
MAS3301 Bayesian Statistics

M. Farrow
School of Mathematics and Statistics

Newcastle University

Semester 2, 2008-9

1



11 Conjugate Priors IV: The Dirichlet distribution and multi-
nomial observations

11.1 The Dirichlet distribution

The Dirichlet distribution is a distribution for a set of quantities θ1, . . . , θm where θi ≥ 0 and∑m
i=1 θi = 1. An obvious application is to a set of probabilities for a partition (i.e. for an exhaustive

set of mutually exclusive events).
The probability density function is

f(θ1, . . . , θm) =
Γ(A)∏m
i=1 Γ(ai)

m∏
i=1

θai−1
i

where A =
∑m
i=1 ai and a1, . . . , am are parameters with ai > 0 for i = 1, . . . ,m.

Clearly, if m = 2, we obtain a beta(a1, a2) distribution as a special case.
The mean of θj is

E(θj) =
aj
A

the variance of θj is

var(θj) =
aj

A(A+ 1)
−

a2
j

A2(A+ 1)

and the covariance of θj and θk, where j 6= k, is

covar(θj , θk) = − ajak
A2(A+ 1)

.

Also the marginal distribution of θj is beta(aj , A− aj).
Note that the space of the parameters θ1, . . . , θm has only m − 1 dimensions because of the

constraint
∑m
i=1 θi = 1, so that, for example, θm = 1 −

∑m−1
i=1 θi. Therefore, when we integrate

over this space, the integration has only m− 1 dimensions.

Proof (mean)

The mean is

E(θj) =
∫
· · ·
∫
θj

Γ(A)∏m
i=1 Γ(ai)

m∏
i=1

θai−1
i dθ1 . . . dθm−1

=
Γ(A)

Γ(A+ 1)
Γ(aj + 1)

Γ(aj)

∫
· · ·
∫

Γ(A+ 1)∏m
i=1 Γ(a′i)

m∏
i=1

θ
a′i−1
i dθ1 . . . dθm−1

=
Γ(A)

Γ(A+ 1)
Γ(aj + 1)

Γ(aj)
=
aj
A

where a′i = ai when i 6= j and a′j = aj + 1.

69



Proof (variance)

Similarly

E(θ2j ) =
Γ(A)

Γ(A+ 2)
Γ(aj + 2)

Γ(aj)
=

(aj + 1)aj
(A+ 1)A

so

var(θj) =
(aj + 1)aj
(A+ 1)A

−
(aj
A

)2

=
aj

A(A+ 1)
−

a2
j

A2(A+ 1)

Proof (covariance)

Also

E(θjθk) =
Γ(A)

Γ(A+ 2)
Γ(aj + 1)

Γ(aj)
Γ(ak + 1)

Γ(ak)
=

ajak
(A+ 1)A

so
covar(θj , θk) =

ajak
(A+ 1)A

− aj
A

ak
A

= − ajak
A2(A+ 1)

Proof (marginal)

We can write the joint density of θ1, . . . , θm as

f1(θ1)f2(θ2 | θ1)f3(θ3 | θ1, θ2) · · · fm−1(θm−1 | θ1, . . . , θm−2).

(We do not need to include a final term in this for θm because θm is fixed once θ1, . . . , θm−1 are
fixed).

In fact we can write the joint density as

Γ(A)
Γ(a1)Γ(A− a1)

θa1−1
1 (1− θ1)A−a1−1 × Γ(A− a1)

Γ(a2)Γ(A− a1 − a2)
θa2−1
2 (1− θ1 − θ2)A−a1−a2−1

(1− θ1)A−a1−1

× · · · × Γ(A− a1 − · · · − am−2)
Γ(am−1)Γ(A− a1 − · · · − am−1)

θ
am−1−1
m−1 θam−1

m

(1− θ1 − · · · θm−2)am−1+am−1
.

A bit of cancelling shows that this simplifies to the correct Dirichlet density.
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Thus we can see that the marginal distribution of θ1 is a beta(a1, A − a1) distribution and
similarly that the marginal distribution of θj is a beta(aj , A−aj) distribution. We can also deduce
the distribution of a subset of θ1, . . . , θm. For example if θ̃3 = 1−θ1−θ2−θ3, then the distribution
of θ1, θ2, θ3, θ̃3 is Dirichlet(a1, a2, a3, ã3) where ã3 = A− a1 − a2 − a3.

11.2 Multinomial observations

11.2.1 Model

Suppose that we will observe X1, . . . , Xm where these are the frequencies for categories 1, . . . ,m,
the total N =

∑m
i=1Xi is fixed and the probabilities for these categories are θ1, . . . , θm where∑m

i=1 θi = 1. Then, given θ, where θ = (θ1, . . . , θm)T , the distribution of X1, . . . , Xm is multinomial
with

Pr(X1 = x1, . . . , Xm = xm) =
N !∏m
i=1 xi!

m∏
i=1

θxi
i .

Notice that, with m = 2, this is just a binomial(N, θ1) distribution.
Then the likelihood is

L(θ; x) =
N !∏m
i=1 xi!

m∏
i=1

θxi
i

∝
m∏
i=1

θxi
i .

The conjugate prior is a Dirichlet distribution which has a pdf proportional to

m∏
i=1

θai−1
i .

The posterior pdf is proportional to

m∏
i=1

θai−1
i ×

m∏
i=1

θxi
i =

m∏
i=1

θai+xi−1
i .

This is proportional to the pdf of a Dirichlet distribution with parameters a1 +x1, a2 +x2, . . . am+
xm.

11.2.2 Example

In a survey 1000 English voters are asked to say for which party they would vote if there were
a general election next week. The choices offered were 1: Labour, 2: Liberal, 3: Conservative,
4: Other, 5: None, 6: Undecided. We assume that the population is large enough so that the
responses may be considered independent given the true underlying proportions. Let θ1, . . . , θ6
be the probabilities that a randomly selected voter would give each of the responses. Our prior
distribution for θ1, . . . , θ6 is a Dirichlet(5, 3, 5, 1, 2, 4) distribution.

This gives the following summary of the prior distribution.

Response ai Prior mean Prior var. Prior sd.
Labour 5 0.25 0.008929 0.09449
Liberal 3 0.15 0.006071 0.07792
Conservative 5 0.25 0.008929 0.09449
Other 1 0.05 0.002262 0.04756
None 2 0.10 0.004286 0.06547
Undecided 4 0.20 0.007619 0.08729
Total 20 1.00

Suppose our observed data are as follows.
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Labour Liberal Conservative Other None Undecided
256 131 266 38 114 195

Then we can summarise the posterior distribution as follows.

Response ai + xi Posterior mean Posterior var. Posterior sd.
Labour 261 0.2559 0.0001865 0.01366
Liberal 134 0.1314 0.0001118 0.01057
Conservative 271 0.2657 0.0001911 0.01382
Other 39 0.0382 0.0000360 0.00600
None 116 0.1137 0.0000987 0.00994
Undecided 199 0.1951 0.0001538 0.01240
Total 1020 1.0000
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12 Sufficiency

12.1 Introduction

Consider the following problem. We are going to observe two random variables X1, X2. In each
case, given the value of µ, we have

Xi | µ ∼ N(µ, V )

where the variance V is known but we wish to learn about the value of µ. Further, given µ, the
two variables X1, X2 are independent.

The likelihood comes from the joint pdf of X1, X2 but an exactly equivalent observation would
be Y1, Y2 where

Y1 = X1 +X2

Y2 = X1 −X2

It is easily seen that

Y1 ∼ N(2µ, 2V )
Y2 ∼ N(0, 2V )

and that Y1 and Y2 are independent. Therefore Y2 does not depend on µ and its value can not
tell us anything about µ. On the other hand the value of Y1 tells us everything which we can learn
from the data about µ. We say that Y1 is sufficient for µ and Y2 is ancillary for µ.

12.2 Definition

Suppose we have an unknown (e.g. a parameter) θ and we will observe data Y. The density (or
probability) of Y given θ is fY |θ(y | θ) and this gives us the likelihood, L(θ; y). Suppose we have
a statistic T (Y ), with value t.

Since, once we know Y, we can calculate T, can always write

fY |θ(y | θ) = fY,T |θ(y, t | θ) = fT |θ(t | θ)fY |t,θ(y | t, θ).

In some cases fY |t,θ(y | t, θ) does not depend on θ so fY |t,θ(y | t, θ) = fY |t(y | t). In this case

fY |θ(y | θ) = fT |θ(t | θ)fY |t(y | t). (9)

In such a case we say that T (Y ) is a sufficient statistic for θ given Y. Often we simply say that
T is sufficient for θ.

12.3 Factorisation theorem

Another way to express (9) is to say that T is sufficient for θ if and only if there are functions g, h
such that

fY |θ(y | θ) = g(θ, t)h(y) (10)

where h(y) does not depend on θ.
This is known as Neyman’s factorisation theorem.

Proof: If T is sufficient for θ then we can write g(θ, t) = fT |θ(t | θ) and h(y) = fY |t(y | t).
To prove the converse we start by integrating (or summing) (10) over all values of y where
T (y) = t. This gives

fT |θ(t | θ) = g(θ, t)H(t)
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for some function H(t). This gives us

g(θ, t) =
fT |θ(t | θ)
H(t)

which we substitute in (10) to obtain

fY |θ(y | θ) =
fT |θ(t | θ)h(y)

H(t)
.

Now

fY |t,θ(y | t, θ) =
fY,T |θ(y, t | θ)
fT |θ(t | θ)

=
fY |θ(y | θ)
fT |θ(t | θ)

so

fY |t,θ(y | t, θ) =
h(y)
H(t)

.

The right hand side of this equation does not depend on θ so the theorem is proved.

12.4 Sufficiency principle

From (9) we can see that, if T is sufficient for θ, then the likelihood for θ from y is proportional to
the likelihood for θ from t. Therefore, instead of using the likelihood for the full data we can use
the likelihood based simply on the distribution of T.

12.5 Examples

12.5.1 Poisson

Suppose that we observe random variables Y1, . . . , Yn where, given the value of the parameter
λ, Yi is independent of Yj for i 6= j and Yi ∼ Poisson(λ) for i = 1, . . . , n.
Then the likelihood is

L(λ; y) =
n∏
i=1

e−λλyi

yi!
= e−nλλS

n∏
i=1

1
yi!

= g(λ, S)h(y)

where S =
∑n
i=1 yi, g(λ, S) = e−nλλS and h(y) =

∏n
i=1

1
yi!
. So S is sufficient for λ.

Furthermore S ∼ Poisson(nλ) so an equivalent likelihood is

LS(λ; y) =
e−nλ(nλ)S

S!
∝ e−nλλS .
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12.5.2 Normal

Suppose that we observe random variables Y1, . . . , Yn where, given the value of the parameters
µ, σ2, Yi is independent of Yj for i 6= j and Yi ∼ N(µ, σ2) for i = 1, . . . , n.
Here the parameter is θ = (µ, σ2)T .
The likelihood is

L(µ, σ2; y) =
n∏
i=1

(2πσ2)−1/2 exp
{
− 1

2σ2
(yi − µ)2

}

= (2πσ2)−n/2 exp

{
− 1

2σ2

n∑
i=1

(yi − µ)2
}

= (2πσ2)−n/2 exp

{
− 1

2σ2

n∑
i=1

(yi − ȳ + ȳ − µ)2
}

= (2πσ2)−n/2 exp

{
− 1

2σ2

[
n∑
i=1

(yi − ȳ)2 + n(ȳ − µ)2
]}

= (2πσ2)−n/2 exp
{
− 1

2σ2

[
S + n(ȳ − µ)2

]}
= g(θ, T )h(y)

where h(y) = 1, T = (ȳ, S)T ,

ȳ =
1
n

n∑
i=1

yi and S =
n∑
i=1

(yi − ȳ)2.

Hence ȳ and S are sufficient for µ and σ2.
Furthermore, in the case where σ2 is known, ȳ is sufficient for µ since

L(µ; y) = exp
{
− n

2σ2
(ȳ − µ)2

}
(2πσ2)−n/2 exp

{
− S

2σ2

}
= g(µ, ȳ)h(y)

with

h(y) = (2πσ2)−n/2 exp
{
− S

2σ2

}
.
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