B, C, there are seven effects:

• Three main effects: A, B, C.

• Three two-way interactions: A × B, A ×C, B × C.

• One three-way interaction: A × B × C. The three-way interaction means that the interaction
of A and B varies with the level of C etc. In practice three-way (and higher order) interactions
often turn out not to be significant.

The various sums of squares can be calculated a follows.

Stage 1 Calculate the total sum of squares, a between-treatment-combinations sum of squares
and, if applicable, a blocks sum of squares. The residual sum of squares is obtained by
subtraction.

51



Stage 2 Split the between-treatment-combinations sum of squares into main effects and interac-
tion sums of squares.

1. Main effects sums of squares are calculated from the factor level totals as usual. The
sum of squares for factor A is

SA =
1

bcr

a∑
i=1

A2
i −

G2

abcr

on a− 1 degrees of freedom, where a, b, c are the numbers of levels of the factors, r is
the number of replications and Ai is the total for level i of factor A.

2. Calculate the sums of squares for two-way interactions. For example, to calculate the
sum of squares for the A × B interaction we first calculate a sum of squares between
combinations of levels of A and B:

SBT (AB) =
1
cr

a∑
i=1

b∑
j=1

T 2
(AB)ij −

G2

abcr

on ab− 1 degrees of freedom and then subtract the main effects sums of squares for A
and B from this to obtain the interaction sum of squares

SAB = SBT (AB) − SA − SB

on (a − 1)(b − 1) degrees of freedom, where T(AB)ij is the total of observations made
with A at level i and B at level j. Alternatively this can be seen as the interaction sum
of squares in a two-way analysis of variance obtained by ignoring factor C.

3. Calculate the three-way A × B × C interaction sum of squares. This can be found by
subtracting the main effects and two-way interaction sums of squares from the between-
treatment-combinations sum of squares. It has (a− 1)(b− 1)(c− 1) degrees of freedom
(which can also be found by subtraction).

The sums of squares can, of course, be found using computer software such as Minitab. See
14.5.

Test the hypotheses starting with the three-way interaction, then, if this is not significant, the
two-way interactions, then, if these are not significant, the main effects.

Example: a 2× 4× 5 experiment with two replications.

a1b1 a1b2 a1b3 a1b4 a2b1 a2b2 a2b3 a2b4

c1 72.4 75.2 71.6 73.3 47.1 59.7 54.8 75.1
55.2 74.5 45.6 81.2 53.7 59.4 54.5 64.5

c2 56.8 72.3 75.7 76.3 57.3 45.5 64.8 52.1
57.4 84.3 69.9 80.9 55.3 65.3 69.2 41.4

c3 58.6 71.1 76.8 72.5 54.3 57.5 53.9 56.8
65.7 74.3 82.7 82.3 72.5 55.8 54.2 53.8

c4 53.5 73.7 62.2 82.0 53.9 59.8 44.3 70.9
63.7 79.9 66.1 72.1 50.3 57.2 63.0 52.8

c5 63.6 71.3 59.2 75.7 52.7 44.4 44.6 60.8
65.7 79.3 72.7 72.1 56.5 61.5 54.8 55.4

There are 40 treatment combination totals: 72.4 + 55.2 = 127.6, . . . , 60.8 + 55.4 = 116.2.

a1b1 a1b2 a1b3 a1b4 a2b1 a2b2 a2b3 a2b4

c1 127.6 149.7 117.2 154.5 100.8 119.1 109.3 139.6
c2 114.2 156.6 145.6 157.2 112.6 110.8 134.0 93.5
c3 124.3 145.4 159.5 154.8 126.8 113.3 108.1 110.6
c4 117.2 153.6 128.3 154.1 104.2 117.0 107.3 123.7
c5 129.3 150.6 131.9 147.8 109.2 105.9 99.4 116.2
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The sum of squares for treatment combinations is:

There are 8 totals for combinations of levels of A and B (column totals in the data table):

b1 b2 b3 b4

a1 612.6 755.9 682.5 768.4
a2 553.6 566.1 558.1 583.6

There are 10 totals for combinations of levels of A and C:

a1 a2

c1 549.0 468.8
c2 573.6 450.9
c3 584.0 458.8
c4 553.2 452.2
c5 559.6 430.7

There are 20 totals for combinations of levels of B and C:

b1 b2 b3 b4

c1 228.4 268.8 226.5 294.1
c2 226.8 267.4 279.6 250.7
c3 251.1 258.7 267.6 265.4
c4 221.4 270.6 235.6 277.8
c5 238.5 256.5 231.3 264.0
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Source of Degrees of Sum of Mean Variance
variation freedom squares square ratio
A × B × C 12
A × B 3
A × C 4
B × C 12
A 1
B 3
C 4
Between treatments 39
Residual 40
Total 79

The extension of this to four or more factors is exactly as you would expect.

14.4 Use of a single replication

In designs with three or more factors, the number of observations per complete replication can be
large. However the three-way and higher order interactions are often unimportant. So, if it can
be decided in advance that these interactions will have no real effect, their sums of squares can be
used as a residual sum of squares and this makes it possible to test the main effects and two-way
interactions even if only one replication is observed.

Example: a 2× 4× 5 experiment with a single replication.

Source of Degrees of Sum of Mean Variance
variation freedom squares square ratio
A × B × C 12
A × B 3
A × C 4
B × C 12
A 1
B 3
C 4
Between treatments 39
Residual 0
Total 39

However, if we are willing to assume that the (true) three-way interaction effects are zero then
any sum of squares associated with this effect can only be due to error and can be treated as a
residual.
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Example: a 2× 4× 5 experiment with a single replication, assuming that the three-way inter-
action effects are zero.

Source of Degrees of Sum of Mean Variance
variation freedom squares square ratio
A × B 3
A × C 4
B × C 12
A 1
B 3
C 4
Residual 12
Total 39

14.5 Using Minitab

You can use

Stat --> ANOVA --> Balanced ANOVA

or

Stat --> ANOVA --> General Linear Model

In the Model box you have to specify the effects in the model.
Examples

• A B — main effects of A and B.

• A B A*B — main effects of A and B and the A × B interaction.

• A|B — this is the same as A B A*B .

• A B C A*B A*C B*C A*B*C — all main effects and two-way and three-way interactions
with three factors, A, B, C.
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• A|B|C — this is the same as A B C A*B A*C B*C A*B*C .

In Balanced ANOVA , A, B etc. will be assumed to be factors.
In General Linear Model , A, B etc. will be assumed to be factors unless you declare them

to be covariates.
You can generate levels of factors using

Calc --> Make Patterned Data --> Simple Set of Numbers

15 2n factorial experiments I

15.1 Introduction

Experiments in which there are n factors, each with just two levels, ar known as 2n factorial
experiments. They are useful for investigating a large number of factors of potential interest,
particularly in the pilot stage of a study.

Although they are a special case of multi-factor experiments, their usefulness has led to a special
notation.

15.2 Notation

Factor names are in upper case: A, B, C, . . .
Main effects are also in upper case: A, B, C, . . .
Interactions are written: AB, ACD, etc.
Levels of factors are written in lower case. Since there are only two levels of each factor (typically

absent/present or lower/upper or standard/new or . . . ), we could write, e.g., ā, a for the two levels
of A. A treatment combination could then be written (e.g. in a 24 experiment) as

ābc̄d

in which A and C are athe their lower levels (or absent) and B and D are at their upper levels (or
present).

However there is usually no ambiguity caused by missing out the symbols for the factors which
are at their lower levels and this convention is usually adopted. So we write

bd

instead of ābc̄d. This requires a special notation for the treatment combination with all treat-
ments at their lower level (āb̄c̄d̄). We write this as

(1)

Thus the complete set of treatment combinations in a 24 factorial experiment is, in standard
order:

(1) a b ab c ac bc abc
d ad bd abd cd acd bcd abcd

(In practice, of course, the treatment combinations would be allocated to units by randomiza-
tion).

IMPORTANT: Do not confuse the symbol, ac, for a treatment combination with the symbol,
AC, for an interaction effect. The notation should be used with care.

56



15.3 Analysis

15.3.1 Outline

If we have r > 1 replication we can proceed as follows. (Other cases will be described later).

Stage 1 : Calculate the total sum of squares, on 2nr − 1 degrees of freedom, and a between-
treatment-combinations sum of squares, on 2n−1 degrees of freedom. Find the residual sum
of squares, on 2n(r − 1) degrees of freedom, by subtraction.

Stage 2 : Break down the between-treatment-combinations sum of squares into sums of squares
for the various main effects and interactions. Because each factor has two levels, each sum
of squares has one degree of freedom. Each effect can be represented by a contrast.

15.3.2 Main effects

The main effect of A can be thought of as a contrast between A present and A absent. E.g. 23

experiment: write the treatment combination totals (summed over r replications) as

T(1), Ta, Tb, Tab, Tc, Tac, Tbc, Tabc.

Then we use the contrast:

−1, +1, −1, +1, −1, +1, −1, +1

giving a contrast total TA = −T(1) + Ta − Tb + · · ·+ Tabc.
Hence the contrast sum of squares is

SA =
T 2

A

r
∑

c2
i

=
T 2

A

2nr
=

T 2
A

N
.

(Exercise: Show that the same result is obtained from factor level totals).
The other main effect sums of squares are found similarly, of course.

15.3.3 Two-way interactions

Example: AB in a 23 experiment with r replications. We define an interaction as the difference in
response between

• A and B at the same level (whether upper or lower),

• A and B at opposite levels.

A suitable contrast is thus:

(1) a b ab c ac bc abc
+1 −1 −1 +1 +1 −1 −1 +1

Note that this is independent of all main effects.
From this we obtain a contrast total TAB and a sum of squares

SAB =
T 2

AB

N
.

Note that the contrast for AB could be obtained by multiplying corresponding coefficients in
the contrasts for A and B.

A − + − + − + − +
B − − + + − − + +

AB + − − + + − − +

This generalises to more factors. E.g., for ABC,
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C − − − − + + + +
ABC − + + − + − − +

From this we obtain TABC and

SABC =
T 2

ABC

N
.

15.3.4 Sign table

The calculations of the contrasts can be set out in a sign table.
Example: 23 factorial with 3 replications.

Treatment
Combination Total A B C AB AC BC ABC

(1) 30.5 - - - + + + -
a 32.3 + - - - - + +
b 32.4 - + - - + - +
ab 26.4 + + - + - - -
c 23.9 - - + + - - +
ac 32.4 + - + - + - -
bc 25.9 - + + - - + -
abc 27.2 + + + + + + +

Total T 231.0 5.6 -7.2
Sum of squares T 2/N 2223.375 1.307 2.160

In practice, of course, we can use computer software such as Minitab to generate contrasts and
do numerical calculations.
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16 2n factorial experiments II

16.1 Testing hypotheses

The usual practice is to calculate variance ratios for all effects and test their significance. the
interpretation is done hierarchically, starting with the highest-order interactions. When an inter-
action is found to be significant, all of its component effects are regarded as established, whatever
the significance of their individual tests. For example, a significant result in the test of the ABC
interaction is considered to establish the existence of the ABC, AB, AC and BC interactions and
the A, B and C main effects.

16.2 Choosing the best combination of treatments

Both the Minitab Balanced ANOVA and General Linear Model functions will store fitted
values if requested. (Other statistical software will also do this). This makes it easy to select
the treatment combination which gives the best predicted response if we consider all effects to be
“real.”

However often we will only wish to take into account some of the possible effects, usually those
effects the existence of which is established, either

• because the experimenter specifies in advance that this effect is to be included in the model,

• by a significant result in the test of the effect itself

• or by a significant result in the test of an interaction which involves the effect.

Therefore we need first to determine which effects are established and then fit the model
involving only these effects. We can then determine the treatment combination with the best
predicted response by looking at the fitted values.

If we wish to do the calculations by hand we can determine the estimate of the parameter for
a particular factor by dividing the contrast total by N, the overall total number of observations.
The effect of a factor is often regarded as the difference in mean response between the upper and
lower levels of the factor. Here we define the parameter to be half of this difference. Consider an
effect E. This could be a main effect or an interaction. Its parameter is τE . This parameter is
added in the model in cases where the effect is at its upper level and subtracted in cases where it
is at its lower level (following the signs in the sign table). So (ignoring the errors) the total for the
contrast for effect E is

TE =
N

2
τE − N

2
(−τE) = NτE

since everything else cancels out. So we estimate it by

τ̂E =
TE

N
.

(Note that, using the definition of an effect size mentioned above, the effect size would be 2τE .)
So, for example, consider the 23 factorial in 14.3.4. We modify the sign table adding an extra

column, labelled “I”, for the overall mean.

Treatment
Combination I A B C AB AC BC ABC

(1) + - - - + + + -
a + + - - - - + +
b + - + - - + - +
ab + + + - + - - -
c + - - + + - - +
ac + + - + - + - -
bc + - + + - - + -
abc + + + + + + + +
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Using this sign table, we can see that the mean response for treatment combination ac is

µ + τA − τB + τC − τAB + τAC − τBC − τABC .

So the estimate of the mean response (i.e. the predicted response) is

pac =
1
N

(G + TA − TB + TC − TAB + TAC − TBC − TABC).

In fact, in the case where we fit all main effects and interactions, this is just the mean for observa-
tions on treatment combination ac. However, if we omit some effects, this simplification does not
apply and we have to use the formula. For example, if we omit the three-way interaction in the
example then we obtain

pac =
1
N

(G + TA − TB + TC − TAB + TAC − TBC).

It is easy to see how to apply this method to other treatment combinations, other selections of
fitted effects and other 2n factorial designs.

16.3 Confidence intervals

The variance of a contrast total, which is made up of N observations, is Nσ2, where σ2 is the error
variance and N = 2nr is the total number of observations. Therefore a confidence interval for a
parameter estimate, corresponding to a contrast, is

T

N
± tν

√
s2

N

where tν(α) is an appropriate critical point from the Student’s t-distribution on ν = 2n(r − 1)
degrees of freedom and s2 is the residual mean square.

If we fit all possible effects then the predicted response for a treatment combination is just the
sample mean for the observations on that treatment combination. This has variance σ2/r, when
there are r replications. So, in a 2n factorial with r replications, a confidence interval for the
response for a particular treatment combination (if all effects are fitted) is

ȳtc ± tν(α)

√
s2

r
.

where tν(α) is an appropriate critical point from the Student’s t-distribution on ν = 2n(r − 1)
degrees of freedom and s2 is the residual mean square.

When less than the full model is fitted, the estimate of the mean response for a treatment
combination is not so simple but is made up of a number of parameter estimates, as shown in 16.2
above. However the contrast totals are independent since the contrasts are orthogonal. This can
be seen from the fact that the variance matrix of the vector of parameter estimates is σ2(XT X)−1,
where X is the design matrix, which is just the sign table with +1 and −1 for + and −. It is easy
to see that XT X is diagonal.

The variance of G and of each contrast total is Nσ2. So, if an estimated mean response involves
G and k contrast totals, then the variance of the estimator of the mean response is

1
N2

(1 + k)Nσ2 =
(1 + k)σ2

N
.

Note that, if all main effects and interactions are used, then 1 + k = 2n and the variance simplifies
to σ2/r as above.

Thus a confidence interval for the mean response for a treatment combination, when k effects
have been fitted, is
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17 2n factorial experiments III

17.1 Using a single replication
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17.2 Example
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Problems 5

1. Show that the same expression as given in the notes (15.3.2) for the sum of squares for the
main effect of factor A can be obtained using the factor level totals.

2. An experiment on the growth of tomato plants involved three substances, A, B, C, added to
the irrigation water. A 23 factorial experiment was used with each factor corresponding to
absence or presence of a substance so, for example, ab is the treatment where A and B are
present but C is absent. Four replications were carried out. The growth data are as follows.

Treatment Observations Total
(1) 47.7 36.4 44.8 51.2 180.1
a 48.6 38.1 51.2 48.2 186.1
b 45.0 49.3 31.2 42.3 167.8
ab 62.8 58.6 51.7 62.1 235.2
c 44.7 37.2 48.4 46.5 176.8
ac 54.7 51.9 51.8 51.7 210.1
bc 44.6 48.7 48.6 50.7 192.6
abc 68.0 70.1 61.2 63.2 262.5

Analyse the data, testing for the interaction and, if appropriate, the main effects.

3. The following data represent the results of a 22 factorial design with four replications, ar-
ranged as a 4 × 4 Latin square. Analyse the data, testing for the interaction and, if appro-
priate, the main effects and allowing for row and column nuisance factors.

(1) 9 b 7 ab 13 a 10
a 11 ab 12 (1) 8 b 9
b 10 (1) 6 a 8 ab 10
ab 12 a 12 b 7 (1) 9

Assignment 5

Please submit solutions to questions 1, 2, 3 in the homework box, by 5.00pm on Wednesday 3rd
May.
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18 Confounding

18.1 Introduction

In a 2n experiment, we may have a natural block size which is too small to hold a complete
replication.

For example, consider a 23 experiment on 32 experimental units arranged in 8 blocks of size 4.
There are 4 replications, each of which is split across 2 blocks. E.g., replication 1:

Block 1 (1) ab ac bc
Block 2 a b c abc

(Replications 2, 3 and 4 are similarly split between blocks but randomized again).
In each block, the contrast for A has two + signs and two − signs. Hence block effects cancel

in the A contrast and the effect of A can be measured. This is also true for B, C, AB, AC, BC.
However the three-way interaction ABC has − everywhere in Block 1 and + everywhere in Block
2.

Thus ABC is measured by the same contrast as the block effect and these effects can not be
distinguished. We say that ABC is confounded with blocks.

Effects are confounded when they can not be distinguished in the analysis of an experiment.
Whilst it is usually undesirable to have effects confounded, by careful design we can often make
sure that the effects which are confounded are the unimportant ones so that important effects can
be measured.

18.2 Design aspects

18.2.1 Case 1: Two blocks per replication

When the block size is 2n−1 we have two blocks per replication. This is the simplest case. We
choose an unimportant interaction and write down its contrast. We then split each replication into
blocks using the signs in this contrast.

The analysis of the results is straightforward. We simply discard the confounded interaction
(assuming it to be negligible). The between treatments sum of squares is reduced by the contrast
sum of squares of the confounded interaction and its degrees of freedom are reduced by 1.

Example 1 : As before, consider a 23 experiment, with 8 blocks of 4 units each and ABC con-
founded in all replications.

Each of the effects A, B, C, AB, AC, BC has a sum of squares on 1 df so the between
treatments sum of squares has 6 df. The between blocks sum of squares, calculated from the
block totals, has 7 df. This sum of squares includes ABC.

The total sum of squares has 31 df and the residual sum of squares, obtained by subtraction,
has 31-7-6=18 degrees of freedom.

Example 2 : Consider a 24 experiment with 2 replications in 4 blocks of 8 units. ABCD is
confounded and we deem all three-way and the 4-way interaction to be negligible.

Design (Replication 1):

Block 1 (1) ab ac ad bc bd cd abcd
Block 2 a b c d abc abd acd bcd

Replication 2 is similarly split between blocks 3 and 4. The order of the blocks and the order
of the treatments within a block are randomized.

The important effects are A, B, C, D, AB, AC, AD, BC, BD, CD, giving 10df for the between
treatments sum of squares. (This ignores 3- and 4-way interactions).

There are 4 blocks so the between-blocks sum of squares has 3 df and this includes the
confounded effect ABCD.
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The total sum of squares has 31 df so the residual sum of squares (by subtraction) has 31-10-
3=18 df. Note that the residual sum of squares includes the 3-way interactions (4df) which
could have been separated out if required.

18.2.2 Case 2: Smaller block fractions

Confounding can be used whenever the block size is of the form 2n−p. For p = 2 we have 22 = 4
blocks per replication.

Consider a 24 experiment in blocks of size 4 and the following two possible designs.

Design 1 confounds ABC and BCD.

ABC BCD
Block 1 (1) bc abd acd − −
Block 2 a abc bd cd + −
Block 3 ab ac d bcd − +
Block 4 b c ad abcd + +

Design 2 confounds ABCD and BCD.

ABCD BCD
Block 1 a abc abd acd − −
Block 2 (1) bc bd cd + −
Block 3 b c d bcd − +
Block 4 ab ac ad abcd + +

We can see that, in Design 2, the main effect A has also been confounded with blocks. When
we use four blocks per replication, 3df are involved and hence 3 different effects are confounded.
We need to identify the 3 effects before planning the experiment. This is done as follows.

Choose two effects to be confounded. Then the third effect is obtained by “multiplying” these
effects together and cancelling those which appear twice. For example:

Design 1 : ABC × BCD = ABBCCD = AD.

Design 2 : ABCD × BCD = ABBCCDD = A.

This works because “multiplying” effects multiplies their signs.
If we had 8 blocks per replication then there would be 7 degrees of freedom between blocks.

The blocks could be defined by 3 contrasts but a further 7−3 = 4 effects would also be confounded.

18.3 Confounding – General principles

18.3.1 Rules

1. Choose interactions to confound carefully. We must ensure that all confounded interactions
are negligible and that the aims of the experiment are met. In particular, check for hidden
confounding.

2. For blocks of size 2n−p, split each replication using the signs of p interactions. Randomise
the order of the blocks and the order of treatments within blocks.

3. In the analysis, take care to avoid double-counting. The confounded effects should be removed
from the between-treatments sum of squares since they will be counted in the between-blocks
sum of squares.
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18.3.2 Steps in the analysis

Suppose that there are 2n−p units per block and so 2p blocks per replication and 2pr blocks
altogether.

1. Calculate a total sum of squares on N − 1 degrees of freedom, where N = 2nr.

2. Calculate a between-blocks sum of squares from the block totals on 2pr − 1 df.

3. Calculate an individual sum of squares for each required effect (e.g. for main effects and two-
way interactions). You can use the relevant parts of the sign table or use Minitab, including
only the required terms in the model.

4. Calculate the residual sum of squares and its df by subtraction. The residual will include
interactions which are not confounded but regarded as negligible.

18.3.3 Checks and shortcuts in design

Principal block Define the principal block to be the fraction of the design which contains the
treatment combination (1).

1. A treatment combination in the principal block and a confounded interaction always have
an even number of letters in common.

For example, consider the designs in 18.2.2.

2. The principal block is closed under “multiplication” (where a2 = b2 = c2 = · · · = 1). Hence,
if two members are known a third can be generated.

For example, consider block 1 in design 1 in 18.2.2. We see that bc× abd = acd.

3. All other blocks can be generated from the principal block by “multiplying” through by any
treatment combination not in the principal block.

For example, consider design 1 in 18.2.2. Block 2 is Block 1 multiplied by a. Block 3 is Block
1 multiplied by ab. Block 4 is Block 1 multiplied by b.

18.4 Example

Two replications of a 25 experiment, with factors A, B, C, D, E, are arranged in blocks of eight.
That is, each block is a quarter-replication and there are eight blocks. We would like to measure
and test all main effects and 2-way interactions.

Confounding: We need two contrasts to confound and these will imply a third by multiplication.
Suppose that we choose to confound ABCDE, which seems, at first glance, an obvious choice.

If we also choose a 4-way interaction, e.g. ABCD, then we will also confound a main effect, e.g.
E, since ABCDE × ABCD = E. If we choose a 3-way interaction, e.g. ABC, then we will also
confound a 2-way interaction, e.g. DE, since ABCDE × ABC = DE.

If we want to measure all main effects and 2-way interactions then we can not confound ABCDE.
It is better to pick two 3-way interactions which only share 1 symbol and then the third confounded
effect is a 4-way interaction.

Let us choose to confound ABC, CDE and therefore ABDE (= ABC × CDE).
The design (before randomisation) is therefore as follows.

Blocks ABC CDE
1, 5 + + c abc ad bd ae be cde abcde
2, 6 + − a b cd abcd ce abce ade bde
3, 7 − + ac bc d abd e abde acde bcde
4, 8 − − (1) ab acd bcd abe ace bce de

The data are as follows.
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Treat. Block Obs. Treat. Block Obs. Treat. Block Obs. Treat. Block Obs.
(1) 4 48.9 e 3 51.6 (1) 8 43.1 e 7 48.8
a 2 50.3 ae 1 54.6 a 6 39.6 ae 5 44.1
b 2 55.0 be 1 65.1 b 6 62.3 be 5 69.2
ab 4 61.4 abe 3 68.2 ab 8 60.6 abe 7 73.2
c 1 64.5 ce 2 57.4 c 5 46.7 ce 6 60.5
ac 3 50.4 ace 4 61.0 ac 7 56.1 ace 8 67.6
bc 3 51.5 bce 4 63.7 bc 7 57.8 bce 8 60.9
abc 1 67.5 abce 2 74.0 abc 5 66.3 abce 6 79.0
d 3 62.8 de 4 49.6 d 7 61.2 de 8 57.7
ad 1 66.6 ade 2 46.4 ad 5 68.6 ade 6 44.1
bd 1 60.8 bde 2 59.2 bd 5 67.8 bde 6 57.7
abd 3 73.6 abde 4 57.2 abd 7 58.6 abde 8 68.0
cd 2 65.3 cde 1 66.9 cd 6 55.1 cde 5 56.9
acd 4 55.5 acde 3 61.7 acd 8 67.2 acde 7 61.9
bcd 4 53.7 bcde 3 70.0 bcd 8 52.1 bcde 7 55.8
abcd 2 65.7 abcde 1 77.2 abcd 6 70.0 abcde 5 75.3
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18.5 Partial confounding (a brief introduction)

When an experiment which involves confounding is replicated more than once, we need not con-
found the same interactions in each replication.

Example A 23 experiment with 4 replications, in 8 blocks.

Replication Block Treatment combinations Confounds
1 1 (1) ab ac bc ABC

2 a b c abc
2 3 (1) ab c abc AB

4 a b ac bc
3 5 (1) ac b abc AC

6 a c ab ac
4 7 (1) bc a abc BC

8 b c ab ac

Note that we would randomize the order of treatment combinations within blocks and the
order of the blocks.

The analysis is similar to that for completely confounded designs, but main effects and inter-
actions can only be estimated from replications in which they are not confounded.

An advantage of partial confounding is that more effects can be measured and tested. In
experiments with very small block sizes (e.g. 2) this technique is essential.

The major disadvantage is that, although more effects are measured, each is measured from
fewer observations and therefore with less precision.

19 Fractional Replication

19.1 Introduction

In large factorial experiments (n ≥ 6) even a single replication may cause difficulties by its size.
Fractional replication sometimes allows us to use only a fraction (2−p) of a full replication and still
retain all important information.

19.2 Illustration 1

This example is not suitable for use in practice but it shows the principles and consequences of the
technique.

Consider a 23 experiment on 4 experimental units. Suppose that we choose to use only the
treatment combinations for which ABC gets +, that is a, b, c, abc.

The sign table is as follows. The constant I is included to help to clarify what is happening.

Effect
I A B AB C AC BC ABC

a + + − − − − + +
b + − + − − + − +
c + − − + + − − +

abc + + + + + + + +

Aliases : A glance at this table shows that some effects have identical contrasts. Two effects
which have exactly the same contrast are said to be aliases (or to be aliased with each
other). Clearly, if two effects are aliases, we can not distinguish one from the other.

Looking at the table we see that

• C and AB are aliases,
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• B and AC are aliases,

• A and BC are aliases

We also see that ABC gets a + everywhere, the same as I. So ABC can not be measured.

In a full replicate, there are 2n treatment combinations and, if we include the 1 df associated
with the constant I, there are 2n df. Because we are using a half-replicate, the number of
degrees of freedom, including the 1 df for the constant (I), is halved. Therefore one effect
(indicated by the defining contrast) becomes unmeasurable and every other effect becomes
aliased with another.

Defining contrast : Because the signs for ABC are the same as those for I, we say that the
defining contrast of this half-replicate is ABC ≡ I.

Note that the complementary half-replicate

(1) ab ac bc

has defining contrast ABC ≡ −I, (since the signs for ABC are minus those for I). The aliases in
this half-replicate are effectively the same except for a sign change, i.e. A ≡ −BC, B ≡ − AC, C
≡ − AB.

The choice of which half-replicate to use would usually be made at random.

19.3 Illustration 2 (more practical)

Consider a 26 experiment on 32 units. This is a half-replicate. The 3-way and higher-order
interactions are assumed to be negligible.

Consider using the defining contrast ABCDEF = I. (That is, we use those treatment effects
where the contrast for the 6-way interaction ABCDEF gets a +. A moment’s thought shows that,
since 6 is even, we must use those treatment combinations which have symbols containing an even
number of the letters a, b, c, d, e, f). The treatment combinations used would be as follows.

(1) ab ac ad ae af bc bd
be bf cd ce cf de df ef

abcd abce abcf abde abdf abef acde acdf
acef adef bcde bcdf bcef bdef cdef abcdef

We can find an alias by “multiplying” through the defining contrast. For example:

I ≡ ABCDEF
A× I ≡ A×ABCDEF

A ≡ BCDEF

Similarly, every main effect will be aliased with a 5-way interaction.
Each 2-way interaction is aliased with a 4-way interaction. For example:

AB× I ≡ AB×ABCDEF
AB ≡ CDEF

Hence, if all 4-way, 5-way and 6-way interactions are negligible, we can measure all main effects
and 2-way interactions. If the 3-way interactions are also negligible, these can be pooled to form
a residual sum of squares on 10 df. (There are twenty 3-way interactions but they are aliased in
pairs so there are only ten contrasts).
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19.4 Outline of analysis

1. Calculate the total sum of squares from all observations (in Illustration 2 there are 31 df).

2. Calculate the non-negligible effects directly, e.g. using a sign table. Check that none is aliased
with another non-negligible effect. (In Illustration 2 there are 6 main effects and 15 two-way
interactions and these require 21 df).

3. Calculate the residual sum of squares by subtraction. (In Illustration 2 this has 31− 21 = 10
df).

19.5 Example

Consider a half-replication of a 24 experiment with factors A, B, C, D. We are interested in the
main effects and the AC interaction. All other interactions are considered to be negligible. We can
use the defining contrast

ABCD ≡ I

Then each main effect is aliased with a 3-way interaction. The 2-way interaction of interest is
aliased with BD. In fact

AB ≡ CD
AC ≡ BD
AD ≡ BC

So, we could measure all three of the 2-way interactions involving any one factor (provided we
could consider the others to be negligible). However this would leave no degrees of freedom for the
residual.

The treatments and observations are as follows.

(1) ab ac bc ad bd cd abcd
2.65 4.00 2.57 2.81 3.45 3.26 1.86 3.62
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19.6 Smaller fractions

It is possible to have 1/4-replicates, 1/8-replicates etc. For a 2−p-replicate of a 2n experiment (a
“2n−p design”), we need p defining contrasts to define the fraction used (e.g. for a 1/2-replicate
we need one defining contrast, for a 1/4-replicate we need two and so on). However care must be
taken in choosing the defining contrasts since any two will imply a third which can be found by
multiplication. This lead to 2p − 1 defining contrasts in total. For example, using ABCD ≡ I and
BCDE ≡ I would imply AE ≡ I. This third defining contrast would mean that main effects A and
E would be aliased.

The general principles for the analysis remain the same.

19.7 Final comments

We can construct designs involving both fractional replication and confounding. For example, we
could have a half-replicate of a 26 experiment split between two blocks of 16 experimental units
each.

We can also have 3n experiments, where each factor has three levels and we might use 1/3-
replicates etc.

There is much more that can be said about experimental design but that is all we have room
for in this module.
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