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17 Large Samples: Examples

1. The numbers of telephone calls arriving at a busy exchange in 200 short intervals are observed.
Suppose that these are X1, . . . , Xn, where n = 200, that Xi | λ ∼ Poisson(λ) and that Xi

and Xj are independent, given λ, when i 6= j. The likelihood is therefore

L =
n∏
i=1

e−λλxi

xi!
∝ e−nλλs

where s =
∑n
i=1 xi.

Suppose that the prior for λ is a gamma(a, b) distribution. The posterior is then gamma(s +
a, n+ b). This has mean (s+ a)/(n+ b) and variance (s+ a)/(n+ b)2 and we can approximate
this with a normal distribution

N

(
s+ a

n+ b
,

s+ a

(n+ b)2

)
.

Suppose that a = 2, b = 0.2, s = 1723. Then the posterior distribution is approximately
N(8.6164, 0.20752) and an approximate 95% interval for λ is 8.6164± 1.96× 0.2075. This gives

8.210 < λ < 9.023.

Alternatively we can use the posterior mode to find the mean of the normal distribution. The
posterior density is proportional to

λs+a−1e−(n+b)λ.

The log of this is
g(λ) = (s+ a− 1) log(λ)− (n+ b)λ.
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Differentiating wrt λ we obtain

g′(λ) =
s+ a− 1

λ
− (n+ b).

This gives the posterior mode at λm = (s + a − 1)/(n + b) = 8.6114. Differentiating again we
obtain

g′′(λ) = −s+ a− 1
λ2

.

This gives an approximate variance of

λ2
m

s+ a− 1
=
s+ a− 1
(n+ b)2

= 0.20752.

So our 95% interval becomes 8.6114± 1.96× 0.2075. This gives

8.205 < λ < 9.018.

Calculating the hpd interval without using the normal approximation (using hpdgamma) gives

8.211 < λ < 9.024

which is very close to the first of our approximations.

2. We observe the result of a sample survey in which respondents are asked a simple “Yes/No”
question. The number answering “Yes” is x. The sample size n is large and we assume that
the effect of the prior distribution is negligible. We also assume that x is an observation from
a binomial(n, θ) distribution where

θ =
eµ

1 + eµ
.

That is

µ = log
(

θ

1− θ

)
.

We are interested in the parameter µ. Find an approximation to its posterior distribution.
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The likelihood is

L(µ) =
(
n
x

)
θx(1− θ)n−x.

The log likelihood is

l(µ) = constant + x log(θ) + (n− x) log(1− θ).

We need to differentiate this with respect to µ. We note that

dl

dµ
=
dl

dθ

dθ

dµ

and that
dθ

dµ
=

(1 + eµ)eµ − eµeµ

(1 + eµ)2
=

eµ

(1 + eµ)2
= θ(1− θ).

So

dl

dθ
=
x

θ
− n− x

1− θ
=

x− θx− nθ + θx

θ(1− θ)

=
x− nθ
θ(1− θ)

dl

dµ
=
dl

dθ

dθ

dµ
= x− nθ

d

dθ

(
dl

dµ

)
= −n

d2l

dµ2
=

d

dθ

(
dl

dµ

)
dθ

dµ
= −nθ(1− θ)
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Solving dl/dµ = 0 we obtain

x = nθ̂ and θ̂ =
x

n

and therefore

µ̂ = log
(

x/n

1− x/n

)
= log

(
x

n− x

)
.

Substituting this into the second derivative we obtain, at θ = θ̂,

d2l

dµ2
= −nθ̂(1− θ̂) < 0.

Therefore µ̂ is a maximum and is approximately the posterior mean and the posterior variance
is approximately

V = [nθ̂(1− θ̂)]−1.

The posterior distribution of µ is approximately N(µ̂, V ).
Suppose that n = 2000 and x = 1456. Then θ̂ = x/n = 0.728 and

µ̂ = log
(

1456
2000− 1456

)
= 0.9845.

The approximate variance is

V = [2000× 0.728(1− 0.728)]−1 = [396.032]−1 = 0.002525

giving a standard deviation of 0.05025. An approximate 95% posterior hpd interval for µ is
therefore 0.9845± 1.96× 0.05025. that is

0.8860 < µ < 1.0830.

103



18 Predictive Distributions

18.1 Introduction

In Lecture 3 we introduced parameters as a means of structuring our beliefs and of transferring
information from observations to beliefs about future observations. Since then we have spent
some time looking at how information from observations affects our beliefs about parameters.
Information goes from observations to our beliefs about the values of parameters via the likelihood.
In this lecture we will return to thinking about our beliefs for the values of future observations.

Suppose that our beliefs about a (possibly vector) parameter θ are represented by the distri-
bution with density function fθ(θ). (We assume here that θ is continuous. It could be discrete.
In that case we replace the density function by a probability function and the integration by a
summation). The distribution of a future observation Y given θ has density function, if Y is con-
tinuous, or probability function, if Y is discrete, fY |θ(y | θ). For convenience we will assume for
now that Y is continuous.

The joint density of θ and Y is therefore

fθ(θ)fY |θ(y | θ).

To find the marginal density of Y we simply integrate out θ.

fY (y) =
∫ ∞
−∞

fθ(θ)fY |θ(y | θ) dθ.

This marginal distribution is called a predictive distribution of Y. Its mean is the predictive mean
and so on.

Very often, of course, we are interested in the case where we observe some data and then make
predictions about future observations which we have not yet seen. In this case, before we have
seen the data, we can evaluate the prior predictive distribution:

f
(0)
Y (y) =

∫ ∞
−∞

f
(0)
θ (θ)fY |θ(y | θ) dθ

where f (0)
θ (θ) is the prior density of θ. After we have seen data D, we can evaluate the posterior

predictive distribution:

f
(1)
Y (y | D) =

∫ ∞
−∞

f
(1)
θ|D(θ | D)fY |θ(y | θ) dθ

where f (1)
θ|D(θ | D) is the posterior density of θ given the data D.

Predictive distributions reflect both the aleatory uncertainty in the future observations and the
epistemic uncertainty in the parameters. All (remaining) uncertainty is properly reflected. This is
an important difference from non-Bayesian statistics. The prior predictive distribution describes
our beliefs before we have seen data and the posterior predictive distribution describes our beliefs
afterwards.

Predictive distributions are often used in model checking (or model criticism) where we examine
whether there is evidence that we made invalid assumptions by comparing observations with their
predictive distributions.
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18.2 Example: Chester Road

In section 4.4 we looked at the rate λ of vehicles arriving along a road (in vehicles per second).
Our posterior distribution for λ was a gamma(119, 1220) with pdf

f
(1)
λ (λ) =

1220119

118!
λ118e−1220λ.

1. What is the posterior probability now of observing j vehicles in the next t seconds?

Given the value of λ, the distribution of the number of vehicles in the next t seconds would
be Poisson(λt).

The joint probability (density) of λ and j is

1220119

118!
λ118e−1220λλ

jtje−λt

j!
=

1220119

118!
tj

j!
λ118+je−(1220+t)λ.

We integrate out λ to get the marginal probability of j vehicles. By comparing the function
with a gamma p.d.f. we see that

∫ ∞
0

λ118+je−(1220+t)λ.dλ =
Γ(119 + j)

(1220 + t)119+j

=
(118 + j)!

(1220 + t)119+j

Hence the probability of observing j vehicles in the next t seconds is

(118 + j)!
118!j!

1220119tj

(1220 + t)119+j
=
(

118 + j
j

)(
1220

1220 + t

)119(
t

1220 + t

)j
.

This represents a negative binomial distribution. For large n and τ this would be approxi-
mately a Poisson distribution with mean equal to t times the posterior mean for λ.

2. What is the posterior p.d.f. now for the time T to the next arrival?

Given the value of λ, the waiting time has an exponential(λ) distribution.

The joint p.d.f. of λ and T is

1220119

118!
λ118e−1220λλe−λt =

1220119

118!
λ119e−(1220+t)λ.

We integrate out λ to get the marginal p.d.f. for T. By analogy with the gamma p.d.f.,∫ ∞
0

λ119e−(1220+t)λ.dλ =
119!

(1220 + t)120
.

Hence the predictive p.d.f. for the waiting time is

119
1220

(
1220

1220 + t

)120

which would be approximately a negative exponential distribution for large n.
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18.3 Example: beta-binomial

This is an example where the observation model is a discrete distribution.

• Observation model: X | θ ∼ bin(n, θ).

• Beliefs about θ : θ ∼ beta(a, b).

• Predictive distribution: Pr(X = j) for j = 0, 1, . . . , n.

Pr(X = j) =
∫ 1

0

Γ(a+ b)
Γ(a)Γ(b)

θa−1(1− θ)b−1

(
n
j

)
θj(1− θ)n−j dθ

=
∫ 1

0

Γ(a+ b)
Γ(a)Γ(b)

(
n
j

)
θa+j−1(1− θ)b+n−j−1 dθ

=
Γ(a+ b)
Γ(a)Γ(b)

(
n
j

)
Γ(a+ j)Γ(b+ n− j)

Γ(a+ b+ n)

×
∫ 1

0

Γ(a+ b+ n)
Γ(a+ j)Γ(b+ n− j)

θa+j−1(1− θ)b+n−j−1 dθ

=
Γ(a+ j)

Γ(a)
Γ(b+ n− j)

Γ(b)
Γ(a+ b)

Γ(a+ b+ n)

(
n
j

)
E.g. a = 2, b = 2, n = 7, j = 3.

Pr(X = 3) =
(5− 1)!
(2− 1)!

(6− 1)!
(2− 1)!

(4− 1)!
(11− 1)!

7!
3!4!

=
4!5!3!7!

1!1!10!3!4!
=

5!7!
10!

= 0.16667
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18.4 Example: normal, known precision

• Observation model: Y | µ ∼ N(µ, τ−1).

• Beliefs about µ :
µ ∼ N(m, P−1)

Let c = P/τ so P = cτ. Then

µ ∼ N(m, [cτ ]−1)

• Predictive distribution has density fY (y).

The joint density of µ, Y is proportional to

exp
{
−cτ

2
(µ−m)2

}
τ1/2 exp

{
−τ

2
(y − µ)2

}
.

We can write Y = µ+ ε where ε ∼ N(0, τ−1) independently of µ. So

Y ∼ N(m, [cτ ]−1 + τ−1).

That is
Y ∼ N

(
m, [cpτ ]−1

)
where

cp =
c

c+ 1
and the variance is

[cpτ ]−1 =
c+ 1
cτ

= τ−1 + [cτ ]−1.

E.g. m = 23.0, τ = 0.05, P = 0.25 so c = 5,

cp =
5
6
, cpτ =

0.25
6
, var(Y ) =

6
0.25

= 24.0.

Hence

Pr(Y < 20) = Φ
(

20− 23√
24

)
= Φ(−0.612) = 0.270.
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18.5 Example: normal, conjugate prior

• Observation model: Y | µ, τ ∼ N(µ, τ−1).

• Beliefs about µ, τ :

τ ∼ gamma(d/2, dv/2)
µ | τ ∼ N(m, (cτ)−1)

• Predictive distribution has density fY (y).

The joint density of τ, µ, Y is proportional to

τd/2−1e−dvτ/2(cτ)1/2 exp
{
−cτ

2
(µ−m)2

}
τ1/2 exp

{
−τ

2
(y − µ)2

}
.

Conditional on τ, we can write Y = µ+ ε where ε ∼ N(0, τ−1) independently of µ. So

Y | τ ∼ N(m, [cτ ]−1 + τ−1).

That is
Y | τ ∼ N

(
m, [cpτ ]−1

)
where

cp =
c

c+ 1
and the variance is

[cpτ ]−1 =
c+ 1
cτ

= τ−1 + [cτ ]−1.

So,

Y −m√
v/cp

∼ td.

E.g. d = 4, v = 0.25, m = 15, c = 0.5 so

cp =
0.5
1.5

=
1
3
,

v

cp
= 0.75,

Y − 15√
0.75

∼ t4.
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95% predictive (hpd) interval:

15± 2.776
√

0.75

That is
12.596 < Y < 17.404.

18.6 Problems 5

1. (Some of this question is also in Problems 4). I recorded the attendance of students at
tutorials for a module. Suppose that we can, in some sense, regard the students as a sample
from some population of students so that, for example, we can learn about the likely behaviour
of next year’s students by observing this year’s. At the time I recorded the data we had had
tutorials in Week 2 and Week 4. Let the probability that a student attends in both weeks be
θ11, the probability that a student attends in week 2 but not Week 4 be θ10 and so on. The
data are as follows.

Attendance Probability Observed frequency
Week 2 and Week 4 θ11 n11 = 25
Week 2 but not Week 4 θ10 n10 = 7
Week 4 but not Week 2 θ01 n01 = 6
Neither week θ00 n00 = 13

Suppose that the prior distribution for (θ11, θ10, θ01, θ00) is a Dirichlet distribution with den-
sity proportional to

θ311θ10θ01θ
2
00.

(a) Find the prior means and prior variances of θ11, θ10, θ01, θ00.

(b) Find the posterior distribution.

(c) Find the posterior means and posterior variances of θ11, θ10, θ01, θ00.

(d) Using the R function hpdbeta which may be obtained from the Web page (or other-
wise), find a 95% posterior hpd interval, based on the exact posterior distribution, for
θ00.

(e) Find an approximate 95% hpd interval for θ00 using a normal approximation based on
the posterior mode and the partial second derivatives of the log posterior density.
Compare this with the exact hpd interval.
Hint: To find the posterior mode you will need to introduce a Lagrange multiplier.

(f) The population mean number of attendances out of two is µ = 2θ11 + θ10 + θ01. Find
the posterior mean of µ and an approximation to the posterior standard deviation of µ.

2. Samples are taken from twenty wagonloads of an industrial mineral and analysed. The
amounts in ppm (parts per million) of an impurity are found to be as follows.

44.3 50.2 51.7 49.4 50.6 55.0 53.5 48.6 48.8 53.3
59.4 51.4 52.0 51.9 51.6 48.3 49.3 54.1 52.4 53.1
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We regard these as independent samples from a normal distribution with mean µ and variance
σ2 = τ−1.

Find a 95% posterior hpd interval for µ under each of the following two conditions.

(a) The value of τ is known to be 0.1 and our prior distribution for µ is normal with mean
60.0 and standard deviation 20.0.

(b) The value of τ is unknown. Our prior distribution for τ is a gamma distribution with
mean 0.1 and standard deviation 0.05. Our conditional prior distribution for µ given τ
is normal with mean 60.0 and precision 0.025τ (that is, standard deviation

√
40τ−1/2).

3. We observe a sample of 30 observations from a normal distribution with mean µ and precision
τ. The data, y1, . . . , y30, are such that

30∑
i=1

yi = 672 and
30∑
i=1

y2
i = 16193.

(a) Suppose that the value of τ is known to be 0.04 and that our prior distribution for
µ is normal with mean 20 and variance 100. Find the posterior distribution of µ and
evaluate a posterior 95% hpd interval for µ.

(b) Suppose that we have a gamma(1, 10) prior distribution for τ and our conditional prior
distribution for µ given τ is normal with mean 20 and variance (0.1τ)−1. Find the
marginal posterior distribution for τ, the marginal posterior distribution for µ and the
marginal posterior 95% hpd interval for µ.

4. The following data come from the experiment reported by MacGregor et al. (1979). They
give the supine systolic blood pressures (mm Hg) for fifteen patients with moderate essential
hypertension. The measurements were taken immediately before and two hours after taking
a drug.

Patient 1 2 3 4 5 6 7 8
Before 210 169 187 160 167 176 185 206
After 201 165 166 157 147 145 168 180
Patient 9 10 11 12 13 14 15
Before 173 146 174 201 198 148 154
After 147 136 151 168 179 129 131

We are interested in the effect of the drug on blood pressure. We assume that, given pa-
rameters µ, τ, the changes in blood pressure, from before to after, in the n patients are
independent and normally distributed with unknown mean µ and unknown precision τ. The
fifteen differences are as follows.

-9 -4 -21 -3 -20 -31 -17 -26 -26 -10 -23 -33 -19 -19 -23

Our prior distribution for τ is a gamma(0.35, 1.01) distribution. Our conditional prior dis-
tribution for µ given τ is a normal N(0, [0.003τ ]−1) distribution.

(a) Find the marginal posterior distribution of τ.
(b) Find the marginal posterior distribution of µ.
(c) Find the marginal posterior 95% hpd interval for µ.
(d) Comment on what you can conclude about the effect of the drug.

5. The lifetimes of certain components are supposed to follow a Weibull distribution with known
shape parameter α = 2. The probability density function of the lifetime distribution is

f(t) = αρ2t exp[−(ρt)2]

for 0 < t <∞.
We will observe a sample of n such lifetimes where n is large.
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(a) Assuming that the prior density is nonzero and reasonably flat so that it may be disre-
garded, find an approximation to the posterior distribution of ρ. Find an approximate
95% hpd interval for ρ when n = 300,

∑
log(t) = 1305.165 and

∑
t2 = 3161776.

(b) Assuming that the prior distribution is a gamma(a, b) distribution, find an approximate
95% hpd interval for ρ, taking into account this prior, when a = 2, b = 100, n = 300,∑

log(t) = 1305.165 and
∑
t2 = 3161776.

6. Given the value of λ, the number Xi of transactions made by customer i at an online store
in a year has a Poisson(λ) distribution, with Xi independent of Xj for i 6= j. The value of λ
is unknown. Our prior distribution for λ is a gamma(5,1) distribution.

We observe the numbers of transactions in a year for 45 customers and

45∑
i=1

xi = 182.

(a) Using a χ2 table (i.e. without a computer) find the lower 2.5% point and the upper 2.5%
point of the prior distribution of λ.
(These bound a 95% symmetric prior credible interval).

(b) Find the posterior distribution of λ.

(c) Using a normal approximation to the posterior distribution, based on the posterior mean
and variance, find a 95% symmetric posterior credible interval for λ.

(d) Find an expression for the posterior predictive probability that a customer makes m
transactions in a year.

(e) As well as these “ordinary customers,” we believe that there is a second group of indi-
viduals. The number of transactions in a year for a member of this second group has,
given θ, a Poisson(θ) distribution and our beliefs about the value of θ are represented
by a gamma(1,0.05) distribution.
A new individual is observed who makes 10 transactions in a year. Given that our prior
probability that this is an ordinary customer is 0.9, find our posterior probability that
this is an ordinary customer.
Hint: You may find it best to calculate the logarithms of the predictive probabilities
before exponentiating these. For this you might find the R function lgamma useful.
It calculates the log of the gamma function. Alternatively it is possible to do the
calculation using the R function dnbinom.

(N.B. In reality a slightly more complicated model is used in this type of application).

7. The following data give the heights in cm of 25 ten-year-old children. We assume that, given
the values of µ and τ, these are independent observations from a normal distribution with
mean µ and variance τ−1.

66 66 69 61 58 53 78 71 49 57 54 61 49
64 63 60 53 51 65 70 55 55 74 70 42

(a) Assuming that the value of τ−1 is known to be 64 and our prior distribution for µ is
normal with mean 55 and standard deviation 5, find a 95% hpd interval for the height
in cm of another ten-year-old child drawn from the same population.

(b) Assume now that the value of τ is unknown but we have a prior distribution for it which
is a gamma(2,128) distribution and our conditional prior distribution for µ given τ is
normal with mean 55 and variance (2.56τ)−1. Find a 95% hpd interval for the height in
cm of another ten-year-old child drawn from the same population.

8. A random sample of n = 1000 people was chosen from a large population. Each person
was asked whether they approved of a proposed new law. The number answering “Yes” was
x = 372. (For the purpose of this exercise all other responses and non-responses are teated
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as simply “Not Yes”). Assume that x is an observation from the binomial(n, p) distribution
where p is the unknown proportion of people in the population who would answer “Yes.”

Our prior distribution for p is a uniform distribution on (0, 1).

Let p = Φ(θ) so θ = Φ−1(p) where Φ(y) is the standard normal distribution function and
Φ−1(z) is its inverse.

(a) Find the maximum likelihood estimate of p and hence find the maximum likelihood
estimate of θ.

(b) Disregarding the prior distribution, find a large-sample approximation to the posterior
distribution of θ.

(c) Using your approximate posterior distribution for θ, find an approximate 95% hpd
interval for θ.

(d) Use the exact posterior distribution for p to find the actual posterior probability that θ
is inside your approximate hpd interval.

Notes: • The standard normal distribution function Φ(x) =
∫ x
−∞ φ(u) du where φ(u) =

(2π)−1/2 exp{−u2/2}.
• Let l be the log-likelihood. Then

dl

dθ
=
dl

dp

dp

dθ

and

d2l

dθ2
=

d

dθ

{
dl

dp

dp

dθ

}
=

d

dθ

{
dl

dp

}
dp

dθ
+
dl

dp

d2p

dθ2

=
d2l

dp2

(
dp

dθ

)2

+
dl

dp

d2p

dθ2

• Derivatives of p :

dp

dθ
= φ(θ)

d2p

dθ2
= −θφ(θ)

• You can evaluate Φ−1(u) using R with
qnorm(u,0,1)

and φ(u) is given by
dnorm(u,0,1)

9. The amounts of rice, by weight, in 20 nominally 500g packets are determined. The weights,
in g, are as follows.

496 506 495 491 488 492 482 495 493 496
487 490 493 495 492 498 491 493 495 489

Assume that, given the values of parameters µ, τ, the weights are independent and each has
a normal N(µ, τ) distribution.

The values of µ and τ are unknown. Our prior distribution is as follows. We have a
gamma(2, 9) prior distribution for τ and a N(500, (0.005τ)−1) conditional prior distribution
for µ given τ.

(a) Find the posterior probability that µ < 495.

(b) Find the posterior predictive probability that a new packet of rice will contain less than
500g of rice
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10. A machine which is used in a manufacturing process jams from time to time. It is thought
that the frequency of jams might change over time as the machine becomes older. Once every
three months the number of jams in a day is counted. The results are as follows.

Observation i 1 2 3 4 5 6 7 8
Age of machine ti (months) 3 6 9 12 15 18 21 24
Number of jams yi 10 13 24 17 20 22 20 23

Our model is as follows. Given the values of two parameters α, β, the number of jams yi on
a dat when the machine has age ti months has a Poisson distribution

yi ∼ Poisson(λi)

where
loge(λi) = α+ βti.

Assume that the effect of our prior distribution on the posterior distribution is negligible and
that large-sample approximations may be used.

(a) Let the values of α and β which maximise the likelihood be α̂ and β̂. Assuming that
the likelihood is differentiable at its maximum, show that these satisfy the following two
equations

8∑
i=1

(λ̂i − yi) = 0

8∑
i=1

ti(λ̂i − yi) = 0

where
loge(λ̂i) = α̂+ β̂ti

and show that these equations are satisfied (to a good approximation) by

α̂ = 2.552 and β̂ = 0.02638.

(You may use R to help with the calculations, but show your commands).
You may assume from now on that these values maximise the likelihood.

(b) Find an approximate symmetric 95% posterior interval for α+ 24β.

(c) Find an approximate symmetric 95% posterior interval for exp(α + 24β), the mean
jam-rate per day at age 24 months.

(You may use R to help with the calculations, but show your commands).

Homework 5

Solutions to Questions 9 and 10 of Problems 5 are to be submitted in the Homework Letterbox no
later than 4.00pm on Tuesday May 5th.
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