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11 Incorporating covariates: proportional hazards models

Up to this stage of the course we have generally not had information for each individual other
than the survival time and censoring status ie. we have not considered information such as the
weight, age, or smoking status of individuals, for example. These are referred to as covariates or
explanatory variables.

For the remainder of the course we will be considering how to incorporate covariates into our
analysis. In this way, for example, individuals with different ages / weights / smoking status will
be modelled via different (but related) life time distributions. In addition, we will be able to make
decisions about the life time of an individual based on their covariate values (ie. ages, weight, etc).

The are essentially two simple ways to incorporate covariates:

• Proportional hazards models (which are very commonly used).

• Accelerated life models (which are used more rarely).

11.1 Proportional hazards models

Suppose we have individuals i = 1, . . . , n in a study, and for each one we record a set of covariates
xi1, xi2, . . . , xip. For example xi1 could be the weight of individual i and xi2 the body mass index
(BMI). We denote the hazard function of individual i by hi(t). Note that previously we have
generally had a single hazard function that we used for all individuals. In a proportional hazards
model we assume that for any two individuals i, j the hazards are related by

hi(t) = ψij × hj(t)

where ψij is a constant that does not depend on t. Usually this assumption is written slightly
differently (but equivalently) as

hi(t) = φi × h0(t)

for a constant φi where h0(t) is the baseline hazard function. The constants φi depend on the
covariates. In other words, every individual has a hazard function that is a constant multiple of
the underlying baseline hazard, where the constant of proportionality depends on the covariates.
Example:

Suppose we have a very small study with just 4 individuals and 2 covariates:

Individual Smoker? Weight
1 Yes 70kg
2 No 65kg
3 Yes 82kg
4 Yes 87kg

52



Then, for example, we might assume a Weibull baseline hazard

h0(t) = λγtγ−1

and then a proportional hazards model, so that

hi(t) = φi × h0(t) = φi × λγtγ−1

for individuals i = 1, 2, 3, 4 where φi depends in some way on the smoking status and weight.

The next question is: how can we make the constants φi depend on the covariates. This is done
using the following linear approach. We let

φi = exp(ηi), where

ηi = β1xi1 + β2xi2 + · · · + βpxip

=

p∑
k=1

βkxik

= βTxi

for some constants β1, . . . , βp. We call ηi the linear predictor for individual i. It is also referred
to as the risk score or prognostic index.
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For the study above there are two covariates for each individual:

xi1 =

{
1 if smoker

0 if non-smoker

xi2 = weight in kg of individual i.

We might decide that β1 = 0.7 and β2 = 0.008 in which case

hi(t) = h0(t) × exp(0.7 × xi1 + 0.008 × xi2).

Then for example
h1(t) = h0(t) × exp(0.7 × 1 + 0.008 × 70).

Note that it might be the case that no individual in the study may actually have the same
hazard function as the baseline (although this may happen). In the example above the baseline
corresponds to the hazard experienced by an individual who is a non-smoker and who has zero
weight! The baseline hazard function is only used in relative terms in order to obtain a hazard
function for any given individual.

Why is this sort of model sensible? First, changes in the explanatory variables multiply the
hazard. Secondly, the addition of the covariates in the linear expression means that they affect the
hazard independently.

For example, using the information above, suppose we have 2 individuals who have the same
weight w, one of whom is a smoker and the other a non-smoker. Then the hazards are related by:

hsmoker(t)

hnon-smoker(t)
= exp(β1) = e0.7 ≈ 2.

In other words the hazard is twice as large for a smoker than a non-smoker at the same weight.
Similarly, we can consider how changes in one covariate affect the hazard: eg. suppose

η1 = β1x11 + β2x12 + · · · + βpx1p

η2 = β1(x11 + δ) + β2x12 + · · · + βpx1p

so that individual 2 is identical to individual 1 except that x11 is changed by an amount δ. Then

h2(t)

h1(t)
=
h0(t) exp(η2)

h0(t) exp(η1)
= exp(β1δ).

For example if β2 = 0.008 and xi2 is the weight in kilos of each individual, then the hazard scales
by exp(0.08) = 1.08 for every 10kg of weight you put on.

More generally, if we consider individuals i, j with covariates

xi1, xi2, . . . , xip and xj1, xj2, . . . , xjp

then

hi(t)

hj(t)
=
h0(t) exp(ηi)

h0(t) exp(ηj)

= exp[β1(xi1 − xj1) + β2(xi2 − xj2) + · · · + βp(xip − xjp)].
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11.2 Algebraic relationships

Under the proportional hazards assumption the following algebraic relationships hold:

Hazard function:

hi(t) = h0(t) × eηi

Cumulative hazard:

Hi(t) =

∫ t

0

h0(t) exp(ηi)dt = H0(t) exp(ηi)

Survivor function:

Si(t) = exp[−Hi(t)]

= exp[−H0(t)eηi ]

= [S0(t)]
exp(ηi)

Distribution function:

Fi(t) = 1 − [S0(t)]
exp(ηi)

Density function:

fi(t) = h0(t)eηi [S0(t)]
exp(ηi)

The survivor functions of two individuals i, j are related in the following way:

Si(t) = [S0(t)]
exp(ηi) and Sj(t) = [S0(t)]

exp(ηj)

so
[Si(t)]

exp(ηj) = [Sj(t)]
exp(ηi)

which gives

Si(t) = [Sj(t)]
exp(ηi−ηj)
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11.3 Factors

In the examples above we saw two kinds of covariate:

• Continuous covariates eg. age, weight, BMI

• Indicator variables / logical covariates eg. smoking status, sex

Smoking status and sex are examples of factors. These could only take two values but some factors
can take more than two values. A factor is a covariate that can adopt a finite number of values
which are categorical rather than numerical (even though sometimes they may be given numbers
as labels)..

Example: In the project “Operation Type” (optype), “Change of Activity” (ca) and “Exercise
Grade” (enow) are factors. “Operation Type” can take three values as can “Change of
Activity”. Notice that, in the case of “Change of Activity”, there is a natural ordering with
“No change” coming in between “Decrease” and “Increase”. This is not always the case and
there is not really any obvious natural ordering of the Operation Types (although, in fact,
they were ordered in time). In the case of “Exercise Grade” there are five ordered values.
It is typical to represent the level of fitness of an individual by a factor. So, in this case,
“Exercise Grade” has 5 different values 0, 1, 2, 3, 4 where 0 means unfit and 4 means fit.

The different values adopted by a factor are called levels. In the exercise grade example, the
factor has 5 different levels. Note that an indicator covariate is a factor with 2 levels.

One way to incorporate factors into an analysis is as follows. We pick one level as the baseline
(eg. exercise grade 0) and introduce a logical variable for the remaining levels.
Example: Let

xi1 =

{
1 if individual i has exercise grade 1

0 if individual i does not have exercise grade 1

and define xi2, xi3, xi4 similarly to indicate grades 2, 3, and 4 respectively. We then incorporate
the covariates xi1, xi2, xi3, xi4 into our model as normal, using coefficients β1, β2, β3, β4.

An alternative method which pays more attention to the ordering would be to define logical
variables as follows, where zi is the numerical value of the exercise grade for patient i..

xi1 =

{
0 (zi = 0)
1 (zi ≥ 1)

xi2 =

{
0 (zi < 2)
1 (zi ≥ 2)

xi3 =

{
0 (zi < 3)
1 (zi ≥ 3)

xi4 =

{
0 (zi < 4)
1 (zi = 4)

As you can see from the example, a factor with k levels introduces k − 1 coefficients into a
model. If you include such a factor in a model in R, the output gives the value of the k − 1
coefficients. Here’s the output for an example involving “disease stage”, treating disease stage as
a continuous covariate:

> survreg(Surv(my.data$time, my.data$cens)~my.data$stage)

Coefficients:

(Intercept) my.data$stage

10.5120199 -0.6786783

Scale= 0.8280779

Loglik(model)= -1162.9 Loglik(intercept only)= -1188.8

Chisq= 51.7 on 1 degrees of freedom, p= 6.5e-13
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Here’s the output treating disease stage as a factor:

> survreg(Surv(my.data$time, my.data$cens)~factor(my.data$stage))

Coefficients:

(Intercept) factor(my.data$stage)2 factor(my.data$stage)3

10.291537 -1.302207 -1.750934

factor(my.data$stage)4

-2.512294

Scale= 0.8272852

Loglik(model)= -1162.3 Loglik(intercept only)= -1188.8

Chisq= 52.97 on 3 degrees of freedom, p= 1.9e-11

While the disease stage could be incorporated either as a factor or continuous variate, there is
no particularly good reason to assume the change in hazard from stage 1 to 2 is the same as the
change in hazard from stage 3 to 4 (for example). Representing disease stage as a factor rather
than a continuous covariate allows a model to have different changes in hazard between the disease
stages (similarly exercise grades).

12 More on proportional hazards models

In the last section we introduced the theory behind proportional hazards models and how to
incorporate covariates with them. The main idea missing was any discussion of how we might go
about estimating the coefficients β1, . . . , βp. The next two sections explain how this is done, first
for parametric proportional hazards models, and then for the semi-parametric Cox model.

12.1 The Weibull parametric proportional hazards model

In the last section we saw a PH (proportional hazards) model for which the underlying baseline
hazard was Weibull:

hi(t) = φih0(t)

where

φi = exp ηi = expβTxi,

h0(t) = λγtγ−1.

This is a parametric proportional hazards model, since we are assuming a parametric form for the
baseline hazard. Note that the hazard function for the i-th individual is another Weibull hazard,
but with λi = φi × λ and γi = γ. Obviously, this is no use to us unless we can estimate the
parameters in the model: given a set of survival data (with possible right-censoring) we want a
way to estimate the coefficients β as well as the parameters λ and γ.

This can be carried out via maximum likelihood estimation, just like we did in the case with no
covariates. In practice, of course, we use R (or another software package) to do this, and we need
to understand what R does. Recall that in the case of no covariates we used a transformation of
the form

log T = − 1

γ
log λ+

1

γ
logE

for a Weibull life time random variable with parameters λ and γ. Under the Weibull PH model,
we have a life time random variable Ti for each individual i = 1, . . . , n with parameters λi = φi×λ
and γi = γ. This gives

log Ti = − 1

γi
log λi +

1

γi
logEi
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where Ei ∼ exp(1). Expanding λi and γi leads to

log Ti = − 1

γ
log λ− 1

γ
log φi +

1

γ
logEi

= − 1

γ
log λ− 1

γ
(β1xi1 + · · · + βpxip) +

1

γ
logEi.

The R function survreg carries out maximum likelihood estimation via this transformation. It
uses the following parameterization:

log Ti = µ+ (α1xi1 + · · · + αpxip) + σ logEi

where

µ is called the intercept,

σ is called the scale, and

α1, . . . , αp are the coefficients.

To recover the parameters β, λ, γ you therefore use

γ = σ−1

λ = exp(−µ/σ)

β = −σ−1α.

Example: Fitting a Weibull parametric model. We can fit a model including the patient log
bilirubin and presence of ascites as covariates:

s <- survreg(formula = Surv(time, cens) ~ ascites+logbilirubin,

data=my.data, dist="weibull")

> summary(s)

Call:

survreg(formula = Surv(time, cens) ~ ascites + logbilirubin,

data = my.data, dist = "weibull")

Value Std. Error z p

(Intercept) 8.790 0.1056 83.27 0.00e+00

ascites -0.925 0.1659 -5.57 2.52e-08

logbilirubin -0.652 0.0623 -10.47 1.20e-25

Log(scale) -0.408 0.0725 -5.62 1.88e-08

Scale= 0.665

Weibull distribution

Loglik(model)= -1110.5 Loglik(intercept only)= -1188.8

Chisq= 156.58 on 2 degrees of freedom, p= 0

12.2 Other parametric models

A key point above was that when we multiply the Weibull hazard function by a constant the result
is another Weibull hazard function with a different λ parameter. Consider what happens if we try
this with a log-logistic baseline:

h0(t) =
γρ(ρt)γ−1

1 + (ρt)γ
.

If we multiply h0(t) by a constant the result no longer has the log-logistic form. While you could
model data in this way, obviously it isn’t really a log-logistic model as only the baseline would have
the correct form. In fact, the log-logistic distribution can be used as an accelerated life model, as
we’ll see later.

Note that since the exponential distribution is just Weibull but with γ = 1, it forms a suitable
parametric PH model.
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12.3 Comparing nested models

As in a normal multiple linear regression, we can test the contributions of covariates to the model.
Specifically, we test the null hypothesis that the coefficients of some subset of the explanatory
variables are all zero. This applies to the Cox PH model as well as parametric PH models.

Suppose we fit a model with linear predictor

ηi = β1xi1 + · · · + βpxip.

We might then add a number of additional covariates xi,p+1, . . . , xi,p+r to give a second model
with

η′i = β1xi1 + · · · + βpxip + βp+1xi,p+1 + · · · + βp+rxi,p+r.

Let L and L′ be the maximum values of the likelihood for the two models. Then, under the null
hypothesis that

βp+1 = βp+2 = βp+r = 0,

we have approximately (ie. for large samples)

W = (−2 logL) − (−2 logL′) ∼ χ2
r

so we compare the statistic W with the upper tail of χ2
r.

Example: We can compare the Weibull model above with one which does not include log bilirubin:

> s <- survreg(formula = Surv(time, cens) ~ ascites,

data=my.data, dist="weibull")

> summary(s)

...

Loglik(model)= -1163.8 Loglik(intercept only)= -1188.8

Chisq= 49.89 on 1 degrees of freedom, p= 1.6e-12

This model has logL = −1163.8, whereas the model with log bilirubin too had logL′ = −1110.5.
In this case

W = 2 × 1163.8 − 2 × 1110.5 = 106.6

which, compared to χ2
1, is very significant.

12.4 Confidence intervals for hazard ratios

For large samples, the maximum likelihood estimates of the coefficients are approximately normally
distributed. This allows us to construct confidence intervals for hazard ratios.

Example:

Variable Estimated coefficient Std. Error

Sex (0: male, 1: female) β̂1 = 0.262 0.017

Age (years) β̂2 = 0.023 0.008

Find a 95% confidence interval for the hazard ratio for a 60-year-old female compared to a
40-year-old female.
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Hazard ratio:

R =
exp(β1 + 60β2)

exp(β1 + 40β2)
= e20β2

Point estimate:

R̂ = e20β̂2 = e20×0.023 = e0.46 = 1.584

Confidence interval for β2:

0.023 ± 1.96 × 0.008

That is
0.00732 < β2 < 0.03868

Confidence interval for hazard ratio:

e20×0.00732 < e20β2 < e20×0.03868

That is
1.158 < R < 2.168

Note that this calculation was based on the “β” coefficients, not the “α” coefficients.
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