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15 Inference for Normal Distributions II

15.1 Student’s t-distribution

When we look at the case where the precision is unknown we will find that we need to refer to
Student’s t-distribution. Suppose that Y ∼ N(0, 1) and X ∼ χ2

d, that is X ∼ gamma(d/2, 1/2),
and that Y and X are independent. Let

T =
Y√
X/d

.

Then T has a Student’s t-distribution on d degrees of freedom. We write T ∼ td. “Student” was a
pseudonym of W.S. Gosset, after whom the distribution is named.

The pdf is

fT (t) =
Γ({d+ 1}/2)√
πdΓ(d/2)

(
1 +

t2

d

)−(d+1)/2

(−∞ < t <∞).

Clearly this is a symmetric distribution with mean E(T ) = 0. It can be shown that, for d > 2,
the variance is var(T ) = d/(d − 2). As d → ∞, the td distribution tends to a standard normal
N(0, 1) distribution. Figure 19 shows the pdf for different values of d.

A property of the Student’s t-distribution which will be important for us is as follows. Suppose
that τ and µ are two unknown quantities and that their joint distribution is such that the marginal
distribution of τ is a gamma(a, b) distribution and the conditional distribution of µ given τ is a
normal N(m, [cτ ]−1) distribution. Let us write a = d/2 and b = dv/2 so τ ∼ gamma(d/2, dv/2).
Then the marginal distribution of µ is such that

T =
µ−m√
v/c
∼ td (13)

where td is the Student’s t-distribution on d degrees of freedom.
It is convenient to write the parameters of the gamma distribution as d/2 and dv/2 because

then dvτ has a χ2
d distribution.

Proof : The joint density of τ and µ is proportional to

τd/2−1e−dvτ/2τ1/2 exp
{
−cτ

2
(µ−m)2

}
= τ (d+1)/2−1 exp

{
−τ

2
[
dv + c(µ−m)2

]}
=

Γ([d+ 1]/2)
[{dv + c(µ−m)2}/2](d+1)/2

g(τ ; ã, b̃)

where

g(τ ; ã, b̃) =
b̃ã

Γ(ã)
τ ã−1 exp{−b̃τ}

is the density of a gamma(ã, b̃) distribution for τ, where ã = (d+ 1)/2 and b̃ = ({dv + c(µ−
m)2}/2. So the marginal density of µ is proportional to∫ ∞

0

Γ([d+ 1]/2)
[{dv + c(µ−m)2}/2][d+1]/2

g(τ ; ã, b̃) dτ =
Γ([d+ 1]/2)

[{dv + c(µ−m)2}/2][d+1]/2

∝ [dv + c(µ−m)2]−[d+1]/2

∝
[
1 +

(µ−m)2

dv/c

]−[d+1]/2

If we write t = (µ−m)/
√
v/c, then we get a density for t proportional to

[
1 +

t2

d

]−[d+1]/2

and this is proportional to the density of a Student’s t-distribution on d degrees of freedom.
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Figure 19: Probability density functions of Student’s t-distributions with d degrees of freedom.
From lowest to highest at t = 0, d = 2, d = 4, d→∞.

15.2 Unknown precision: conjugate prior

Now consider the case of inference for a normal distribution where the precision τ is unknown.
Suppose we are going to observe data Y1, . . . , Yn where Yi ∼ N(µ, τ−1) and, given µ, τ, the
observations are independent. Suppose now that both µ and τ are unknown.

There is a conjugate prior distribution. It is as follows.
We give τ a gamma(d0/2, d0v0/2) prior distribution. We say that σ2 = τ−1 has an “inverse

gamma” prior because the reciprocal of σ2 has a gamma prior. We can also say that σ2/(d0v0)
has an “inverse χ2” distribution because

d0v0
σ2
∼ χ2

d0 .

We then define the conditional prior distribution of µ given τ as a normal distribution with
mean m0 and precision c0τ, where the value of c0 is specified. Thus the conditional prior precision
of µ given τ is proportional to the error precision τ.

The joint prior density is therefore proportional to

τd0/2−1e−d0v0τ/2τ1/2 exp
{
−c0τ

2
(µ−m0)2

}
. (14)

Using (13) we can see that the marginal prior distribution of µ is such that

T =
µ−m0√
v0/c0

∼ td0

where td0 is the Student’s t-distribution on d0 degrees of freedom.
From (12) we see that our likelihood is proportional to

τn/2e−Sdτ/2 exp
{
−nτ

2
(ȳ − µ)2

}
= τn/2 exp

{
−τ

2
[
n(ȳ − µ)2 + Sd

]}
= τn/2 exp

{
−τ

2
[
n(ȳ − µ)2 + ns2n

]}
where

Sd =
n∑
i=1

(yi − ȳ)2 =
n∑
i=1

y2
i − nȳ2
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and
s2n =

Sd
n
.

Multiplying this by the joint prior density (14) we obtain a posterior density proportional to

τd1/2e−d0v0τ/2τ1/2 exp
{
−τ

2
[
c0(µ−m0)2 + n(ȳ − µ)2 + ns2n

]}
where d1 = d0 + n. Now

c0(µ−m0)2 + n(ȳ − µ)2 + ns2n = (c0 + n)µ2 − 2(c0m0 + nȳ)µ+ c0m
2
0 + nȳ2 + ns2n

= (c0 + n)

{
µ2 − 2

(
c0m0 + nȳ

c0 + n

)
µ+

(
c0m0 + nȳ

c0 + n

)2
}

+c0m2
0 + nȳ2 + ns2n −

(c0m0 + nȳ)2

c0 + n

= c1{µ−m1}2 + nvd

where

c1 = c0 + n,

m1 =
c0m0 + nȳ

c0 + n

and nvd = c0m
2
0 + nȳ2 + ns2n −

(c0m0 + nȳ)2

c0 + n

=
c0n(ȳ −m0)2 + n(c0 + n)s2n

c0 + n

= n

{
c0r

2 + ns2n
c0 + n

}
where

r2 = (ȳ −m0)2 + s2n

=
1
n

{
nm2

0 + nȳ2 − 2nm0ȳ +
n∑
i=1

y2
i − nȳ2

}

=
1
n

n∑
i=1

(yi −m0)2.
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So the joint posterior density is proportional to

τd1/2e−d1v1τ/2τ1/2 exp
{
−c1τ

2
(µ−m1)2

}
where d1v1 = d0v0 + nvd and, since d1 = d0 + n,

v1 =
d0v0 + nvd
d0 + n

.

We see that this has the same form as (14) so the prior is indeed conjugate.

15.2.1 Summary

We can summarise the updating from prior to posterior as follows.

Prior :

d0v0τ ∼ χ2
d0 ,

µ | τ ∼ N(m0, [c0τ ]−1)

so
µ−m0√
v0/c0

∼ td0

Posterior : Given data y1, . . . , yn where these are independent observations (given µ, τ) from
n(µ, τ−1),

d1v1τ ∼ χ2
d1 ,

µ | τ ∼ N(m1, [c1τ ]−1)

so
µ−m1√
v1/c1

∼ td1

where

c1 = c0 + n,

m1 =
c0m0 + nȳ

c0 + n
,

d1 = d0 + n,

v1 =
d0v0 + nvd
d0 + n

,

vd =
c0r

2 + ns2n
c0 + n

,

s2n =
1
n

n∑
i=1

(yi − ȳ)2 =
1
n

{
n∑
i=1

y2
i − nȳ2

}
,
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r2 = (ȳ −m0)2 + s2n =
1
n

n∑
i=1

(yi −m0)2.

15.2.2 Example

Suppose that our prior mean for τ is 1.5 and our prior standard deviation for τ is 0.5. This gives
a prior variance for τ of 0.25. Thus, if the prior distribution of τ is gamma(a, b) then a/b = 1.5
and a/b2 = 0.25. This gives a = 9 and b = 6. So d0 = 18, d0v0 = 12 and v0 = 2/3.

Alternatively we could assess v0 = 2/3 directly as a prior judgement about σ2 and choose
d0 = 18 to reflect our degree of prior certainty. The prior mean of τ is 1/v0 = 1.5. The coefficient
of variation of τ is 1/

√
d0/2. Since 1/

√
9 = 1/3, the prior standard deviation of τ is one third of

its prior mean.
Using R we can find a 95% prior interval for τ.

> qgamma(0.025,9,6)
[1] 0.6858955
> qgamma(0.975,9,6)
[1] 2.627198

So the 95% prior interval is 0.686 < τ < 2.627. This corresponds to 0.3806 < σ2 < 1.458 or
0.6170 < σ < 1.207. (We could approximate these intervals very roughly using the mean plus or
minus two standard deviations for τ which gives 0.5 < τ < 2.5 which corresponds to 0.4 < σ2 < 2.0
or 0.632 < σ < 1.414).

Suppose that our prior mean for µ is m0 = 20 and that c0 = 1/10 so that our conditional prior
precision for µ, given that τ = 1.5 is 1.5/10 = 0.15. This corresponds to a conditional prior variance
of 6.6667 and a conditional prior standard deviation of 2.5820. The marginal prior distribution for
µ is therefore such that

t =
µ− 20√
(2/3)/0.1

=
µ− 20
2.582

∼ t18.

Thus a 95% prior interval for µ is given by 20 ± 2.101 × 2.582. That is 14.57 < µ < 25.24. (The
value 2.101 is the 97.5% point of the t18 distribution).

Suppose that n = 16, ȳ = 22.3 and Sd = 27.3 so that s2n = Sd/16 = 1.70625.

So

c1 = c0 + 16 = 16.1,
m1 = (1/10)×20+16×22.3

(1/10)+16 = 22.2857,
d1 = d0 + 16 = 34,

(ȳ −m0)2 = (22.3− 20)2 = 5.29
r2 = (ȳ −m0)2 + s2n = 6.99625,
vd = c0r

2+ns2n
c0+n

= 1.7391,
v1 = d0v0+nvd

d0+n
= 1.17134.
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Thus the posterior distribution of τ is such that

d1v1τ ∼ χ2
d1 .

That is
39.826τ ∼ χ2

34.

The conditional posterior distribution of µ given τ is

µ | τ ∼ N(m1, [c1τ ]−1).

That is
µ | τ ∼ N(22.2856, [16.1τ ]−1).

The marginal posterior distribution of µ is such that

µ−m1√
v1/c1

∼ td1 .

That is
µ− 22.2857√
1.1734/16.1

∼ t34.

That is
µ− 22.2857

0.2697
∼ t34.

Hence the marginal posterior 95% hpd interval for t = (µ− 22.2857)/0.2697 is −2.0322 < t <
2.0322 where 2.0322 is the 97.5% point of the t34 distribution. (We can obtain this from tables or
using the R command qt(0.975,34) ). So, since µ = 22.2857 + 0.2697t, the marginal 95% hpd
interval for µ is 22.2857± 2.0322× 0.2697. That is

21.74 < µ < 22.83.
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16 More on Likelihood: Large Samples

16.1 Domination by the likelihood

We have an unknown parameter θ with prior pdf f (0)
θ (θ) and we will make observations Y1, . . . , Yn.

Let us suppose that, given θ, Y1, . . . , Yn are independent. (Similar results to the following can be
proved in many cases where they are not). Let the pdf of Yi given θ be fYi|θ(yi | θ).

The likelihood is then

L(θ; y) =
n∏
i=1

fYi|θ(yi | θ) =
n∏
i=1

Li(θ; yi).

The posterior density is

f
(1)
θ|y (θ | y) = Cf

(0)
θ (θ)

n∏
i=1

Li(θ; yi).

Assuming that neither the prior density or the likelihood is zero, the log of the posterior density
is

log{f (1)
θ|y (θ | y)} = log(C) + log{f (0)

θ (θ)}+
n∑
i=1

li(θ; yi) (15)

where li(θ; yi) = log{Li(θ; yi)}.

Clearly, as n increases, the second (prior) term on the right hand side of (15) stays constant but
the third (likelihood) term becomes more important. In the limit as n→∞ the posterior is dom-
inated by the likelihood, provided that the prior is nonzero everywhere. Thus in large samples
the posterior density is approximately proportional to the likelihood and the posterior mode is
approximately equal to the maximum likelihood estimate.

16.2 Approximate normality

16.2.1 Scalar case

Subject to certain conditions, when we have a large sample the shape of the likelihood is approxi-
mately the shape of a normal distribution.

Suppose we have a scalar parameter θ. Let the log likelihood be l(θ) and the maximum likelihood
estimate be θ̂. We can expand the log likelihood in a Taylor series about θ̂.

l(θ) = l(θ̂) + (θ − θ̂)
(
dl(θ)
dθ

)
θ̂

+
1
2!

(θ − θ̂)2
(
d2l(θ)
dθ2

)
θ̂

+R(θ, θ̂)

where R(θ, θ̂) represents the higher-order terms which are expected to be small when θ is close to
θ̂.
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Now (
dl(θ)
dθ

)
θ̂

= 0

so
l(θ) ≈ C − 1

2
(θ − θ̂)2/V

where C is some constant and V = −J−1 where

J =
(
d2l(θ)
dθ2

)
θ̂

is the (observed) Fisher information.
Exponentiating we see that the posterior density of θ is approximately proportional to

exp
{
−1

2
(θ − θ̂)2/V

}
so the posterior distribution of θ is approximately a normal distribution with mean θ̂ and
variance V = −J−1.

Note that we can often approximate the shape of a posterior distribution with a normal distri-
bution. The mode of a normal N(M,V ) distribution is M so, if we can find the posterior mode,
for example by maximising the sum of the log prior and log likelihood, we can approximate the
posterior mean by M.

The normal probability density function is

(2πV )−1/2 exp
{
− 1

2V
(θ −M)2

}
.

The log of this is

g(θ) = −1
2

log(2πV )− 1
2V

(θ −M)2.
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Differentiating this wrt θ we obtain

dg(θ)
dθ

= − 1
V

(θ −M).

Differentiating again we obtain
d2g(θ)
dθ2

= − 1
V
.

So, if we differentiate the sum of the log prior and the log likelihood twice and evaluate this second
derivative at the posterior mode we get an approximation to −1/V.

These results allow us, for example, to find approximate credible intervals.
Note that this is an asymptotic result for large samples. We could derive similar results for

some transformation of θ, e.g. log(θ). The normal approximation might work better if we transform
θ in some way. For example, a parameter θ might be restricted to an interval, such as (0, 1) and
the approximation might be better if we transform so that θ can take any value on the real line,
e.g. η = log[θ/(1− θ)].

16.2.2 The multivariate normal distribution

Before we consider the vector case it is worth reminding ourselves about the multivariate normal
distribution.

Suppose that X has a multivariate normal N(M, V ) distribution. This distribution has a mean
vector M = (m1, . . . ,mn)T where mi is the mean of Xi, and a variance matrix V. The diagonal
elements of V are the variances of X1, . . . , Xn with the element in row and column i, vii being the
variance of Xi. The covariance of Xi and Xj is vij , the element in row i and column j. Clearly
vji = vij and V is symmetric. It is also positive semi-definite.

The pdf is

fX(x) = (2π)−n/2|V |−1/2 exp
{
−1

2
(x−M)TV −1(x−M)

}
.

(Here xT denotes the transpose of x). We often work in terms of the precision matrix P = V −1.
In this case, of course, we replace (x−M)TV −1(x−M) with (x−M)TP (x−M).

If X have a multivariate normal N(M, V ) distribution and V is a diagonal matrix, that is if
covar(Xi, Xj) = 0 when i 6= j, then X1, . . . , Xn are independent.

16.2.3 Approximate normality: The vector case

Now θ is a vector parameter and its maximum likelihood estimate θ̂ is also a vector. The Taylor
series expansion becomes

l(θ) = l(θ̂) + (θ − θ̂)T
(
∂l(θ)
∂θ

)
θ̂

+
1
2!

(θ − θ̂)T
(
∂2l(θ)
∂θ∂θT

)
θ̂

(θ − θ̂) +R(θ, θ̂)

This leads to an approximately multivariate normal posterior distrbution with mean vector M
and variance matrix V where M is the posterior mode (or the maximum likelihood estimate) and

V = −J−1

where J is the (observed) Fisher information matrix, the matrix of partial second derivatives of
the log likelihood (or the log of the prior density plus the log likelihood), evaluated at the mode.
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Practical 2

1: Project

You may wish to use this session as an opportunity to work on the project or ask any questions
about it. Remember, for example, that Task 4 of the project is rather like Part 4 of Practical 1.

If you have already finished the project or you do not want to work on it for some other reason
then there is another exercise below.

2: Two Normal Samples

We have looked at inference in the case of a single normal sample. We can, of course, extend this to
more than one sample, just as, in non-Bayesian statistics, we would look at the two-sample t-test,
the one-way analysis of variance etc. We do not have time in this module to look at the theory of
this but we can do an example using the computer.

The following data originate with the Western Collaborative Group Study, which studied
middle-aged men in California in 1960-61. The data are given by Selvin (1991) and by Hand
et al. (1991). They give cholesterol measurements (mg per 100 ml) for two groups of heavy men.
The groups are distinguised by behaviour type, A or B.

Type A
233 291 312 250 246 197 268 224 239 239
254 276 234 181 248 252 202 218 212 325

Type B
344 185 263 246 224 212 188 250 148 169
226 175 242 252 153 183 137 202 194 213

We regard these two sets of measurements as random samples from the “Type A” population
and “Type B” population respectively and suppose that, given the values of µA, µB , τ, an obser-
vation on a Type A subject will have a N(µA, τ−1) distribution and an observation on a Type B
subject will have a N(µB , τ−1) distribution. It seems reasonable to give the same marginal prior
distribution to both µA and µB . Prior knowledge of cholesterol levels might suggest a prior mean
of, say, 200 but, for these groups, the actual value of µ might be somewhat different so a large
prior standard deviation, say 50, might be appropriate. This gives us a prior variance for µA and
µB of 2500. We also need a prior covariance. To get a value for this we can think about µA − µB .
We have already implied that this difference has a prior mean of zero but we are unsure what it
will actually be so we give it quite a large prior standard deviation, say 50 again. This implies a
prior variance of 2500 for µA − µB . Now

var(µA − µB) = var(µA) + var(µB)− 2 covar(µA, µB).

Hence covar(µA, µB) = 1250. Now these variances and covariances need to depend on τ in the
conjugate prior so let us suppose that the individual standard deviation, that is the standard
deviation of Y − µ where Y is an individual observation, is about 50, implying τ = 1/2500. The
conjugate prior distribution has a conditional bivariate normal distribution for (µA, µB)T given τ
with precision matrix C0τ. Our reasoning about the prior variances and covariance gives us

C0 =
(

1 0.5
0.5 1

)−1

=
2
3

(
2 −1
−1 2

)
.

Now, of course, we do not know the value of τ. If we take our value of 1/2500 as the prior
median and also say that there is a 10% chance that the standard deviation is less than about
20 then this allows us to find a value for d0/2 and d0v0/2. These turn out to be approximately
d0/2 = 0.48 and d0v0/2 = 520 so d0 = 0.96, d0v0 = 1040 and v0 = 1083.

1. The R function findab, which calls another function findb, can be used to find the values of
a and b for a gamma distribution when two quantiles are specified. Both of these functions
can be obtained from the module Web page. Install both of them.
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findab<-function(starta,tau,p,niter)
{aa<-starta
a<-numeric(niter)
b<-numeric(niter)
diff<-numeric(niter)
c1<-findb(aa[1],tau,p)
c2<-findb(aa[2],tau,p)
while((c1[2]*c2[2])>0)

{aa[1]<-aa[1]/2
aa[2]<-aa[2]*2
c1<-findb(aa[1],tau,p)
c2<-findb(aa[2],tau,p)
}

for (i in 1:niter)
{a[i]<-(aa[1]+aa[2])/2
newc<-findb(a[i],tau,p)
diff[i]<-newc[2]
b[i]<-newc[1]
if ((diff[i]*c1[2])>0)

{aa[1]<-a[i]
c1<-newc
}

else
{aa[2]<-a[i]
c2<-newc
}

}
a<-signif(a,4)
b<-signif(b,4)
diff<-signif(diff,4)
table<-data.frame(a,b,diff)
write.table(table,file="")
c(a[niter],b[niter])
}

findb<-function(a,tau,p)
{q<-qgamma(p[2],a,1)
b<-q/tau[2]
diff<-pgamma(tau[1],a,b)-p[1]
c(b,diff)
}

Figure 20: Functions to find the parameters of a gamma distribution with two specified quantiles.
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oneway<-function(d0,v0,C0,M0,y,group)
{J<-max(group)
N<-numeric(J)
ybar<-numeric(J)
Sd<-0
C1<-C0
M1<-C0%*%M0
for (j in 1:J)

{N[j]<-sum(group==j)
yj<-y[group==j]
ybar[j]<-mean(yj)
Sd<-Sd+sum((yj-ybar[j])^2)
C1[j,j]<-C1[j,j]+N[j]
}

M1<-M1+N*ybar
M1<-solve(C1,M1)
R<-t(M0)%*%C0%*%M0+sum(N*ybar*ybar)-t(M1)%*%C1%*%M1
N<-sum(N)
Nvd<-Sd+R
d1<-d0+N
v1<-(d0*v0+Nvd)/d1
list(d1=d1,v1=v1,C1=C1,M1=M1)
}

Figure 21: R function for several normal samples, conjugate prior

2. To use findab we need to supply a lower and an upper starting value for a, the two specified
quantiles and the two corresponding probabilities. So enter the following.

t1<-1/2500
t2<-1/(20^2)
starta<-c(0.1,5)
tau<-c(t1,t2)
p<-c(0.5,0.9)

3. Now use the function.

ab<-findab(starta,tau,p,20)
ab

Note that, if there is a 10% chance that the standard deviation is less than 20 then this
corresponds to a 10% chance that τ > 1/(202). That is a probability of 0.9 that τ < 1/(202).
The final argument of the function, 20, is the number of iterations to be done.

The values of d0 and d0v0 are, of course, twice the values in ab.

4. It is convenient to use a R function to do the calculations to find the posterior distribution.
Figure 21 shows a suitable function, called oneway. This function can be obtained from the
module Web page.

5. Install the R function oneway.

6. Read the cholesterol data. For example:

cholest<-scan("http://www.mas.ncl.ac.uk/~nmf16/teaching/mas3301/cholesterol.txt")

7. Set up a group variable and define the prior parameters.
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group<-rep(1:2,c(20,20))
d0<-2*ab[1]
v0<-2*ab[2]/d0
C0<-matrix(c(2,-1,-1,2),ncol=2)*2/3
M0<-c(200,200)

8. Use the function oneway to find the posterior distribution.

> post<-oneway(d0,v0,C0,M0,cholest,group)
> post

9. The marginal posterior distribution of µA is such that

tA =
µA −M1,A√
v1w1,AA

has a Student’s t-distribution on d1 degrees of freedom. Here

M1 =
(
M1,A

M1,B

)
and C−1

1 =
(
w1,AA w1,AB

w1,AB w1,BB

)
.

Plot this marginal posterior distribution as follows.

w1<-solve(post$C1)
stepA<-1
muA<-seq(180,280,stepA)
seA<-sqrt(post$v1*w1[1,1])
tA<-(muA-post$M1[1])/seA
densA<-dt(tA,post$d1)/seA
plot(muA,densA,type="l",xlab=expression(mu[A]),ylab="Density")

Note that we have to scale the density by the standard error seA because of the transformation
between tA and µA.

10. Similarly the marginal posterior distribution of µB is such that

tB =
µB −M1,B√
v1w1,BB

has a Student’s t-distribution on d1 degrees of freedom.

Plot this marginal posterior distribution as follows. (Note that some things are the same
between the µA and µB cases so we could take some shortcuts).

stepB<-1
muB<-seq(180,280,stepB)
seB<-sqrt(post$v1*w1[2,2])
tB<-(muB-post$M1[2])/seB
densB<-dt(tB,post$d1)/seB
plot(muB,densB,type="l",xlab=expression(mu[B]),ylab="Density")

11. We can, in fact, also plot the joint posterior density of µA and µB . We can use a bit of
theory which we do not cover in this module to help with this. It can be shown that the
joint posterior density of µA and µB is proportional to

[d1v1 +Q]−(d1+2)/2

where

Q = (µ−M1)TC1(µ−M1)

= (µA −M1,A)2C1,AA + (µB −M1,B)2C1,BB + 2(µA −M1,A)(µB −M1,B)C1,AB

We can do the calculations as follows.
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mA<-matrix(muA,nrow=length(muA),ncol=length(muB))
mB<-matrix(muB,nrow=length(muA),ncol=length(muB),byrow=T)
dA<-mA-post$M1[1]
dB<-mB-post$M1[2]
B1<-post$d1*post$v1
q<-(dA^2)*post$C1[1,1] + (dB^2)*post$C1[2,2] + 2*dA*dB*post$C1[1,2]
dens<-(B1+q)^(-(post$d1+2)/2)
dens<-dens/(sum(dens)*stepA*stepB)
contour(muA,muB,dens)
contour(muA,muB,dens,xlab=expression(mu[A]),ylab=expression(mu[B]))

We can add a line showing where µA = µB as follows.

abline(0,1,lty=2)
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