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5 Uncertainty in the Kaplan Meier Estimate

5.1 Introduction

In this section we will look at how to construct ‘error bars’ or confidence intervals for the Kaplan-
Meier estimate of the survivor function. We will then go on to look at estimates and confidence
intervals for the median survival time (and other quantiles). The following lemma plays an impor-
tant role in the derivation of the confidence intervals.

A basic lemma

Lemma. For a function g and random variable X we have

E[g(X)] ≈ g[E(X)] and,

var[g(X)] ≈ var(X){g′[E(X)]}2.

In particular

var[log(X)] ≈ 1

{E(X)}2
var(X).

Proof: The first two terms of the Taylor series for g are:

g(x) = g(a) + (x− a)g′(a) + · · ·

Setting a = E(X) gives:

g(X) ≈ g[E(X)] + [X − E(X)]g′[E(X)]. (∗)

Taking expectations on both sides of (∗) gives

E[g(X)] ≈ g[E(X)].

Squaring both sides of (∗) and taking the expectation gives

[g(X)]2 ≈ g[E(X)]
2

+ [X − E(X)]2{g′[E(X)]}2

+2g (E(X)) [X − E(X)]g′[E(X)]

E{[g(X)]2} ≈ {g[E(X)]}2 + var(X){g′[E(X)]}2

so

var[g(X)] = E[g(X)2]− E[g(X)]
2

≈ var(X){g′[E(X)]}2.

5.2 Confidence intervals for the survivor function

In the KM estimate of the survivor function, the probability pj of surviving the interval [tj , tj+1)
is estimated by

p̂j = 1− dj/Nj .

If we know Nj , then the observed number dj of deaths on the interval [tj , tj+1) has a binomial
distribution Bin(Nj , pj). We therefore have

var(p̂j | Nj) =
Njpj(1− pj)

N2
j

≈ p̂j(1− p̂j)
Nj

Consider the log of the survivor function:

log[Ŝ(t)] =

j∑
i=1

log(p̂i), when tj ≤ t < tj+1. (1)
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We now use the log variance formula in the lemma on both sides on the equation. First the
left-hand side of (1) gives

var{log[Ŝ(t)]} ≈ var[Ŝ(t)]

[Ŝ(t)]2
.

Applying the lemma to the right-hand of (1) gives

var[log(p̂i)] ≈
1

[E(p̂i)]2
var(p̂i) =

1

p2i

pi(1− pi)
Ni

=
1− pi
piNi

≈ 1− p̂i
p̂iNi

so

var

[
j∑
i=1

log(p̂i)

]
≈

j∑
i=1

1− p̂i
p̂iNi

.

Since var(LHS) of (1) equals var(RHS), we have

var[Ŝ(t)]

[Ŝ(t)]2
≈

j∑
i=1

1− p̂i
p̂iNi

=

j∑
i=1

1− 1 + di/Ni
(1− di/Ni)Ni

=

j∑
i=1

di
Ni(Ni − di)

.

The standard error is

s.e.[Ŝ(t)] ≈ Ŝ(t)

√√√√ j∑
i=1

di
Ni(Ni − di)

for tj ≤ t < tj+1.
This is known as Greenwood’s formula.

When no censoring occurs, Greenwood’s formula can be simplified. In fact, the variance can
be shown to be the same as that calculated in Section 3.1, and Greenwood’s formula becomes:

s.e.[Ŝ(t)] = Ŝ(t)

√
1− Ŝ(t)

N0Ŝ(t)
.

Note that this only applies if there is no censoring up to time t.
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In order to construct an error bar for Ŝ(t) we need to make some sort of distributional as-
sumption. The simplest is to assume that Ŝ(t) is normally distributed. Let zα/2 be such that
Pr(Z > zα/2) = α/2, where Z ∼ N(0, 1), then an approximate 100(1− α)% interval is given by

Ŝ(t)± zα/2s[Ŝ(t)]

where s[Ŝ(t)] is the standard error.
A snag with this, of course is that the distribution of Ŝ(t) is not really normal. Problems arise

when Ŝ(t) is close to 0 or 1. One possible solution is to transform Ŝ(t) onto a (−∞,∞) scale. For
example, we could use a logistic transformation

W = log

(
S

1− S

)
or a complementary log-log transformation

W = log[− log(S)].

Consider the complementary log-log transformation. From above, we have

var{− log[Ŝ(t)]} ≈
j∑
i=1

di
Ni(Ni − di)

.

Applying the variance lemma with X = − log[Ŝ(t)] we have

var
(

log{− log[Ŝ(t)]}
)
≈ 1

{log[Ŝ(t)]}2

j∑
i=1

di
Ni(Ni − di)

The standard error is the square root of this, say η[Ŝ(t)]. Assuming W is normally distributed, a
100(1− α)% confidence interval for log{− log[S(t)]} is

log{− log[Ŝ(t)]} ± zα/2η[Ŝ(t)].

Now just transform back. A 100(1− α)% confidence interval for log[S(t)] is(
log[Ŝ(t)] exp{zα/2η[Ŝ(t)]}, log[Ŝ(t)] exp{−zα/2η[Ŝ(t)]}

)
and a 100(1− α)% confidence interval for S(t) is(

[Ŝ(t)]exp{zα/2η[Ŝ(t)]}, [Ŝ(t)]exp{−zα/2η[Ŝ(t)]}
)
.

Example: The data in the table are failure times, in days, of closely matched skin grafts on burn
patients, from Woolson and Lachenbruch (1980) (slightly altered). Censored times are in brackets.
The initial number N0 = 11.
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Failure time Ŝ(t)
j tj Nj cj dj p̂j (tj ≤ t < tj+1)
1 16 11 0 1 (10/11) = 0.909 0.909
2 18 10 0 1 (9/10) = 0.900 0.818
3 19 9 0 2 (7/9) = 0.778 0.636
4 22 7 0 1 (6/7) = 0.857 0.545
5 29 6 0 1 (5/6) = 0.833 0.455
6 37 5 2 1 (4/5) = 0.800 0.364

(57)
(60)

7 63 2 0 1 (1/2) = 0.500 0.182
8 93 1 0 1 (0/1) = 0.000 0.000

To find a 95% confidence interval for S(25) we proceed as follows.
Ŝ(25) = 0.545
Since there is no censoring before t = 25, we can use the simplified form of Greenwood’s formula:

s.e.[Ŝ(25)] = Ŝ(25)

√
1− Ŝ(25)

N0Ŝ(25)
= 0.150

The confidence interval (assuming normality for S(t)) is 0.545± 1.96× 0.150 ie. 0.251 < S(25) <
0.840.
Using the complementary log-log transformation,

var
(

log{− log[Ŝ(25)]}
)
≈ 1

{log[Ŝ(t)]}2

5∑
i=1

di
Ni(Ni − di)

=
0.0758

log(0.545)2
= 0.2057

so the standard error is approx 0.4535.
A 95% CI for log{− log[S(25)]} is −0.4993±1.96×0.4535 ie. −1.3882 < log{− log[S(25)]} < 0.3896.
The corresponding CI for S(25) is therefore 0.228 < S(25) < 0.779.

5.3 Estimating the median and other percentiles

The median is arguably more useful than the mean with survival data because of the skewness.
The usual nonparametric estimate of the median, when the estimated survivor function is a step
function, is the smallest observed survival time for which the value of the estimated survivor
function is less than or equal to 0.5. So, in the skin graft example, the estimate of the median
survival time is 29 days.
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Similarly we can estimate other percentiles. To find the 100α percentile (eg. α = 0.75 for
the upper quartile), you find the smallest observed survival time for which Ŝ is less than or equal
to (1 − α). Eg. For the upper quartile this is the minimum observed death time tj such that

Ŝ(tj) ≤ 0.25.
We’d also like confidence intervals for percentiles. First recall that

d

dt
S(t) = −f(t)

where f is the probability density function. Also recall the variance formula:

var[g(X)] ≈ var(X){g′[E(X)]}2.

Putting X = t̂α and g(x) = Ŝ(x) gives

var[Ŝ(t̂α)] ≈

[
dŜ(t̂α)

dt̂α

]2
var(t̂α)

≈ [f̂(t̂α)]2var(t̂α)

where f̂(t̂α) is an estimate of the probability density function f of survival times at time tα.
Rearranging the equation gives

var(t̂α) ≈ [f̂(t̂α)]−2var[Ŝ(t̂α)]

so the standard error of t̂α is approximately

s.e.[t̂α] ≈ 1

f̂(t̂α)
s.e.[Ŝ(t̂α)]

where s.e.[Ŝ(t̂α)] is the standard error of Ŝ(t̂α) which we estimate with Greenwood’s formula. To
finish constructing the CI we also need to estimate f(t̂α).

The probability density f is −dS/dt so essentially we need an estimate of the gradient of S at
t̂α. Here is one way to do it: if you define t− and t+ to be two times with t− < t < t+ then an
estimate of the gradient is

Ŝ(t+)− Ŝ(t−)

t+ − t−
.

How do we pick t− and t+? A good way (even though it doesn’t look nice) is as follows. Take

t+ = min{tj : Ŝ(tj) ≤ (1− α)− ε}
t− = max{tj : Ŝ(tj) ≥ (1− α) + ε}

for some fixed ε, say ε = 0.05. The estimate of the standard error of t̂α is then given by

s.e.[t̂α] ≈ − t+ − t−
Ŝ(t+)− Ŝ(t−)

s.e.[Ŝ(t̂α)].

Example Using the skin graft data from the last section, construct a confidence interval for the
median.
Ŝ(29) = 0.455 ≤ 0.5 so t̂=29.
There is no censoring up to t = 29, so we can use the simplified version of Greenwood’s formula:

s.e.[Ŝ(t̂)] ≈ Ŝ(t̂)

√
1− Ŝ(t̂)

N0Ŝ(t̂)

≈ 0.455

√
1− 0.455

11× 0.455
= 0.1501
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Choose ε = 0.05.

t− = max{tj s.t. Ŝ(tj) ≥ 0.55} = 19

t+ = min{tj s.t. Ŝ(tj) ≤ 0.45} = 37

So

f̂ [t̂] =
Ŝ(19)− Ŝ(37)

37− 19
=

0.636− 0.364

18
= 0.0151

and

s.e.[t̂] ≈ 1

f̂(t̂)
s.e.[Ŝ(t̂)]

=
0.1501

0.0151
= 9.93

Our approximate 95% confidence interval for the median is 29± 1.96× 9.93.
That is

9.5 < t0.5 < 48.

6 The Log-Rank Test

6.1 Introduction

Given two groups of people, we can ask the question: does one group tend to live longer than the
other? A näıve approach is to plot the KM estimates for the two groups and check whether one
survivor function is consistently higher than the other. If this is found to be the case, then it looks
like one group does indeed live longer. However, this observation could be the result of chance
variation – is there sufficient evidence in the two data sets to draw this conclusion? To be sure,
we need a more formal hypothesis test.

Here’s a brief informal recap on hypothesis testing. Recall that a hypothesis test has the
following features. We have a (conservative) null hypothesis H0 (which in this case is that the
lifetime distributions are the same for the two groups), and an alternative hypothesis H1 (that the
two groups have different lifetime distributions). We then construct a statistic w that tends to be
larger when the null hypothesis is false. Given the observed data we calculate w and compare it to
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its distribution under the null: if it is in the tail of the distribution (ie. if the value of w is large)
then we reject the null in favour of the alternative hypothesis.

6.2 The log-rank test

Suppose that we have two groups of survival data, Group 1 and Group 2. We start off by combining
the death times of the two groups and construct intervals (just like we did for the KM estimator,
but here we pool the two groups of death times). So we have death times t1, . . . , tm and intervals
[0, t1), [t1, t2), . . . etc. Let d1j and d2j be the number of deaths in the two groups on interval
[tj , tj+1). Let n1j , n2j be the number of individuals in each group, known to be alive at the start of
interval j (just as previously), so that n1,j+1 = n1j − c1,j − d1,j and similarly for Group 2. Define
dj and nj by the sums:

dj = d1j + d2j , nj = n1j + n2j .

If the death times are not tied then one of d1j and d2j is 1 and the other is zero. For each interval
j we can construct a 2× 2 contingency table:

Died Did not die
Group 1 d1j n1j − d1j n1j
Group 2 d2j n2j − d2j n2j

dj nj − dj nj

Consider the null hypothesis that there is no difference in the survival distribution of the two
groups. One way to assessing this is to look at the extent of the difference between the observed
numbers in each group that die on each interval and the number expected under the null. To do
this we regard the marginal sums in the contingency table as fixed. Then the value of all the cells
can be determined given only d1j , so we consider this as our random variable. Under the null, the
probability of a member of Group 1 dying at time tj is the same as that for a member of Group 2,
say p. Then the probability of observing d1j deaths in group 1 and d2j deaths in Group 2, given
that there are dj deaths at time tj is:

Pr(d1j deaths in group 1 | dj , n1j , n2j) =(
n1j
d1j

)
pd1j (1− p)n1j−d1j

(
n2j
d2j

)
pd2j (1− p)n2j−d2j(

nj
dj

)
pdj (1− p)nj−dj

=

(
n1j
d1j

)(
n2j
d2j

)
(
nj
dj

)

Notice that p cancels out.
It can be shown that the mean of d1j is

e1j =
n1jdj
nj

.

If you’re interested in how to do this, d1j has a hypergeometric distribution and you use generating
functions to calculate its moments – see Grimmet and Stirzaker’s book, Probability and Random
Processes. This expectation makes sense: it corresponds to sharing the deaths out in proportion
to how many people there are in each group. Similarly you can show the variance is:

v1j =
n1jn2jdj(nj − dj)

n2j (nj − 1)
.

These formulae can be derived in a more straight forward way in the case dj = 1 ie. without
recourse to generating functions.
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Next we combine the information from each of the time intervals to give an overall measure of
how much the observed d1j deviate from their expectations.

Define U by

U =

m∑
1

(d1j − e1j) =

m∑
1

d1j −
m∑
1

e1j = O1 − E1

Under the null this will have mean zero, since the expectation of d1j is e1j . If we assume U is
normally distributed (sum of random variables, central limit theorem), then U ∼ N(0, V ) where

V =

m∑
1

v1j .

So [U/
√

(V )] ∼ N(0, 1) and

W =
U2

V
∼ χ2

1.

To test the null hypothesis, we compute the statistics W and compare it to the upper tail of a
χ2
1 distribution. This is the log-rank test.

6.3 Example

Data gathered from a trial of a new drug, looking at time until remission (in weeks) in patients
with leukemia.

Control: 1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12

Drug: 6, 6, 6, 6*, 7, 9*, 10*, 11, 11*, 16, 17*, 19*, 20*, 25, 32*, 32*

The leukemia data give the following table:

tj d1j d2j dj n1j n2j nj e1j v1j

1 2 0 2 17 16 33 34/33 0.483
2 2 0 2 15 16 31 30/31 0.483
3 1 0 1 13 16 29 13/29 0.247
4 2 0 2 12 16 28 24/28 0.472
5 2 0 2 10 16 26 20/26 0.454
6 0 3 3 8 16 24 24/24 0.609
7 0 1 1 8 12 20 8/20 0.240
8 4 0 4 8 11 19 32/19 0.813
11 2 1 3 4 9 13 12/13 0.531
12 2 0 2 2 7 9 4/9 0.302
16 0 1 1 0 7 7 0/7 0.0
25 0 1 1 0 3 3 0/3 0.0

O1 E1 V
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This gives O1 = 17, E1 = 8.5, and V = 4.634. It follows that the test statistic is

W =
(17− 8.5)2

4.634
= 15.6

This is highly significant against χ2
1 so we reject the null hypothesis that the distribution of

survival times are the same in the two groups.

6.4 Simplified form

An alternative simpler statistic is:

W ∗ =
(O1 − E1)2

E1
+

(O2 − E2)2

E2

where O2 =
∑m

1 d2j and E2 =
∑m

1 e2j with e2j = n2jdj/nj .

This is also compared with χ2
1 and is usually an adequate approximation though it errs on the con-

servative side. The advantage is that it’s easier to compute.

Note that

O1 +O2 =
∑

(d1j + d2j) =
∑

dj , and

E1 + E2 =
∑(

n1jdj
nj

+
n2jdj
nj

)
=
∑

dj

ie. O1 +O2 = E1 + E2.

This makes some calculations a bit quicker.

Example: Carry out the simplified test for the following data

Group 1: 10, 11*, 12*, 14, 16*, 22

Group 2: 13, 22, 26*, 29, 35*, 40*

tj d1j d2j dj n1j n2j nj e1j

10 1 0 1 6 6 12 6/12
13 0 1 1 3 6 9 3/9
14 1 0 1 3 5 8 3/8
22 1 1 2 1 5 6 2/6
29 0 1 1 0 3 3 0

O1 = 3 O2 = 3 E1 = 1.54

29



E2 = O1 +O2 − E1 = 3 + 3− 1.54 = 4.46 so

W ∗ =
(3− 1.54)2

1.54
+

(3− 4.46)2

4.46
= 1.86

This is not significant against χ2
1.

6.5 Relative rates

If we reject the null hypothesis, we want to know in which group the survival times are shorter.
In order to do this we compute the relative death rates R1 = O1/E1 and R2 = O2/E2. One
group will have R > 1 and the other R < 1: survival times are shorter in the group with
R > 1. If we assume that the underlying hazard functions for the two groups are proportional ie.

h1(t) = ψh2(t)

then an estimate of the hazard ratio is

ψ =
O1/E1

O2/E2
.

7 More on Log-Rank Tests

In this section we look at how the log-rank test can be extended to handle more interesting
situations.

7.1 The log-rank test for multiple groups

Suppose we have r groups of individuals, with r > 2. We’re interested in testing whether all the
groups are the same ie. the null hypothesis is that all the groups have the same survival distribution.
Our approach and notation is the same as previously: we pool all the death times together to define
intervals [0, t1), [t1, t2), etc. We then have dkj deaths in group k on interval j and nkj individuals
alive and uncensored from group k at the start of interval j.

We can extend the simplified form of the log-rank test quite readily.
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Define a new test statistic

W ∗ =

r∑
k=1

(Ok − Ek)2

Ek

where

Ok =

m∑
j=1

dkj is the observed number of deaths in group k

Ek =

m∑
j=1

ekj is the expected number of deaths in group k

with

ekj =
nkjdj
nj

.

This time there are r−1 degrees of freedom. (To convince yourself of this, think of a contingency
table on each interval like the one described in the last section: it has 2×r cells and r+1 constraints.)
We therefore compare W ∗ to the critical points of the χ2

r−1 distribution.
The more formal version of the test can also be extended to deal with more than 2 groups, but

for the purposes of this course we will only use the simplified form.

7.2 The stratified log-rank test

Sometimes we wish to compare two or more groups but taking into account another variable eg.
age group, sex, centre. Consider the following example. Suppose we’re conducting a clinical trial
of two different treatments for a disease, but we know that men and women will probably have
different responses to the treatments. In this example there are two groups (2 different treatments)
and two strata (male / female). Because we think men and women respond differently we don’t
want to compare all of group 1 with all of group 2. Instead we want to compare the two groups of
men and the two groups of women separately. Essentially we calculate the U and V statistics for
each stratum, and combine these to give an overall statistic. The null hypothesis is that there is
no difference between the groups in the survival distribution for each stratum.

Suppose we have k = 1, . . . , r groups (think of these are ‘treatments’) and l = 1, . . . , s strata
(think of these as age ranges or some other division of each group). Working within each stratum
separately, pool the death times together as previously to define time intervals j = 1, . . . ,ml. For
the l-th stratum this defines

dlkj = number of deaths in stratum l, group k, interval j

and nlkj , elkj similarly. Modifying the simpler form of the log-rank test, we define
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W ∗ =

r∑
k=1

[
∑s
l=1(Olk − Elk)]

2∑s
l=1Elk

where

Olk =

ml∑
j=1

dlkj = observed number of deaths in stratum l, group k,

Elk =

ml∑
j=1

elkj = expected number of deaths in stratum l, group k,

and

elkj =
nlkjdlj
nlj

.

Like the grouped test, we compare W ∗ to the critical points of a χ2
r−1 distribution.

In effect, the test can be carried out via the following steps:

• Split the data up according to the strata.

• Prepare one table for each stratum l = 1, . . . , s.

• Calculate Olk and Elk for each table.

• Combine the results from each table into the test statistic.

7.3 Example – Stratified Test

This example is rather small but it illustrates the simple version of the stratified test. The data,
given by Lee (1992), refer to a study by the University of Oklahoma Health Sciences Centre.
They are survival times for patients with melanoma (a skin cancer). In each case the tumour was
surgically removed then patients in Group 1 were given BCG vaccine while those in Group 2 were
given c.parvum vaccine. The patients were stratified by age-group: 21-40, 41-60 and 61-.
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Survival Data
21-40 41-60 61-

Group 1 Group 2 Group 1 Group 2 Group 1 Group 2
19 27* 34* 8 10 25*

24* 21* 4 11* 5 8
8 18* 17* 23* 11*

17* 16* 12*
17* 7 15*
34* 12* 8*

24 8*
8

8*
Stratum 1: 21-40

tj n1j n2j d1j d2j nj dj e1j e2j
7 6 9 0 1 15 1 0.400 0.600
8 6 8 1 1 14 2 0.857 1.143

19 3 3 1 0 6 1 0.500 0.500
24 2 2 0 1 4 1 0.500 0.500

2 3 2.257 2.743
O11 O21 E11 E21

Stratum 2: 41-60
tj n1j n2j d1j d2j nj dj e1j e2j
4 3 7 1 0 10 1 0.300 0.700
8 2 7 0 1 9 1 0.222 0.778

1 1 0.522 1.478
O12 O22 E12 E22

Stratum 3: 61-
tj n1j n2j d1j d2j nj dj e1j e2j
5 2 3 1 0 5 1 0.400 0.600
8 1 3 0 1 4 1 0.250 0.750

10 1 2 1 0 3 1 0.333 0.667
2 1 0.983 2.017

O13 O23 E13 E23

3∑
s=1

O1s = 2 + 1 + 2 = 5

3∑
s=1

O2s = 3 + 1 + 1 = 5

3∑
s=1

E1s = 2.257 + 0.522 + 0.983 = 3.762

3∑
s=1

E2s = 2.743 + 1.478 + 2.017 = 6.238

W ? =
(5− 3.762)2

3.762
+

(5− 6.238)2

6.238
= 0.4074 + 0.2457 = 0.653.

Compare 0.653 with χ2
1. The result is not significant so we do not reject the null hypothesis

that choice of treatment has no effect on survival.

7.4 The log-rank test for trend

Sometimes when we have survival data for different groups, these groups are ordered in some way
eg. by age group, increasing doses of treatment, or stage of a disease at which the patient was
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first diagnosed. It might be that there is no significant difference between the groups as a whole
(using the standard grouped log-rank test above), but when we introduce the ordering there is a
significant trend. In order to test for trend, we introduce a weighting wk, k = 1, . . . , r, for each of
the groups. Typically you might take wk = k, but uneven weightings can be used – usually you’d
like some justification from the particular application being studied.

To make such a test, we first split time up into intervals in the usual way by pooling the death
times from all the groups. Next define the statistics

Uk =

m∑
j=1

wk(dkj − ekj) (∗∗)

= wk(Ok − Ek)

for each group k = 1, . . . , r. Then define

UT =
∑
k

Uk.

(The ‘T’ is for ‘trend’).

Each Uk measures how much group k differs from its expected number of deaths.

The variance of UT is

VT =

r∑
k=1

(wk − w̄)2Ek

where

w̄ =

∑
k wkEk∑
k Ek

.

The statistic U2
T /VT is approximately distributed as χ2

1 under the hypothesis of no trend across
the groups.

7.5 Example – Test for Trend

• Group 1 times: 8, 17∗, 17∗, 19, 24∗, 34∗

• Group 2 times: 4, 17∗, 34∗

• Group 3 times: 5, 10

We’ll use weights: w1 = −1, w2 = 0, and w3 = 1.
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tj d1j d2j d3j n1j n2j n3j e1j e2j e3j

4 0 1 0 6 3 2 6/11 3/11 2/11
5 0 0 1 6 2 2 6/10 2/10 2/10
8 1 0 0 6 2 1 6/9 2/9 1/9
10 0 0 1 5 2 1 5/8 2/8 1/8
19 1 0 0 3 1 0 3/4 1/4 0

Total 2 1 2 3.18 1.19 0.62
O1 O2 O3 E1 E2 E3

Then
UT =

∑
wk(Ok − Ek) = −1× (2− 3.18) + 1× (2− 0.62) = 2.56

and

w̄ =

∑
wkEk∑
Ek

=
0.62− 3.18

5
= −0.51.

The variance term is

VT =
∑

(wk − w̄)2Ek

= (−1 + 0.51)2 × 3.18 + 0.512 × 1.19 + (1 + 0.51)2 × 0.62 = 2.49.

Finally,
WT = U2

T /VT = 2.65.

Compared to χ2
1 this has a p-value of 0.103 – so there is weak evidence of a trend.

Tutorial Examples 2

1. Find the survivor function associated with the following hazard function:

h(t) =
t2

1 + λ2t2
.

For what values of λ is this a valid survivor function?

2. Data are given below relating to a clinical trial of a new radiotherapy treatment for cervical
cancer. The new treatment was tested against a control treatment. The grade of the cancer
at the start of treatment was recorded for each individual: it was either 1 (early) or 2
(advanced). The clinicians conducting the trial were interested in determining whether the
survival experiences under the two treatments were different, adjusting for the grade of the
cancer at the start of treatment. Apply a suitable test.
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Time Status Group Stage

90 1 Control 2
150 1 Control 2
291 1 Control 1
362 1 Treatment 2
373 1 Treatment 2
383 0 Treatment 2
468 0 Control 1
519 0 Treatment 2
563 0 Treatment 2
650 0 Treatment 2
680 1 Control 2
827 1 Treatment 2
837 1 Control 2
890 0 Control 1
919 0 Treatment 1
978 0 Treatment 1
1090 0 Control 1
1100 0 Treatment 1
1113 0 Control 2
1153 1 Control 1
1297 1 Control 2
1307 1 Treatment 1
1360 0 Treatment 1
1429 1 Control 1
1476 0 Treatment 1
1577 0 Control 2

3. Figures 1-3 show plots of the estimated survivor function for a set of survival data. Each
figure plots the same survivor function but with different axes, as labelled. Use the graphs to
pick a possible parametric model for the data, and write down rough estimates of the model
parameters.

4. Calculate the Kaplan Meier estimate of the survivor function for the following survival data.
A “*” denotes a right-censored time.

3, 6, 10*, 15, 33, 34*, 38, 40, 40*, 49, 49, 50*, 54*, 56*

Assuming Ŝ is normally distributed, obtain a 99% confidence interval for Ŝ(12). (The 99.5th
percentile for the standard normal distribution is at 2.58 standard deviations from the mean.)
Comment on the interval you have obtained.

36



5 10 15 20 25 30 35

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

t

−
lo

g(
S

)

Figure 8: − log(S) vs t
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Figure 9: log(− log(S)) vs log(t)
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Figure 10: log( 1
S − 1) vs log(t)
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