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13 The Cox proportional hazards model

13.1 Introduction

In the Weibull proportional hazards model (Section 12.1) we assumed

• that the hazard function hi(t) = φih0(t) where h0(t) is the baseline hazard and φi depends
on the covariate values for individual i but not on t, i.e. that we have proportional hazards.

• that the baseline hazard h0(t) = λγtγ−1, i.e. that we have a Weibull distribution (given any
particular set of covariate values).

Now we will consider a model which retains the proportional hazards assumption but makes
no assumption about the form of the baseline hazard. Because we are not assuming a particular
form for the lifetime distribution but we are assuming that

hi(t) = φih0(t)

where
φi = exp(ηi) and ηi = β1xi1 + · · ·+ βpxip,

this is described as a semi-parametric model.
The model was first introduced by Cox (1972) and has come to be known as the ‘Cox regression

model.’ (It’s also sometimes described simply as ‘proportional hazards regression.’) It’s probably
the most widespread model used for survival analysis.

13.2 Likelihood with no censoring

Note that what we call the “likelihood” in what follows is really a partial likelihood because we
condition on the observed death times.

We now have a model with parameters β1, . . . , βp and the proportional hazards assumption. In
order to estimate the model parameters we need to write down a likelihood function. Let’s assume
for the present that there is no censoring, and that there are no ties in the death times. (This last
assumption is important and we will return to it.) If we assume the death times are ordered (as
in our usual notation) we therefore have a list:

t1 < t2 < · · · < tn.

• The set of covariates for individual i is denoted xi.

• The set of indices of death times is D.

With no censoring D = {1, . . . , n}.

• The size of D is nD.

(With no censoring, nD = n).

• The set of individuals alive and uncensored the instant before ti is denoted Ai.

• Following our usual notation there are Ni individuals in the set Ai.

• With the individuals ordered according to their times and no censoring, we have Ai =
{i, i+ 1, . . . , n}.

Since we are saying nothing about the form of the baseline hazard, we condition on the fact that
one death occurred at time ti. We therefore consider the probability Li that the i-th individual
dies at ti, conditional on ti being one of the death times:
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Li = Pr(individual with covariates xi dies at ti | ti is a death time)

=
Pr(individual with covariates xi dies at ti)

Pr(ti is a death time)

=
Pr(individual with covariates xi dies at ti)∑

j∈Ai
Pr(individual with covariates xj dies at ti)

The summation in the denominator uses the assumption that there are no ties: we’re evaluating the
probability that any of the individuals j ∈ Ai die at ti by assuming deaths are independent. Now,
the two lines in the equations above aren’t quite right technically: the probability of an individual
dying at any given instant is zero (if we’re dealing with continuous probability distributions). To
make sense of this we work on an interval [ti, ti + δt) for small δt and consider the limit as δt→ 0:

Li = lim
δt→0

Pr(individual with covariates xi dies on [ti, ti + δt))∑
j∈Ai

Pr(individual with covariates xj dies on [ti, ti + δt))

=
hi(ti)∑

j∈Ai
hj(ti)

=
φi∑

j∈Ai
φj

=
exp(βTxi)∑

j∈Ai
exp(βTxj)

.

The (partial) likelihood is just the product of these terms:

L(β) =
∏
i∈D

exp(βTxi)∑
j∈Ai

exp(βTxj)
.

You can see this equation does not depend on how we ordered the individuals (it’s just that if we
drop the ordering assumption, Ai doesn’t have such a tidy form). Above all, however, notice that
the formula does not depend on the exact death times, just the order in which they occur.

Because we have had to condition on the death times, which, in turn, is because we have not
said anything about the form of h0(t), the expression above is not a true likelihood but is described
as a partial likelihood. The partial likelihood L is maximised to estimate the parameters β1, . . . , βp
given the data in the covariates xi, i = 1, . . . , n.
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13.3 Right censoring

If an individual’s survival time is right-censored at time t∗i then that individual appears in the risk
set Aj at all death times less than t∗i but, because we do not give a form for h0(t), it does not make
any other contribution to the partial likelihood. So when we have a set of death times indexed by
the set D and right-censored times indexed by R with D ∪ R = {1, 2, . . . , n} then the likelihood
formula is:

L(β) =
∏
i∈D

exp(βTxi)∑
j∈Ai

exp(βTxj)
.

In other words, it’s exactly the same as above (it’s just that D is no longer the whole set of times).
This can also be written as:

L(β) =

n∏
i=1

(
exp(βTxi)∑

j∈Ai
exp(βTxj)

)δi
where δi is an indicator variable, δi = 1 when i ∈ D and zero otherwise.

13.4 Ties

Although, in theory, ties should not occur (when we work with continuous life time random vari-
ables), they do occur in practice because time is not usually recorded sufficiently precisely to
distinguish death times which are close together (e.g. same day).

Ties of censored observations do not cause problems. Censored observations which occur at the
“same time” as a death are assumed to occur “just after” the death so that the censored individuals
appear in the risk set.

When two or more death times are tied, this is more of a problem. Various formulae have been
proposed. Most of these use approximations to the exact conditional probability that all of the
tied deaths occur before censored times of the same value and before the next death time. For
further comments see the book by Collett for example. The most common method used is that
due to Breslow: the idea is you average over all the possible sequences of the tied death times.
However, R uses the method due to Efron. This can be computationally intensive, and if you find
your models are taking a long time to fit, it might be worth changing to the Breslow method: look
at help(coxph) to see how to do it.

13.5 Fitting Cox models in R

This is carried out using the coxph function. It’s very similar to using the survreg function, except
you get the estimates of the model coefficients out directly without having to do any additional
calculations. For example:

> s <- coxph(formula =

Surv(time, cens)~ascites+logbilirubin, data=my.data)

> s

coef exp(coef) se(coef) z p

ascites 1.244 3.47 0.285 4.36 1.3e-05

logbilirubin 0.994 2.70 0.112 8.84 0.0e+00

Likelihood ratio test=119 on 2 df, p=0 n= 250

> s$loglik

[1] -504.1208 -444.7277

The maximized log partial likelihood is the second term in the vector in the last line above. You
can use it to carry out hypothesis tests just as we described in section 12.3. The numbers in the
column labelled coeff are β1 and β2.
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13.6 Writing down likelihood functions

In the theory above the notation we adopted assumed that the individuals were ordered according
to their death times. When we drop this assumption the formulae for the (partial) likelihood
remain the same, but the sets Ai will change. Recall that Ai is the set of indices of individuals
who are alive and uncensored at time ti so that

Ai = {j : tj ≥ ti}.

The following example shows how to write down the likelihood when the death times are not
ordered.
Example: Suppose we have survival data on just five individuals as follows.

Individual i 1 2 3 4 5
Survival time 6 7* 2 8 4*

where * indicates a right censored time. Also suppose we model these data using a Cox proportional
hazards model, so that the hazard function for individual i is hi(t) = φih0(t). Write down the Cox
partial likelihood in terms of the parameters φi.

Individual

1

2

3

4

5

×

e
×

×

e

t2t1 t3
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At t1 the risk set contains all five subjects.
At t2 the risk set contains subjects 1, 2, 4.
At t3 the risk set contains only subject 4

The partial likelihood is therefore

φ3
φ1 + φ2 + φ3 + φ4 + φ5

× φ1
φ1 + φ2 + φ4

× φ4
φ4
.

14 Confidence intervals for regression coefficients and haz-
ard ratios

The maximum likelihood estimates of the coefficients β can be taken to be approximately normally
distributed (under a large sample assumption). R gives a standard error for each parameter in a
Cox model. (These errors are harder to obtain in R for parametric models). Look back at the last
lecture where we fitted a Cox model to some data in R. The standard error of the coefficient for
ascites is 0.285, and the standard error for the coefficient for log bilirubin is 0.112. Suppose the
estimate of the coeffient β of log bilirubin is β̂ and its standard error is s. Then an approximate
95% confidence interval for β is β̂ ± 1.96 × s. Using the data from the last lecture this becomes
0.994± 1.96× 0.112, ie. [0.77, 1.21].

Confidence intervals for hazard ratios can be obtained in an analogous fashion. The hazard
ratio for two individuals A and B is:

hA
hB

=
exp

(
βTxA

)
exp

(
βTxB

)
If the individuals are identical apart from in one covariate x, this ratio becomes

hA
hB

=
exp (βxA)

exp (βxB)
= exp (β(xA − xB)) .

A 95% confidence interval for this ratio is therefore

exp
(

(β̂ − 1.96× s)(xA − xB)
)
, exp

(
(β̂ + 1.96× s)(xA − xB)

)
.

Using the data above, suppose we want to calculate a confidence interval for the hazard ratio
between two individuals whose log bilirubin differs by 0.5, but who are identical in all other ways.
The confidence interval is

[exp (0.5× (0.994− 1.96× 0.112)) , exp (0.5× (0.994 + 1.96× 0.112))].

The interval is [1.47, 1.83], so the difference of 0.5 in log bilirubin gives a hazard ratio significantly
different from unity.

For hazard ratios involving more than one parameter (eg. compare two individuals with different
bpd and different smoking status) the covariances of the β parameters need to be taken into
account, and this lies beyond the scope of these lectures.
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Example

A Cox proportional hazards model was used to model the survival times of cancer patients. Tumour
size (in mm) was included as a covariate, with coefficient β. The maximum likelihood estimate of

β was β̂ = 0.0176 with standard error 0.004. Find an estimate of the hazard ratio between two
individuals with tumours measuring 46mm and 37mm who are identical in other ways. Construct
a 95% CI for the hazard ratio.

Hazard ratio:

e46β

e37β
= e9β .

Estimate:

e9β̂ = e0.162 = 1.176.

95% confidence interval for β : 0.0176± 1.96× 0.004
That is: 0.01016 < β < 0.02584.
95% confidence interval for hazard ratio:

1.096 < e9β < 1.262

Miscellaneous proportional hazards question

Suppose the life times for n individuals are modelled in such a way that individual i is assumed to
have survivor function

Si(t) =
1

(1 + t)αi

where α1, . . . , αn are positive constants. Show that this constitutes a proportional hazards model.
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Distribution function:

Fi(t) = 1− Si(t) = 1− (1 + t)−αi

Probability density function:

fi(t) =
d

dt
Fi(t) = αi(1 + t)−(αi+1)

Hazard:

hi(t) =
fi(t)

Si(t)
=
αi(1 + t)−(αi+1)

(1 + t)−αi
=

αi
1 + t

Similarly

hj(t) =
αj

1 + t

Hence

hi(t)

hj(t)
=
αi
αj

= ψij

which does not depend on t.

15 Accelerated life models

15.1 Introduction

Proportional hazards models are not the only way to relate survival to covariates. The most
important alternative to proportional hazards is an accelerated life model (sometimes called an
accelerated failure time model). As in proportional hazards, in an accelerated life model there is
a different survivor function for each individual. Instead of scaling the hazard function, however,
accelerated life models scale time in the following way. We assume some underlying baseline
survivor function S0(t) and assume that the survivor function for individual i is of the form

Si(t) = S0(φit)

where φi is a positive constant called the acceleration factor for individual i. As we did for
proportional hazards models, we can make the constants φi depend on the covariates for each
individual. Together the baseline S0 and constants φi specify the model.

In an accelerated life model time effectively ‘runs faster’ for some individuals compared to
others. Consider the following example. Suppose that we have two groups and for group 1 we take
φ1 = 1 while for group 2 we take φ2 = 2. It follows that

S2(t) = S1(2t)
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or in other words ‘time runs twice as fast for group 2 as group 1’. Note that if the median survival
time for group 1 is t1, then the median for group 2 is t2 = 1

2 t1.

Suppose that t1(α) and t2(α) are the 100α percentiles for two individuals with acceleration
factors φ1, φ2. Then

S1[t1(α)] = S2[t2(α)] = 1− α

so
S0[φ1t1(α)] = S0[φ2t2(α)].

The two arguments are therefore equal:

φ1t1(α) = φ2t2(α)

and so
t2(α) = (φ1/φ2)t1(α).

We can relate the distribution function, density function, and hazard function for each individ-
ual i to the baseline quantities.

Since Si(t) = S0(φit), it follows that

Fi(t) = F0(φit)

where F0(t) = 1− S0(t) is the baseline distribution function. Now,

fi(t) =
d

dt
Fi(t) =

d

dt
F0(φit) = φiF

′
0(φit) = φif0(φit).

The hazard function for individual i is

hi(t) = fi(t)/Si(t) = φif0(φit)/S0(φit) = φih0(φit).

You might find it useful to back-track in your notes at this point, and look at the equivalent rela-
tionships for proportional hazards models.
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Typical question:
Suppose that we have a model in which the hazard function for individual i is assumed to be

of the form
hi(t) =

ρi
1 + ρit

.

Show that this constitutes an accelerated life model.

We obtain:

Hi(t) =

∫ t

0

ρi
1 + ρis

ds = log(1 + ρit)

so

Si(t) = exp[−Hi(t)] =
1

1 + ρit

It follows that

Si(t) = S0(ρit)where S0(t) =
1

1 + t
.

This is an accelerated life model.

15.2 Covariates

Covariates are incorporated in exactly the same way as for proportional hazards models, namely
by making the constants φi depend on the covariates in the following way:

φi = exp(β1xi1 + β2xi2 + · · ·+ βpxip)

where xi1, . . . , xip are the covariates for individual i and β1, . . . , βp are coefficients that must be
estimated.

The next two subsections explain how the Weibull and log-logistic distributions can be used to
construct parametric accelerated life models.

15.3 The Weibull accelerated life model

A life time random variable with Weibull distribution has survivor function

S(t) = exp(−λtγ).

An accelerated life model is defined by taking

Si(t) = exp[−λ(φit)
γ ]

for fixed λ and γ (which specify the baseline) and some positive constants φ1, . . . , φn. The baseline
survivor function is S0(t) = exp(−λtγ). Then

Si(t) = exp[−λφγi t
γ ]

and this is a Weibull survivor function for each i.
Now if this all seems very similar to the Weibull proportional hazards model, that’s because

it’s the same up to re-parameterization. Let φi, βj denote the linear predictor and coefficients in

the accelerated life model, and let φ̃i, β̃j be the same objects in the proportional hazards model.
In the Weibull proportional hazards model we had

hi(t) = φ̃ih0(t) = φ̃iλγt
γ−1
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so that
Si(t) = exp[−φ̃iλtγ ].

If we take
φγi = φ̃i

then the proportional hazards and accelerated life models are identical. The coefficients are then
related by

φγi = exp[γ(β1xi1 + . . .+ βpxip)] = exp[β̃1xi1 + . . .+ β̃pxip] = φ̃i

so that
γβj = β̃j

for j = 1, . . . , p. This shows that the two models are identical up to a reparameterization of
the coefficients. No distribution except the Weibull distribution (and hence also the exponential
distribution) has this property.

15.4 The log-logistic accelerated life model

For the log-logistic distribution

S(t) =
1

1 + (ρt)γ
.

If we take ρi = φiρ then this defines an accelerated life model with baseline

S0(t) =
1

1 + (ρt)γ
.

and Si(t) = S(φit).
The baseline hazard is

h0(t) =
γργtγ−1

1 + (ρt)γ
,

so the relation hi(t) = φih0(φit) gives

hi(t) =
γργφγi t

γ−1

1 + (ρφit)γ
.

We do not have hi(t) = const× h0(t) so the model is not a proportional hazards model.
Refering back to Section 8.4 of the notes, the log linear representation for the log-logistic

distribution is

log Ti = − log(ρi) +
1

γ
logEi

= − log(ρ)− (β1xi1 + · · ·+ βpxip) +
1

γ
logEi

where the Ei are (standardized) error terms. R fits the log-logistic accelerated life model using
this representation: a call to survreg specifying dist="loglogistic" returns the scale = 1/γ,
intercept = − log ρ, and minus the β coefficients.

15.5 Q-Q plots

Suppose we have data from two groups (and no other covariates). We know from earlier that, if
an accelerated life model is appropriate, t2(α) = (φ1/φ2)t1(α) where ti(α) is the 100α percentile
for group i.

Now suppose that we obtain estimates t̂i(αk) for a number of percentiles (100α1, 100α2, . . .)
for each group, using e.g., Kaplan-Meier. Then, if we plot t̂2(αk) against t̂1(αk) for k = 1, 2, . . .
we should obtain, approximately, a straight line, passing through the origin, with gradient φ1/φ2.
This can be used to identify cases where an accelerated life model might be appropriate.

The plot is called a “percentile-percentile plot,” a “quantile-quantile plot” or simply a “Q-Q
plot.”
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15.6 More examples

1. Suppose that we have a model in which the hazard function for individual i is assumed to
be of the form

hi(t) = λi + µλ2i t

for some positive constant µ and positive constants λ1, . . . , λn. Show that this constitutes an
accelerated life model.

Cumulative hazard:

Hi(t) =

∫ t

0

λi + µλ2iu du

= λit+ µλ2i t
2/2 = (λit) + µ(λit)

2/2

Survivor function:

Si(t) = exp{−Hi(t)}
= exp{−(λit)− µ(λit)

2/2}
= S0(λit)

where
S0(t) = exp{−t− µt2/2}.

2. Suppose that h1(t) and h2(t) are the hazard functions for two individuals and that the
corresponding survivor functions are S1(t) and S2(t). Show that, if h1(t)/h2(t) = ψ ≥ 1,
then S1(t) ≤ S2(t) for all t.

Hazard: h1(t) = ψh2(t)

Cumulative hazard: H1(t) =
∫ t
0
ψh2(u) du = ψH2(t)

Survivor function: S1(t) = exp{−H1(t)} = exp{−ψH2(t)} = [S2(t)]ψ

At t = 0, S1(t) = S2(t) = 1.
At t > 0, S2(t) ≤ 1 (only equal to 1 if h(u) = 0 for u < t) so S1(t) ≤ S2(t) for ψ ≥ 1.
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Revision examples

1. A large number of individuals were enrolled in a study and were followed for 30 years to assess
the age at which a disease symptom first appeared. For ten selected individuals described
below, state the types of censoring they represent.

(a) The first individual, enrolled in the study at age 45, entered the study with the symptom
already present.

(b) The next two individuals enrolled in the study at ages 35 and 40 and never had any
symptoms.

(c) The next two individuals, enrolled in the study at ages 35 and 40, did not exhibit the
symptom when examined by a doctor 6 years after enrollment, but did exhibit the
symptom when examined 8 years after enrollment.

(d) The next two individuals, enrolled at ages 47 and 50, died of causes unrelated to the
disease (with no symptoms of the disease) at ages 61 and 65 respectively.

(e) The last three individuals, enrolled in the study at ages 36, 42, and 50, moved away
and were lost to follow-up at ages 40, 55, and 60 respectively, having never shown any
symptoms.

2. (a) A life time distribution has hazard function

h(t) = λ exp(θt).

Derive the corresponding survivor and density functions, and write down an expression
for the median survival time.

(b) A second life time distribution has hazard function

h(t) =
µ+ t

1 + t

where µ is a positive constant. Derive the corresponding survivor function.

3. An experiment was carried out over a period of years to measure the time between recurrence
of oral herpes (cold sores). 76 patients recovering from an outbreak were subsequently asked
by phone call whether they had suffered a recurrence. Calls were made at varoius time
intervals for 10 years. Some patients didn’t reply and so were lost to follow-up. From the
data below use the actuarial method to estimate the survivor function and hazard for the
time till recurrence.

Months Suffered recurrence Lost to follow-up

0 ≤ t < 12 5 0
12 ≤ t < 24 7 3
24 ≤ t < 36 12 5
36 ≤ t < 48 10 7
48 ≤ t < 60 8 7
60 ≤ t < 84 6 2
84 ≤ t < 120 3 1

4. An experiment leads to the following set of survival data:

6*, 29, 31, 38*, 42, 42, 43*, 44, 53, 58*, 63*, 85

where a * symbol indicates a right-censored time. Calculate the Kaplan Meier estimate of
the survivor function and hazard function. Construct a 95% confidence interval for S(50).
Obtain an estimate of the median survival time together with a 95% confidence interval.

72



5. The survival times of two groups of patients with a disease were recorded. The two groups
received different drug treatments and the survival times in months were as follows:

Drug A: 12, 18*, 22, 22, 23*, 27, 31, 36*
Drug B: 24, 25*, 27, 36*, 37, 48

Carry out a log-rank test of the null hypothesis that there is no difference in survival distri-
bution for the two groups. Note that

V =
∑
j

n1jn2jdj(nj − dj)
n2j (nj − 1)

= 1.55.

6. A disease has three identifiable stages, and survival times of patients suffering from various
stages of the the disease were recorded. Some times were right-censored (indicated by a ‘*’).
The times are given below.

Stage 1: 20, 27, 36*, 42*, 42*

Stage 2: 12, 15, 19, 21*, 25*, 27, 42*

Stage 3: 6, 8, 10*, 13, 15, 30*

Carry out the simplified version of the log-rank test to test the null hypothesis that the
distribution of survival time is independent of stage. Carry out a log-rank test for trend
with weights 3, 2, 1 to test same hypothesis but where the alternative consists of a trend with
stage. The test statistic is

UT =
∑
k

wk(Ok − Ek)

which has variance
VT =

∑
k

(wk − w̄)2Ek

where

w̄ =

∑
wkEk∑
Ek

= 2.23.

7. The survival times for patients in a study are given below. Those marked ∗ were right-
censored.

Female, non-smokers: 19, 22, 25*, 27, 30*, 31*

Female, smokers: 12*, 14, 16*, 18, 22*, 24*

Male, non-smokers: 16, 17*, 20, 22*, 23*, 28*

Male, smokers: 8, 9*, 14, 15, 16*, 19*

Carry out a stratified log-rank test to test the hypothesis that males and females have the
same life time distribution, using smoking status to define the strata.

8. A survival distribution has survivor function

S(t) =
1

(1 + λ2t2)
1
2

.

Suppose we are given a set of survival times t1, . . . , tn, some of which are right-censored. The
sets D and R are defined such that, if i ∈ D then the failure time ti is observed and, if i ∈ R
then the observation is right censored. There are nD observed failures and nR right-censored
observations, so that nD + nR = n. Write down the likelihood function the model defined
above given these data. Obtain and simplify the log likelihood function.

9. Suppose that in a survival analysis of n individuals we model the survivor function for
individual i as

Si(t) = S0(t)αi

where S0(t) is a baseline survivor function and αi are positive constants i = 1, . . . , n. Show
that this constitutes a proportional hazards model.
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10. A Cox proportional hazards model was used to model the survival times of lymphoma pa-
tients. White blood cell count was included as a covariate, with coefficient β. The maximum
likelihood estimate of β was β̂ = 0.453 with standard error 0.104. Find an estimate of
the hazard ratio between two individuals with white blood cell counts 15 and 10 who are
indentical in other ways. Construct a 95% CI for the hazard ratio.

11. A survival analysis was carried out as part of a study of time to re-offence for released
prisoners in the UK. The age and sex of each individual in the study was recorded and used
to define the following covariates. x is a binary variable taking value 1 if the individual is
female and zero otherwise. a is the age (in years) of the individual. A Weibull parametric
proportional hazards model was used to analyse the data. A null model, with no covariates,
and models with each of the covariates alone and with both together were fitted by maximum
likelihood. The resulting values of logL, where L is the maximised likelihood, were as follows.

Model logL
null -140.350
x -139.094
a -137.843
x, a -137.577

Use suitable tests to compare these models and state your conclusions about the evidence
for the effects of the covariates.

12. Suppose we have survival data on six individuals as follows.

Individual i 1 2 3 4 5 6
Survival time 25 12* 19 28 21* 35*

where * indicates a right censored time. Also suppose we model these data using a Cox pro-
portional hazards model, so that the hazard function for individual i is hi(t) = φih0(t). Write
down the Cox partial likelihood in terms of the parameters φi and simplify the expression.

13. Suppose that we have a model in which the hazard function for individual i is assumed to
be of the form

hi(t) =
µit

1 + µit2

for some positive constant µ and positive constants µ1, . . . , µn. Show that this constitutes
an accelerated life model.
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