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Figure 1: Typical survival pdf.

1 Introduction

1.1 Survival Data

In this part of the course we study methods for analysing data that come from how long people
live, or more generally, the length of time taken until a certain event occurs. So ‘survival data’
might be data on how long people survive, e.g.

• time till death following heart transplant,

• time till death following diagnosis with AIDS,

although the event which terminates the time interval need not be death:

• length of time in remission for leukemia patients,

• time till rejection of a transplanted organ,

• time till discharge from hospital following an operation.

More formally, the data arise when the time from a defined origin until the occurrence of a
predetermined event (often called failure) is measured for each subject. The failure event can
occur at most once for each subject. The time taken till failure is referred to as the failure time
or survival time.

What sort of problem does survival analysis address? Suppose there are two different surgical
interventions for a certain heart abnormality. Do patients live longer under one or other of the
treatments? To assess this we look at the survival times for patients under each of the two
treatments and use statistics to decide which one is best.

Why can’t we just use methods we’ve learned on other courses? What’s so special about this
sort of data?

• Survival time distributions are highly skewed.

• Often the times are censored – the exact time for every individual is not always available to
us.

1.2 Basic Features

Let’s consider a typical example: a study of survival times of patients following a heart transplant.
Patients have transplants at different times, and we recruit patients to our study over a period of
a few months (for example). For each patient we know when they had a transplant and when they
died. See the graphs drawn in the lecture explaining the difference between study time and patient
time.
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Figure 2: Time till death following heart transplant.

Figure 3: Patient time.
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Figure 4: Censoring.

1.3 Censoring

In the example above we assumed that we knew exactly when each patient had their transplant
and when they died. In practice this will not normally be the case: the data will be incomplete or
censored. Handling censored data is a key aspect of survival analysis.

How and why are survival data often censored? The simplest reason is because the event we
are interested in does not occur within the duration of our study (as above). In medical examples
a common reason is ‘loss to follow-up’ eg. patient X moved away to Australia. However, we often
need to think carefully about whether censoring can bias the dataset (see informative censoring
below). Types of censoring can be classified according to information that they provide:
Right censoring: This is the most common type, and is the type illustrated by the example
above. Suppose the patient enters our study at time t0. and dies at time t0 + t. If the study ends
at time t0 + c where c < t then we know only that the individual’s time of death satisfies t > c.
The death time for this patient is right censored. Most of the examples considered in this course
will involve right censoring. Possible reasons for right censoring:

• end of study

• ‘loss to follow-up’ (lost contact with patient)

• death from other cause (e.g. road accident)

• patient has to be withdrawn from study

Left censoring: Here we know only that t < c. E.g. time to recurrence of tumour after cancer
surgery – patient examined after three months and a tumour is found to be present. Therefore t
is less than three months.
Interval censoring: Here we know only that c1 < t < c2. E.g. time to recurrence of tumour
after cancer surgery: Patient examined after 3 months and tumour not present. Patient examined
after 6 months and tumour present. Therefore 3 < t < 6 (months).
Example: In a study of women recovering from breast cancer, patients visited their doctor every
3 months for a period of two years to check for further tumours. What type of censoring do the
following individuals represent?

1. Patient A had no further tumours during the trial.

2. Patient B had a tumour identified at the 15 month check-up.

3. Patient C had a tumour present at the first (3 month) check up.
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1.4 Informative censoring

In this course, when discussing methods for dealing with censoring, unless stated otherwise we will
assume that the censoring is non-informative. That is, the actual survival time T is independent
of the mechanism which causes an observation to be censored at time c. Put another way, an
individual censored at time c must be representative of all similar individuals who survive that
long. Censoring might be informative if, e.g., the patient is withdrawn from the study because of
ill health.
Example 1: Suppose we are looking at time till onset of AIDS in HIV positive patients. Many
of the patients in the study are likely to be injecting drug users who are particularly prone to being
lost to follow-up. Might the time till onset of HIV be different in injecting drug users than in other
patients? Could this bias the data?
Example 2: Often patients are withdrawn from a trial because they are suffering from side-
effects or because they become too ill to continue with treatment. However, patients who suffer
side-effects from an experimental treatment may well have a different survival experience than
those who have no side-effects (e.g. a drug might be less effective in the group with side-effects).

Informative censoring is difficult to deal with. Most statistical models assume no informative
censoring occurs, though in practice some form of analysis may be performed to confirm this
assumption.

1.5 Typical data

As we’ve said, survival data consist of a list of survival times, some of which may be censored. In
addition, there might be some covariates – information on each patient involved in a trial. In the
heart transplant example above, we might also have the following information about each patient:
age, weight, sex, smoker/non-smoker. All these covariates might reasonably have an effect on a
patient’s survival time, and later in the course we’ll see how such data can be incorporated into
an analysis. Typical data are illustrated in this table:

Patient Survival Time Died/Censored Age Sex Smoker
1 48 1 62 0 0
2 48 1 58 0 0
3 50 0 51 1 1
4 10 1 64 0 0
5 46 0 61 1 1
6 38 1 60 1 0
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2 The survivor and hazard functions

2.1 Key definitions

The survival time t of an individiual can be regarded as the value of a random variable T which
is non-negative. The different values T can adopt have some probability distribution (either con-
tinuous or discrete) referred to as the lifetime distribution. The survival times for a group of
individuals can be regarded as a set of independent samples from the lifetime distribution.
Distribution function:

F (t) = Pr(T < t)

Probability density function:

f(t) =
d

dt
F (t)

Survivor function:

S(t) = Pr(T ≥ t)

It follows from the definition of the survivor function that

S(t) = 1− F (t)

=

∫ ∞
t

f(u)du.

Conditional distribution:

Given an individual lives up to time t0, the distribution of the future survival time is given by:

Pr(dies in (t0, t0 + t) | alive at t0) = Pr(T < t0 + t | T ≥ t0)

=
F (t0 + t)− F (t0)

S(t0)
.

The probability density of future lifetime is the derivative of this:

d

dt

F (t0 + t)− F (t0)

S(t0)
=
f(t+ t0)

S(t0)
.
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Hazard function:

The hazard function at t0, denoted h(t0), is the instantaneous rate of death, i.e. the following
limit:

h(t0) = lim
δt→0

1

δt
Pr(die in interval [t0, t0 + δt) | alive at time t0)

The hazard function is related to the survivor function in the following way:

h(t0) = lim
δt→0

1

δt
Pr(die in interval [t0, t0 + δt) | alive at time t0)

= lim
δt→0

1

δt

F (t0 + δt)− F (t0)

S(t0)

=
1

S(t0)
lim
δt→0

F (t0 + δt)− F (t0)

δt

=
1

S(t0)

d

dt
F (t0)

=
f(t0)

S(t0)

So we have h(t) = f(t)/S(t).
The hazard function gives the following linear approximation

Pr(dies in (t0, t0 + δt) | alive at t0) ≈ δt× h(t0).
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Cumulative hazard:

H(t) =
∫ t
0
h(u)du

We have written the hazard function in terms of the survivor function, so now we do the converse
– and the cumulative hazard comes in handy. Since S(t) = 1− F (t) it follows that:

d

dt
log[S(t)] =

1

S(t)
× d

dt
S(t)

= − f(t)

S(t)

= −h(t).

Integrating gives
logS(t) = −H(t)

so
S(t) = exp[−H(t)]

2.2 Examples

Sometimes it’s very useful to assume the hazard (or survival) functions have specific forms. Of
course, this is equivalent to assuming a specific form for the underlying probability distribution F
of the survival time T . We look next at the simplest assumptions we might make.
Exponential Distribution

Suppose that the hazard function is constant: h(t) = λ. It follows that:

H(t) = λt

S(t) = exp(−λt)
f(t) = λ exp(−λt).

The probability density function is that for a exponential random variable. It has the ‘lack of
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memory property’:

Pr(T > t1 + t2 | T > t1) =
e−λ(t1+t2)

e−λt1
= e−λt2 = Pr(T > t2).

Weibull Distribution
More usefully, we would like the hazard function to vary with time: the Weibull distribution is

the simplest such example. Suppose that h(t) = ctk for some constants c and k > −1.

H(t) = c
tk+1

k + 1
,

S(t) = exp

(
− c

k + 1
tk+1

)
,

so

f(t) =
d

dt
F (t) = − d

dt
S(t)

= ctk exp

(
− c

k + 1
tk+1

)
.

This is the Weibull distribution. It’s more usually written with a different parameterization in the
following way. Let γ = k + 1 and λ = c/(k + 1), (γ > 0, λ > 0). Then:

h(t) = λγtγ−1

H(t) = λtγ

S(t) = exp(−λtγ)

f(t) = λγtγ−1 exp(−λtγ).

Suppose T is a Weibull random variable with parameters λ, γ. It can be shown that the
expectation of T is

E(T ) = λ−1/γΓ(1 + γ−1).

Here Γ is the gamma function:

Γ(x) =

∫ ∞
0

ux−1e−udu.

Since the distribution is skewed, the median is different from the mean. The median tm is computed
as follows:

F (tm) = 1/2

exp(−λtγm) = 1/2

tm =

(
log 2

λ

)1/γ

.

The 100p-th percentile can be computed in a similar way.
Warning! R uses different parameterizations of the Weibull distribution. If you ever fit a Weibull
model in R, make sure you know which parameterization is being used. In the R parameterisation
the pdf is

f(t) =
γ

β

(
t

β

)γ−1
exp

{
−
(
t

β

)γ}
so

λ = β−γ and β = λ−1/γ ,

the mean is
E(T ) = βΓ(1 + γ−1)

and the median is
tm = β(log 2)1/γ .
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Figure 5: Weibull hazard function with λ = 1 and γ = 0.5 (solid), γ = 1 (dashes), γ = 2 (dots).
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Figure 6: Weibull survivor function with λ = 1 and γ = 0.5 (solid), γ = 1 (dashes), γ = 2 (dots).
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Figure 7: Weibull probability density function with mean 1 and γ = 0.5 (solid), γ = 1 (dashes),
γ = 2 (dots).

2.3 Example

Find the survivor function associated with the following hazard function:

h(t) =

 λ+ µ(t1 − t), 0 ≤ t ≤ t1,
λ, t1 ≤ t ≤ t2,
λ+ µ(t− t2), t ≥ t2.

where λ, µ, t1, t2 are positive constants with t1 < t2.
Solution

H(t) =

 λt+ µ(t1t− t2/2), 0 ≤ t ≤ t1,
λt, t1 ≤ t ≤ t2,
λt+ µ(t2/2− t2t), t ≥ t2.

=

 λt+ (µ/2)[t21 − (t1 − t)2], 0 ≤ t ≤ t1,
λt, t1 ≤ t ≤ t2,
λt+ (µ/2)[(t− t2)2 − t22], t ≥ t2.

Of course we can now find S(t) = exp{−H(t)} and so on.
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3 Estimating the survivor function

A very basic first task in any analysis of survival data is to estimate a survivor function. There
are two main non-parametric methods: the life table method and the Kaplan-Meier method. The
Kaplan-Meier method is the most widely used, and is of fundamental importance in survival
analysis.

In the last section we wrote down some distributions on which the survivor and hazard functions
might be based – such approaches are called parameteric. The methods we present in this section
are non-parametric as they do not make specific assumptions about distributions.

3.1 The case of no censoring

Let’s assume we have a set of survival times with no censoring. Let N(t) denote the number of
individuals alive at time t. The empirical survivor function Ŝ(t) is defined by

Ŝ(t) =
Number of individuals with survival times ≥ t

Number of individuals in the data set
=
N(t)

N(0)

and is an estimate of the survivor function. It’s easy to see that Ŝ(t) is a step function. If ti
denotes the time of the i-th failure (t1 < t2 < . . .) then

Ŝ(t) =
N(ti)

N(0)
for ti ≤ t < ti+1.

(Note: for a given failure time ti we assume the individual is dead at that exact moment.)

Example: As part of a study to investigate the effect of different climatic conditions on locusts, a
population of 22 locusts was studied in the lab and the survival times measured. The (uncensored)
times in days are given below, together with the empirical survivor function.

Death times:

17, 28, 33, 41, 42, 45, 48, 51, 51, 54, 55

67, 68, 68, 84, 93, 98, 105, 105, 127, 128, 173

Survivor function:

Failure Ŝ(t) Failure Ŝ(t)
i Time ti N(ti) (ti ≤ t < ti+1) i Time ti N(ti) (ti ≤ t < ti+1).
0 0 22 1.00 10 55 11 0.500
1 17 21 0.955 11 67 10 0.455
2 28 20 0.909 12 68 8 0.364
3 33 19 0.864 13 84 7 0.318
4 41 18 0.818 14 93 6 0.273
5 42 17 0.773 15 98 5 0.227
6 45 16 0.727 16 105 3 0.136
7 48 15 0.682 17 127 2 0.091
8 51 13 0.591 18 128 1 0.045
9 54 12 0.545 19 173 0 0.000
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Note that in the table we’ve given the value of the empirical survivor function for ti ≤ t < ti+1

in line i, rather than the value for ti−1 ≤ t < ti. This is both to conform with the R output format
and also to make comparisons with methods considered later more straightforward. Here’s the
function itself:
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Let’s consider the variance we might expect in such an estimate. If S(t) denotes the true
underlying survivor function then N(t) can be thought of as a binomial random variable N(t) ∼
Bin(N(0), S(t)). Such a random variable has variance N(0)S(t)[1− S(t)] so Ŝ(t) has variance

S(t)[1− S(t)]

N(0)

which is approximately equal to
Ŝ(t)[1− Ŝ(t)]

N(0)
.

The variance can be used to construct confidence intervals for the estimate of the survivor function.
This is a simplistic approach, however: Ŝ(t2) is not independent of Ŝ(t1) when t2 > t1.
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3.2 The life table or actuarial method

The life table or actuarial method of estimating the survivor function can be used when there is
(right) censoring. First we assume that the observation period (the time axis) is split into a number
of intervals (not necessarily equal). The j-th interval is [tj , tj+1), for j = 0, . . . ,m so that the first
interval is [0, t1) (taking t0 = 0) and the last is [tm,∞) (taking tm+1 = ∞). To compute the life
table estimate of the survivor function we do not need the full set of survival times, but instead
work with the number of deaths dj and censored survival times cj that occur in each interval.
Note: The life table method is primarily used when the full survival data are not available, but
we know the number of deaths and censored times in each interval.

Example: Cognitive Behavioural Therapy for depression. 180 patients receiving CBT for depres-
sion were followed up for a year to study the duration of their treatment. Every two months
the number of patients who completed their treatment was recorded. Censoring occurred
when individuals dropped out prior to completing the therapy or transferred to a drug-based
treatment. The table below gives the number of patients completing treatment (dj) and
number of censored individuals (cj) in each 2-month interval.

0− 2 2− 4 4− 6 6− 8 8− 10 10− 12

dj 21 23 19 12 7 8
cj 6 12 17 20 10 6

Let Nj denote the number of individuals known to be alive at the start of interval j i.e. those
with a death time or censored time with t ≥ tj . It follows that

Nj = Nj−1 − cj−1 − dj−1.

What’s the probability of dying during this interval if you were alive at the start? If there was
no censoring (cj = 0) it would be dj/Nj . Now suppose cj > 0. Since the death times for cj
individuals are known to be greater than tj , not all Nj individuals are at risk of dying across
the entire interval. We therefore make the following assumption: We don’t know when the cj
individuals with censored times in the interval actually die, so we make the following assumption
which is called the actuarial assumption.:

Actuarial assumption: The censored times occur uniformly throughout the interval.

The average number of individuals at risk over the interval is therefore

N ′j = Nj −
1

2
cj .

so we take dj/N
′
j as an approximate probability of dying during interval j. The probability of

surviving the interval is therefore

pj = 1− dj
N ′j

=
N ′j − dj
N ′j

and the estimate of the survivor function is

Ŝ(t) =

j∏
i=0

pi = p0 × p1 × · · · × pj

for tj ≤ t < tj+1.

Example continued: The following table gives the life table estimate for the sample data above:

j Interval dj cj Nj N ′j (N ′j − dj)/N ′j Ŝ(t)

0 [0, 2) 21 6 180 177.0 0.881 0.881
1 [2, 4) 23 12 153 147.0 0.844 0.743
2 [4, 6) 19 17 118 109.5 0.826 0.614
3 [6, 8) 12 20 82 72.0 0.833 0.512
4 [8, 10) 7 10 50 45.0 0.844 0.432
5 [10, 12) 8 6 33 30.0 0.733 0.317
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We can also estimate the hazard function in a similar way. Fix a time t ∈ [tj , tj+1). How
many individuals are alive at this time? As before, if we assume the censored times are uniformly
distributed over the interval, and also that the times of deaths are uniformly distributed, then on
average

N ′′j = Nj −
1

2
cj −

1

2
dj

are alive at time t. Next recall the definition

h(t) = lim
δt→0

1

δt
Pr(die in interval [t, t+ δt) | alive at time t). (†)

Since we assume deaths are uniformly distributed over the interval the number of deaths in the
interval [t, t+ δt) is δt× dj/(tj+1 − tj). The number of people at risk of dying at time t is N ′′j as
described above, so the probability term in (†) is

Pr(die in interval [t, t+ δt) | alive at time t) ≈ δt× dj
(tj+1 − tj)N ′′j

.

The estimated hazard function is therefore

ĥ(t) =
dj

(tj+1 − tj)N ′′j
when tj ≤ t < tj+1.

The hazard function is another step function, and it’s zero on any interval with dj = 0.
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4 The Kaplan-Meier Method

4.1 Estimating the survivor function

The Kaplan-Meier (KM) estimator is the most widely used and important nonparametric estimator
of the survivor function. It is also known as the product-limit estimator.

As with the life-table method, we construct a sequence of time intervals but, in the KM method,
each time when we observe a death becomes the start of a new interval. In practice, however, there
can be more than one death at the same time. We define a death time to be a time at which one
or more (uncensored) deaths occur in our survival data

As before we define intervals [tj , tj+1), for j = 0, . . . ,m, with t0 = 0 and tm+1 = ∞. For the
KM estimate, however, t1 is the first death time. Then t2 is the second death time, and so on.
For example, suppose we had the following (uncensored) survival data: 5, 8, 11, 11, 13. Then the
intervals are [0, 5), [5, 8), [8, 11), [11, 13), [13,∞). The possibility of ties means that we can have
m < N0 where N0 is the number of individuals at t0.

As before let Nj be the number of individuals that are alive and uncensored just before time
tj . Let dj be the number of deaths at time tj and let cj be the number of censored times in the
interval [tj , tj+1). Then Nj+1 = Nj − dj − cj . The KM estimate of the probability of surviving
the interval [tj , tj+1), given that the individual survives to just before tj is

pj =
Nj − dj
Nj

.

For tj ≤ t < tj+1, the KM estimate of S(t) is

Ŝ(t) =

j∏
i=1

pi.

(Note p0 = 1.)
Recall tm+1 =∞. If the last observation is a death (at tm) then

pm =
Nm − dm
Nm

but Nm = dm so pm = 0. If the last observation is a censored lifetime t? then Ŝ(t) is undefined for
t > t?.

Note that, if there is no censoring, then the KM estimate is just the empirical survivor function.

Example: Time till discontinuation of use of an IUD. The survival times (in weeks) are:

10 13* 18* 19 23* 30 36 38* 54*
56* 59 75 93 97 104* 107 107* 107*

16



The asterisks denote censored times. The KM estimate is constructed as follows.

j Interval Nj dj cj (Nj − dj)/Nj Ŝ(t)

0 [0, 10) 18 0 0 1.00 1.00
1 [10, 19) 18 1 2 0.94 0.94
2 [19, 30) 15 1 1 0.93 0.88
3 [30, 36) 13 1 0 0.92 0.81
4 [36, 59) 12 1 3 0.91 0.75
5 [59, 75) 8 1 0 0.88 0.65
6 [75, 93) 7 1 0 0.86 0.56
7 [93, 97) 6 1 0 0.83 0.47
8 [97, 107) 5 1 1 0.80 0.37
9 [107,∞) 3 1 2 NA NA

Here’s the function itself:
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4.2 Kaplan-Meier estimate of the hazard function

Let tj be the jth death time. Then the survival probability estimate for the interval beginning at
tj is

p̂j =
Nj − dj
Nj

.

So the death probability estimate is

1− p̂j =
dj
Nj

.

If we suppose that the hazard is constant between tj and tj+1, then we estimate it as

ĥ(t) =
dj

Nj(tj+1 − tj)
for tj ≤ t < tj+1.
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Example continued: IUD data as above.

j Interval Nj dj dj/Nj ĥ(t)

0 [0, 10) 18 0 0.00 0.0000
1 [10, 19) 18 1 0.06 0.0067
2 [19, 30) 15 1 0.07 0.0064
3 [30, 36) 13 1 0.08 0.0133
4 [36, 59) 12 1 0.09 0.0039
5 [59, 75) 8 1 0.12 0.0075
6 [75, 93) 7 1 0.14 0.0078
7 [93, 97) 6 1 0.17 0.0425
8 [97, 107) 5 1 0.20 0.0200
9 [107,∞) 3 1 NA NA

4.3 Derivation of the Kaplan Meier Estimate

In this section we’ll see why the KM method is ‘the right thing to do’. Suppose we divide time
into a sequence of fixed intervals, as in a life table. Let the cut points be t(0), t(1), . . . , t(m) where
t(0) = 0. (We use t(j) to distinguish this from tj , the j-th death time). The intervals are [0, t(1)),
[t(1), t(2)), [t(2), t(3)), . . . , [t(n−1), t(m)). Suppose that the probability of survival through interval j,
i.e. [t(j), t(j+1)), given survival to time t(j), is pj . Then the probability of survival to time t(k) is

k−1∏
i=0

p(i).

At time t(k) we observe N(k) alive and uncensored, of whom d(k) die before time t(k+1).
On interval [t(j), t(j+1)), what’s the probability of observing d deaths if you start out with N(j)

people alive? Well, d is the outcome of a Bin(N(j), p(j)) random variable. So the probability of
observing d deaths is (

N(j)

d

)
× (1− p(j))d × p

(N(j)−d)
(j) .

The likelihood of observing (d(0), d(1), . . . , d(m−1)) deaths is therefore

L =

m−1∏
i=0

(
N(i)

d(i)

)
× (1− p(i))d(i) × p

(N(i)−d(i))
i .

By differentiating the log-likelihood, it can be shown that the maximum likelihood estimate of pi
is

p̂(i) =
N(i) − d(i)

N(i)
.

Now, consider what happens as we increase the number of cut points and shorten the intervals. In
the limit as the intervals become infinitesimally small, we obtain the KM estimator.
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Tutorial Examples 1

1. Find the survivor function associated with the following hazard function:

h(t) =


λ+ µ(t1 − t), 0 ≤ t ≤ t1,
λ, t1 ≤ t ≤ t2,
λ+ µ(t− t2), t ≥ t2.

where λ, µ, t1, t2 are positive constants with t1 < t2. (This is the example from section 2 of
the notes.)

2. A hazard function is defined by:

h(t) =
2λ2t

1 + λ2t2

where λ > 0 is a constant. Find:

(a) the survivor function, and

(b) the expected survival time.

3. We are given the following survival times for 16 individuals, where a ∗ indicates a right
censored measurement:

20∗, 23, 47, 47, 69, 70∗, 71, 100∗, 101, 110∗, 148, 181, 198∗, 208∗, 212∗, 224∗

Calculate the Kaplan Meier estimate of the survivor function. Obtain an estimate for the
lower (25%) quartile, and find a 95% confidence interval for this estimate.

4. (a) A lifetime distribution has hazard function

h(t) = θ0 + θ1t+ θ2t
2.

Find

i. the survivor function.

ii. the probability density function.

(b) A lifetime distribution has hazard function

h(t) =
1

t+ 1
.

Find

i. the survivor function.

ii. the probability density function.

iii. the median.

What happens if you try to find the mean?

(c) A lifetime distribution has hazard function

h(t) =
ρθ

ρt+ 1
,

where ρ > 0 and θ > 1.

Find

i. the survivor function.

ii. the probability density function.

iii. the median.

iv. the mean.
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5. A machine has n components, the lifetimes of which are independent. However the whole
machine will fail if any component fails. The hazard functions for the components are
h1(t), . . . , hn(t). Show that the hazard function for the machine is

∑n
i=1 hi(t).

6. Suppose that the lifetime distributions of the components in Question 5 are Weibull distri-
butions with scale parameters ρ1, . . . , ρn and a common index (i.e. “shape parameter”) γ so
that the hazard function for component i is γρi(ρit)

γ−1. Find the lifetime distribution for
the machine.

7. Show that, if T is a Weibull random variable with hazard function γρ(ρt)γ−1,

(a) the median is M(T ) = ρ−1(log 2)1/γ ,

(b) the mean is E(T ) = ρ−1Γ(1 + γ−1) and

(c) the variance is var(T ) = ρ−2{Γ(1 + 2γ−1)− [Γ(1 + γ−1)]2}.

Note that Γ(r) =
∫∞
0
xr−1e−x.dx.

8. The following data are taken from Cameron and Pauling (1978). Patients with advanced
cancer of the stomach, bronchus, colon, ovary or breast were treated with ascorbate. The
data are survival times in days. Investigate whether the survival times differ with the organ
affected. To do this you might use a standard procedure for normally distributed data but,
if you do, you should consider whether the data should be transformed and, if so, how. (You
may use, for example, R to do the calculations, plots etc.). Present your procedure and
conclusions clearly.

Stomach Bronchus Colon Ovary Breast
124 81 248 1234 1235
42 461 377 89 24
25 20 189 201 1581
45 450 1843 356 1166

412 246 180 2970 40
51 166 537 456 727

1112 63 519 3808
46 64 455 791

103 155 406 1804
876 859 365 3460
146 151 942 719
340 166 776
396 37 372

223 163
138 101
72 20

245 283
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