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13 Sequential updating

13.1 Theory

We have seen how we can change our beliefs about an unknown parameter θ from a prior distri-
bution with density f (0)(θ) to a posterior distribution with density f (1)(θ) when we observe data
y, using

f (1)(θ) ∝ f (0)(θ)L(θ; y)

where the likelihood L(θ; y) = fY (y | θ), the probability or probability density of y given θ.
Now suppose that we repeat the process. We start with a prior distribution with density f (0)(θ).

Then we observe data y(1) and our beliefs change so that they are represented by f (1)(θ). Suppose
that we now observe further data y(2) so that our density for θ becomes f (2)(θ).

Before we observe either y(1) or y(2), the joint probability (density) of θ, y(1), y(2) is

f (0)(θ)f1(y(1) | θ)f2(y(2) | θ, y(1))

where f1(y(1) | θ) is the conditional probability (density) of y(1) given θ and f2(y(2) | θ, y(1)) is the
conditional probability (density) of y(2) given θ and y(1).

Clearly
f (1)(θ) ∝ f (0)(θ)f1(y(1) | θ) = f (0)(θ)L1(θ; y(1))

and

f (2)(θ) ∝ f (0)(θ)f1(y(1) | θ)f2(y(2) | θ, y(1)) = f (0)(θ)L1,2(θ; y(1), y(2))

∝ f (1)(θ)f2(y(2) | θ, y(1)) = f (1)(θ)L2(θ; y(2) | y(1))

In many cases y(1) and y(2) will be independent given θ. In such a case f2(y(2) | θ, y(1)) =
f2(y(2) | θ) and

L1,2(θ; y(1), y(2)) = L1(θ; y(1))L2(θ; y(2)). (11)

Our “posterior” distribution after observing y(1) is our “prior” distribution before we observe
y(2). The only complication when y(1) and y(2) are not independent given θ is that the second
likelihood L2(θ; y(2) | y(1)) must allow for the dependence of y(2) on y(1).

Note that f (2)(θ) is the same whether we update our beliefs first by y(1) and then by y(2) or
first by y(2) and then by y(1). This is obvious when y(1) and y(2) are independent given θ and (11)
applies. In the case where they are not it is simply a matter of whether we factorise the joint
probability (density) of y(1) and y(2) given θ into f1(y(1) | θ)f2(y(2) | θ, y(1)), as above, or into
f∗2 (y(2) | θ)f∗1 (y(1) | θ, y(2)).
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13.2 Examples

13.2.1 Example 1: Binomial

Consider the example of section 3.4 where each animal may have a particular gene or not. The
prior pdf f (0)(θ) is proportional to

θa−1(1− θ)b−1.

We observe 20 animals, 3 of which have the gene, giving a likelihood

L1(θ; y(1)) ∝ θ3(1− θ)17.

Thus the posterior pdf at this stage, f (1)(θ), is proportional to

θa+3−1(1− θ)b+17−1,

the pdf of a beta(a+ 3, b+ 17) distribution.

Now suppose that we examine another 30 animals and 7 of these have the gene. These obser-
vations are reasonably supposed to be independent of y(1) given θ. So

L2(θ; y(2)) ∝ θ7(1− θ)23

and our new pdf for θ, f (2)(θ), is proportional to

θa+10−1(1− θ)b+40−1,

the pdf of a beta(a+ 10, b+ 40) distribution.
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13.2.2 Example 2: Sampling inspection

This is a more complicated example, in which y(1) and y(2) are not independent given θ. Consider
the acceptance sampling example in section 6.5. A batch of m items is manufactured. It contains
an unknown number, d, of defectives. We inspect a sample of n1 < m of the items and find r1
defectives among them. Suppose now that we select a further sample of n2 < m − n1 items from
the remaining m−n1 items in the batch and r2 defectives are found in this new sample. Note that
the unknown quantity here is d which therefore plays the role of θ.

The likelihoods are

L1(d; r1) =

(
d
r1

)(
m− d
n1 − r1

)
(

m
n1

)
for the first sample and

L2(d; r2 | r1) =

(
d− r1
r2

)(
(m− d)− (n1 − r1)

n2 − r2

)
(
m− n1

n2

)
for the second sample. Notice that L2(d; r2 | r1) does depend on r1 in this case. Observe also
that the overall likelihood is

L1,2(d; r1, r2) =

(
d
r1

)(
m− d
n1 − r1

)
(

m
n1

)
(
d− r1
r2

)(
(m− d)− (n1 − r1)

n2 − r2

)
(
m− n1

n2

)
=

d!
r1!(d− r1)!

× (m− d)!
(n1 − r1)![(m− d)− (n1 − r1)]!

×
{

m!
n1!(m− n1)!

}−1

× (d− r1)!
r2!(d− r1 − r2)!

× [(m− d)− (n1 − r1)]!
(n2 − r2)![(m− d)− (n1 + n2 − r1 − r2)]!

×
{

(m− n1)!
n2!(m− n1 − n2)!

}−1
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Deleting factors which do not involve d we see that

L1,2(d; r1, r2) ∝ d!
(r1 + r2)!(d− r1 − r2)!

× (m− d)!
(n1 + n2 − r1 − r2)![(m− d)− (n1 + n2 − r1 − r2)]!

×
{

m!
(n1 + n2)!(m− n1 − n2)!

}−1

∝

(
d

r1 + r2

)(
m− d

n1 + n2 − r1 − r2

)
(

m
n1 + n2

) ,

the likelihood from a single sample of n1 + n2 containing r1 + r2 defectives.
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14 Inference for Normal Distributions I

14.1 Introduction

The normal distribution is, of course, an important model in statistics. So far we have not con-
sidered inference for a normal distribution but have established the general principles of Bayesian
inference using examples with other distributions. The normal distribution, of course, has two
parameters and therefore we need a bivariate prior distribution.

In this lecture we will consider inference when we have a sample from a single normal population
and we know the value of the variance parameter. In the following lectures we will consider more
complicated problems.

14.2 Precision

In non-Bayesian statistics we usually think of the two parameters of a normal distribution as the
mean (usually µ) and the variance (usually σ2). In Bayesian statistics it is often more convenient
to work in terms of the mean and the precision. The precision is just the reciprocal of the variance.
Thus, for a normal N(µ, σ2) distribution, the precision is

τ = σ−2

and we would often write the distribution as N(µ, τ−1). Using precision τ the probability density
function becomes

f(y | µ, τ) =
( τ

2π

)1/2

exp
{
−τ

2
(y − µ)2

}
.

14.3 Likelihood

Suppose we are going to observe data y1, . . . , yn where Yi ∼ N(µ, τ−1) and, given µ, τ, the
observations are independent.

The likelihood is

L(µ, τ ; y) =
n∏

i=1

( τ
2π

)1/2

exp
{
−τ

2
(yi − µ)2

}
=

( τ
2π

)n/2

exp

{
−τ

2

n∑
i=1

(yi − µ)2
}

=
( τ

2π

)n/2

exp

{
−τ

2

n∑
i=1

(yi − ȳ + ȳ − µ)2
}

=
( τ

2π

)n/2

exp

{
−τ

2

[
n∑

i=1

(yi − ȳ)2 + n(ȳ − µ)2
]}
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L(µ, τ ; y) = exp
{
−nτ

2
(ȳ − µ)2

}( τ
2π

)n/2

exp
{
−τ

2
Sd

}
(12)

where ȳ =
1
n

n∑
i=1

yi and Sd =
n∑

i=1

(yi − ȳ)2.

14.4 Inference with known precision, normal prior for mean

In non-Bayesian statistics, when the variance is known tests and confidence intervals are based on
the normal distribution. When the variance is not known the tests and confidence intervals have
to be based on Student’s t-distribution. As we will see, a similar situation applies in Bayesian
statistics. First we will deal with the case where the variance, or precision, is known.

Suppose that our prior distribution for µ is normal with prior mean M0 and prior precision P0.
That is, it is N(M0, P

−1
0 ). This is a conjugate prior and the posterior distribution is normal, as

follows.

Posterior : In this case the posterior distribution is normal with mean M1 and precision P1 where

P1 = P0 + Pd,

M1 =
P0M0 + Pdȳ

P0 + Pd

where Pd = nτ =
(
σ2

n

)−1

Notice that the posterior precision is the sum of the prior precision and the “data precision”
Pd where the data precision is the reciprocal of the sampling variance of Ȳ and the posterior mean
is a weighted average of the prior mean and the sample mean, with weights given by the prior
precision and the data precision. Thus the amounts of weight we give to our prior beliefs about µ
and the evidence from the data depend on the relative sizes of our prior precision (measuring our
prior certainty) and the data precision (reflecting the sample size and the “error” precision).

Proof : The proof is straightforward.

The prior density is proportional to

exp
{
−P0

2
(µ−M0)2

}
.

The likelihood is proportional to

exp
{
−nτ

2
(ȳ − µ)2

}
.
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The posterior density is proportional to

exp
{
−P0

2
(µ−M0)2

}
× exp

{
−nτ

2
(ȳ − µ)2

}
= exp

{
−1

2
[
P0(µ−M0)2 + nτ(ȳ − µ)2

]}
= exp

{
−1

2
[
(P0 + nτ)µ2 − 2(P0M0 + nτȳ)µ+ P0M

2
0 + nτȳ2

]}
∝ exp

{
− (P0 + nτ)

2

[
µ2 − 2

(
P0M0 + nτȳ

P0 + nτ

)
µ+

(
P0M0 + nτȳ

P0 + nτ

)2
]}

∝ exp
{
− (P0 + nτ)

2
(µ−M1)2

}

Example : Suppose our prior mean for µ is M0 = 10 and our prior standard deviation for µ is 4.

A prior 95% interval for µ would then be 10 ± 1.96 × 4. That is 2.16 < µ < 17.84. The prior
variance is 42 = 16 and the prior precision P0 = 1/16 = 0.0625. Suppose the error standard
deviation is σ = 0.8 so σ2 = 0.64 and τ = 1/0.64 = 1.5625.
Suppose that n = 15 and

∑
(y) = 94.5. Then ȳ = 94.5/15 = 6.3. So the posterior precision is

P1 = 0.0625 + 15× 1.5625 = 23.5

so the posterior variance is 1/23.5 = 0.04255 and the posterior standard deviation is
√

0.04255 =
0.2063.
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The posterior mean is

M1 =
0.0625× 10 + 15× 1.5625× 6.3

23.5
= 6.3098.

A 95% posterior interval for µ is 6.3098± 1.96× 0.2063. That is 5.9055 < µ < 6.7142.

14.5 Problems 4

1. I recorded the attendance of students at tutorials for a module. Suppose that we can, in
some sense, regard the students as a sample from some population of students so that, for
example, we can learn about the likely behaviour of next year’s students by observing this
year’s. At the time I recorded the data we had had tutorials in Week 2 and Week 4. Let
the probability that a student attends in both weeks be θ11, the probability that a student
attends in week 2 but not Week 4 be θ10 and so on. The data are as follows.

Attendance Probability Observed frequency
Week 2 and Week 4 θ11 n11 = 25
Week 2 but not Week 4 θ10 n10 = 7
Week 4 but not Week 2 θ01 n01 = 6
Neither week θ00 n00 = 13

Suppose that the prior distribution for (θ11, θ10, θ01, θ00) is a Dirichlet distribution with den-
sity proportional to

θ311θ10θ01θ
2
00.

(a) Find the prior means and prior variances of θ11, θ10, θ01, θ00.
(b) Find the posterior distribution.
(c) Find the posterior means and posterior variances of θ11, θ10, θ01, θ00.
(d) Using the R function hpdbeta which may be obtained from the Web page (or other-

wise), find a 95% posterior hpd interval, based on the exact posterior distribution, for
θ00.

2. Suppose that we have J samples and, given the parameters, observation i in sample j is

yi,j ∼ N(µj , τ
−1)

for i = 1, . . . , nj and j = 1, . . . , J.

Let µ = (µ1, . . . , µJ)T , let ȳ = (ȳ1, . . . , ȳJ)T , and let

S =
J∑

j=1

nj∑
i=1

(yi,j − ȳj)2,

where

ȳj =
1
nj

nj∑
i=1

yi,j .

Show that ȳ and S are sufficient for µ and τ.
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3. We make n observations y1, . . . , yn, which, given that values of parameters α, β, are inde-
pendent observations from a gamma(α, β) distribution. Show that the statistics T1, T2 are
sufficient for α, β where

T1 =
n∑

i=1

yi and T2 =
n∏

i=1

yi.

4. Davies and Goldsmith (1972) give the following data on piston ring failures in steam-driven
compressors. There were four identical compressors in the same compressor house, each
oriented the same way, and each had three legs. The data give the number of failures in each
leg of each compressor over a period of some years.

Compressor North Centre South
Number Leg Leg Leg

1 17 17 12
2 11 9 13
3 11 8 19
4 14 7 28

Let the number of failures in leg j (North: j = 1, Centre: j = 2, South: j = 3) of compressor
i be Xi,j . Suppose that we regard the total number of failures, N = 166, as fixed and regard
the numbers X1,1, . . . , X4,3 as being an observation from a multinomial(N, θ1,1, . . . , θ4,3) dis-
tribution. Suppose that our prior distribution for θ1,1, . . . , θ4,3 is a Dirichlet(a1,1, . . . , a4,3)
distribution with ai,j = 2.0 for all i, j.

(a) Find the posterior distribution for θ1,1, . . . , θ4,3.

(b) Find the posterior mean for each of θ1,1, . . . , θ4,3.

(c) For each of θ1,1, . . . , θ4,3, find the symmetric 95% posterior interval, compare these
intervals and comment.

Note: A symmetric 95% interval for θ is simply an interval (k1, k2) such that Pr(θ < k1) =
Pr(θ > k2) = 0.025. You will need to use R to evaluate these intervals.

5. Ten measurements are made using a scientific instrument. Given the unknown value of
a quantity θ, the natural logarithms of the measurements are independent and normally
distributed with mean log θ and known standard deviation 0.05.

Our prior distribution is such that log θ has a normal distribution with mean 2.5 and standard
deviation 0.5.

The logarithms of the measurements are as follows.

2.99 3.03 3.04 3.01 3.12 2.98 3.03 2.98 3.07 3.10

(a) Find the posterior distribution of log θ.

(b) Find a symmetric 95% posterior interval for log θ.

(c) Find a symmetric 95% posterior interval for θ.

(d) Find the posterior probability that θ < 20.0.

6. Walser (1969) gave the following data on the month of giving birth for 700 women giving birth
for the first time. The births took place at the University Hospital of Basel, Switzerland.

Month No. of births Month No. of births Month No. of births
1 January 66 5 May 64 9 September 54
2 February 63 6 June 74 10 October 51
3 March 64 7 July 70 11 November 45
4 April 48 8 August 59 12 December 42
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We have unknown parameters θ1, . . . , θ12 where, given the values of these parameters, the
probability that one of these births takes place in month j is θj and January is month
1, February is month 2 and so on through to December which is month 12. Given the
parameters, the birth dates are assumed to be independent.

Our prior distribution for θ1, . . . , θ12 is a Dirichlet distribution with parameters a1 = a2 =
· · · = a12 = 2.

(a) Find the posterior distribution of θ1, . . . , θ12.

(b) For each of j = 1, . . . , 12, find the posterior mean of θj .

(c) For each of j = 1, . . . , 12, find the posterior probability that θj > 1/12 and comment on
the results.

(d) Find the joint posterior distribution of θ1, θ2, θ̃2, where θ̃2 = 1− θ1 − θ2.

Note: You may use R for the calculations but give the commands which you use with your
solution.

7. Potatoes arrive at a crisp factory in large batches. Samples are taken from each batch for
quality checking. Assume that each potato can be claasified as “good” or “bad” and that,
given the value of a parameter θ, potatoes are independent and each has probability θ of
being “bad.”

(a) Suppose that m samples, each of fixed size n, are chosen and that the numbers of bad
potatoes found are x1, . . . , xm. Show that

s =
m∑

i=1

xi

is sufficient for θ.

(b) Suppose that potatoes are examined one at a time until a fixed number r of bad potatoes
is found. Let the number of potatoes examined when the rth bad potato is found be y.
This process is repeated m times and the values of y are y1, . . . , ym. Show that

t =
m∑

i=1

yi

is sufficient for θ.

(c) Suppose that we have a prior distribution for θ which is a beta(a, b) distribution. A
two-stage inspection procedure is adopted. In Stage 1 potatoes are examined one at a
time until a fixed number r of bad potatoes is found. The rth bad potato found is the
yth to be examined. In Stage 2 a further n potatoes are examined and x of these are
found to be bad.

i. Find the posterior distribution of θ after Stage 1.
ii. Find the posterior distribution of θ after Stage 1 and Stage 2.

Homework 4

Solutions to Questions 5, 6, 7 of Problems 4 are to be submitted in the Homework Letterbox no
later than 4.00pm on Monday April 20th.
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