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7 Numerical Methods for More Than One Parameter

7.1 Introduction

It is often necessary to use numerical methods to do the necessary integrations for computing
posterior distributions and summaries. We have already seen, in section 6, the use of simple
numerical integration when we have just one unknown parameter. Similar methods can be used
when we have more than one. We will look at this first in the case of two unknown parameters.

If we have two unknown parameters θ1, θ2 then we often need to create a two-dimensional grid
of values, containing every combination of θ1,1, . . . , θ1,m1 and θ2,1, . . . , θ2,m2 , where θj,1, . . . , θj,mj
are a set of, usually equally spaced, values of θj . We therefore have m1m2 points and two step
sizes, δθ1, δθ2. Figure 14 shows such a grid diagramatically. Instead of a collection of two-
dimensional rectangular columns standing on a one-dimensional line, we now have a collection
of three-dimensional rectangular columns standing on a two-dimensional plane. The contours in
figure 14 represent the function being integrated. The small circles represent the points at which
the function is evaluated. The dashed lines represent the boundaries of the columns. Of course
we would really have many more function evaluations placed much more closely together. Notice
that some of the function evaluations are in regions where the value of the function is very small.
It is inefficient to waste too many function evaluations in this way and some more sophisticated
methods avoid doing this.

The approximate integral becomes∫ ∫
h(θ1, θ2) dθ1 dθ2 ≈

m1∑
j=1

m2∑
k=1

h(θ1,j , θ2,k)δθ1δθ2.

We can extend this to three or more dimensions but it becomes impractical when the number of
dimensions is large. If we use a 100×100 grid in two dimensions this gives 104 function evaluations.
If we use a 100×100×100 grid in three dimensions this requires 106 evaluations and so on. Clearly
the number of evaluations becomes prohibitively large quite quickly as the number of dimensions
increases. In such cases we would usually use Markov chain Monte Carlo methods which are beyond
the scope of this module.

It is sometimes possible to reduce the dimension of the numerical integral by integrating ana-
lytically with respect to one unknown.

7.2 Example: The Weibull distribution

7.2.1 Model

The Weibull distribution is often used as a distribution for lifetimes. We might be interested, for
example, in the lengths of time that a machine or component runs before it fails, or the survival
time of a patient after a serious operation. A number of different families of distributions are used
for such lifetime variables. Of course they are all continuous distributions and only give positive
probability density to positive values of the lifetime. The Weibull distribution is an important
distribution of this type. We can think of it as a generalisation of the exponential distribution.
The distribution function of an exponential distribution is F (t) = 1− exp(−λt). The distribution
function of a Weibull distribution is

F (t) = 1− exp (−λtα) (t ≥ 0) (5)

where the extra parameter α > 0 is called a shape parameter. It is often convenient to write λ = ρα

and then
F (t) = 1− exp (−[ρt]α) (t ≥ 0) (6)

and ρ > 0 is a scale parameter.
Differentiating (6) with respect to t, we obtain the pdf

f(t) = αρ(ρt)α−1 exp{−(ρt)α} (7)

for 0 ≤ t <∞.
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Figure 14: Numerical integration in two dimensions.
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67 313 1391 630 627 573 2093 28 492 482
206 1166 165 1088 496 313 437 815 436 17
32 131 340 939 247 1859 57 132 813 254

950 1615 463 258 2285 672 506 50 637 246
178 431 306 662 33 254 858 187 344 545

Table 4: Data for Weibull example.

If we use α, λ instead of α, ρ as the parameters, as in (5), then the pdf is

f(t) = αλtα−1 exp(−λtα). (8)

7.2.2 Evaluating the posterior distribution

Suppose that we work in terms of the α, ρ parameters of (7) and that we have n observations
t1, . . . , tn. Suppose that our prior density for α and ρ is f (0)

α,ρ(α, ρ). The likelihood is

L(α, ρ) = αnρnα

(
n∏
i=1

ti

)α−1

exp

{
−ρα

n∑
i=1

tαi

}
.

The posterior pdf is
f (1)
α,ρ(α, ρ) ∝ hα,ρ(α, ρ) = f (0)

α,ρ(α, ρ)L(α, ρ).

To complete the evaluation of the posterior pdf we find

C =
∫ ∞

0

∫ ∞
0

hα,ρ(α, ρ) dα dρ

numerically and then
f (1)
α,ρ(α, ρ) = hα,ρ(α, ρ)/C.

Suppose, for example, that we give α and ρ independent gamma prior distributions so that

f (0)
α,ρ(α, ρ) ∝ αaα−1e−bααρaρ−1e−bρρ.

Then the posterior pdf is proportional to

hα,ρ(α, ρ) = αn+aα−1ρnα+aρ−1

(
n∏
i=1

ti

)α−1

exp

{
−

[
bαα+ bρρ+ ρα

n∑
i=1

tαi

]}
.

Figure 6 shows the posterior density of α and ρ when n = 50, aα = 1, bα = 1, aρ = 3, bρ = 1000
and the data are as given in table 4. Figure 7 shows the same thing as a perspective plot except
that, to make the axes more readable, ρ has been replaced with R = 1000ρ.

To find, for example, the posterior mean of ρ we evaluate∫ ∞
0

∫ ∞
0

ρ f (1)
α,ρ(α, ρ) dα dρ = C−1

∫ ∞
0

∫ ∞
0

ρ hα,ρ(α, ρ) dα dρ.
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To find a 95 % hpd region for α, ρ we can either choose a value k and evaluate
∫ ∫

f
(1)
α,ρ(α, ρ) dα dρ

over all points in a grid for which f
(1)
α,ρ(α, ρ) > k then adjust k and repeat until the value of 0.95

is obtained or rank all of the points in our grid in decreasing order of f (1)
α,ρ(α, ρ) and cumulatively

integrate over them until 0.95 is reached.
To find the marginal pdf for α we evaluate∫ ∞

0

f (1)
α,ρ(α, ρ) dρ.

7.3 Transformations

7.3.1 Theory

It has probably become apparent by now that sometimes it may be helpful to use a transformation
of the parameters. For example, sometimes a posterior distribution where we need to use numerical
integration might have an awkward shape which makes placing a suitable and efficient rectangular
grid difficult.

In section 5.4 we saw how to change the pdf when we transform a single random variable. Some-
times, of course, we need a more general method for transforming between one set of parameters
and another. Let θ and φ be two alternative sets of parameters where there is a 1 - 1 relationship
between values of θ and values of φ, and therefore each contains the same number of parameters.
(There could appear to be more parameters in θ than in φ, for example, but, in that case, there
would have to be constraints on the values of θ so that there was the same effective number of
parameters in θ and φ). Let θ = (θ1, . . . , θk)T and φ = (φ1, . . . , φk)T . Suppose also that we can
write, for each i,

φi = gi(θ1, . . . , θk)

where g is a differentiable function. Then, if the density of θ is fθ(θ) and the density of φ is fφ(φ),

fθ(θ) = fφ(φ)|J |

where J is the Jacobian determinant, often just called “the Jacobian,”∣∣∣∣∣∣∣∣∣∣

∂φ1
∂θ1

∂φ1
∂θ2

· · · ∂φ1
∂θk

∂φ2
∂θ1

∂φ2
∂θ2

· · · ∂φ2
∂θk

...
...

...
...

∂φk
∂θ1

∂φk
∂θ2

· · · ∂φk
∂θk

∣∣∣∣∣∣∣∣∣∣
and |J | is its modulus.

For example, we could transform the (0,∞) ranges of the parameters α, ρ of a Weibull distri-
bution to (0, 1) by using

β =
α

α+ 1
, γ =

ρ

ρ+ 1
.

The Jacobian is

J =

∣∣∣∣∣ ∂β
∂α

∂β
∂ρ

∂γ
∂α

∂γ
∂ρ

∣∣∣∣∣ = (α+ 1)−2(ρ+ 1)−2.

Suppose that the joint posterior density of α and ρ is proportional to hα,ρ(α, ρ). So we define

hβ,γ(β, γ) = (α+ 1)2(ρ+ 1)2hα,ρ(α, ρ),

where

α =
β

1− β
, ρ =

γ

1− γ
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so

hβ,γ(β, γ) = (1− β)−2(1− ρ)−2hα,ρ

(
β

1− β
,

γ

1− γ

)
.

Then let

C =
∫ 1

0

∫ 1

0

hβ,γ(β, γ) dβ dγ.

The posterior mean of ρ is then

C−1

∫ 1

0

∫ 1

0

γ

1− γ
hβ,γ(β, γ) dβ dγ.

A hpd region for α, ρ can then be found by integrating C−1hβ,γ(β, γ) with respect to β, γ over
the points with the greatest values of

hα,ρ

(
β

1− β
,

γ

1− γ

)
= hα,ρ(α, ρ).

7.3.2 Example: A clinical trial

The Anturane Reinfarction Trial Research Group (1980) reported a clinical trial on the use of the
drug sulfinpyrazone in patients who had suffered myocardial infarctions (“heart attacks”). The
idea was to see whether the drug had an effect on the number dying. Patients in one group
were given the drug while patients in another group were given a “placebo,” that is an inactive
substitute. The following table gives the number of all “analysable” deaths up to 24 months after
the myocardial infarction and the total number of eligible patients who were not withdrawn and
did not suffer a “non-analysable” death during the study.

Deaths Total
Group 1 (Sulfinpyrazone) 44 560
Group 2 (Placebo) 62 540

We can represent this situation by saying that there are two groups, containing n1 and n2

patients, and two parameters, θ1, θ2, such that, given these parameters, the distribution of the
number of deaths Xj in Group j is binomial(nj , θj).

Now we could give θj a beta prior distribution but it seems reasonable that our prior beliefs
would be such that θ1 and θ2 would not be independent. There are various ways in which we could
represent this. One of these is as follows. We transform from the (0, 1) scale of θ1, θ2 to a (−∞,∞)
scale and then give the new parameters, η1, η2, a bivariate normal distribution (see section 5.3).
We can use a transformation where θj = F (ηj) and F (x) is the distribution function of a continuous
distribution on (−∞, ∞), usually one which is symmetric about x = 0. One possibility is to use
the standard normal distribution function Φ(x) so that θj = Φ(ηj). We write ηj = Φ−1(θj) where
this function, Φ−1(x), the inverse of the standard normal distribution function, is sometimes called
the probit function. If we use this transformation then it is easily seen that

fθ(θ1, θ2) = fη(η1, η2)/|J |,

where fθ(θ1, θ2) is the joint density of θ1, θ2, fη(η1, η2) is the joint density of η1, η2 and

|J | = |

∣∣∣∣∣ ∂θ1
∂η1

∂θ1
∂η2

∂θ2
∂η1

∂θ2
∂η2

∣∣∣∣∣ | = φ(η1)φ(η2),

where φ(x) is the standard normal pdf.
Suppose that, from past experience, we can give a 95% symmetric prior interval for θ2 (placebo)

as 0.05 < θ2 < 0.20. (This is actually quite a wide interval considering that there may be a lot of
past experience of such patients). This converts to a 95% interval of −1.645 < η2 < −0.842. For
example, in R, we can use
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> qnorm(0.05,0,1)
[1] -1.644854

If we give η2 a normal prior distribution then we require the mean to be µ2 = ([−1.645] +
[−0.842])/2 ≈ −1.24 and the standard deviation to be σ2 = ([−0.842]−[−1.645])/(2×1.96) ≈ 0.21,
since a symmetric 95% normal interval is the mean plus or minus 1.96 standard deviations. Let us
use the same mean for a normal prior distribution for η1 (sulfinpyrazone) so that we have equal prior
probabilities for an increase and a decrease in death rate when the treatment is given. However it
seems reasonable that we would be less certain of the death rate given the treatment so we increase
the prior standard deviation to σ1 = 2σ2 = 0.42. This implies a 95% interval −2.06 < η1 < −0.42
which, in turn, implies 0.02 < θ1 < 0.34. (This is a wide interval so we are really not supplying
much prior information).

We also need to choose a covariance or correlation between η1 and η2. At this point we will
not discuss in detail how to do this except to say that, if we choose the correlation to be r, then
the conditional variance of one of η1, η2 given the other will be 100r2% of the marginal variance.
For example, if we choose r = 0.7, then the variance of one is roughly halved by learning the
value of the other. Suppose that we choose this value. Then the covariance between η1 and η2 is
0.7× 0.21× 0.42 = 0.0617.

In evaluating the joint prior density of η1, η2, we can make use of the fact, which is easily
confirmed, that, if δj = (ηj − µj)/σj and r = covar(η1, η2)/(σ1σ2), then the joint density is
proportional to

exp
{
− 1

2(1− r2)
(δ2

1 + δ2
2 − 2rδ1δ2)

}
.

Figure 15 shows a R function to evaluate the posterior density. Figure 16 shows the resulting
posterior density. The dashed line is the line θ1 = θ2. We see that most of the probability lies on
the side where θ2 > θ1 which suggests that the death rate is probably greater with the placebo
than with sulfinpyrazone, which, of course, suggests that sulfinpyrazone has a beneficial effect.

To investigate further what the posterior tells us about the effect of sulfinpyrazone, we can
calculate the posterior probability that θ1 < θ2. This is done by integrating the joint posterior
density over the region where θ1 < θ2. This calculation is included in the function shown in figure
15. The calculated probability is 0.972. We can also find the posterior density of the relative risk,
θ1/θ2, or the log relative risk, log(θ1/θ2). Let γ be the log relative risk. We can modify the function
in figure 15 so that it uses a grid of γ and θ2 values, evaluates the joint posterior density of γ and
θ2 and then integrates out θ2. Of course we need to transform between θ1, θ2 and γ, θ2 where the
densities are related by

fθ1,θ2(θ1, θ2) = fγ,θ2(γ, θ2)|J |

and J = θ−1
1 is the appropriate Jacobian. Figure 17 shows the prior and posterior densities

of the log relative risk, γ. Values of γ less than zero correspond to a smaller death rate with
sulfinpyrazone than with the placebo. Notice that the prior density is not quite symmetric about
zero. It is symmetric on the η scale but not on the γ scale. The prior median is zero, however.

There are other methods available to deal with problems of this sort, some involving approxi-
mations and fairly simple calculations.

8 Conjugate Priors I: The beta distribution

8.1 Introduction

We have already come across the idea of a conjugate prior distribution in Lecture 4. Now we will
look at this idea in more detail.

Suppose we wish to learn about a parameter θ. Suppose our prior distribution for θ has pdf
f0(θ). Suppose we observe data y and the likelihood function is L(θ; y). Now our posterior pdf for
θ is

f1(θ) ∝ f0(θ)L(θ; y).
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function(theta1,theta2,n,x,prior)
{# Evaluates posterior density for probit example.
# prior is mean1, mean2, sd1, sd2, correlation
n1<-length(theta1)
n2<-length(theta2)
step1<-theta1[2]-theta1[1]
step2<-theta2[2]-theta2[1]
theta1<-matrix(theta1,nrow=n1,ncol=n2)
theta2<-matrix(theta2,nrow=n1,ncol=n2,byrow=T)
eta1<-qnorm(theta1,0,1)
eta2<-qnorm(theta2,0,1)
delta1<-(eta1-prior[1])/prior[3]
delta2<-(eta2-prior[2])/prior[4]
r<-prior[5]
d<-1-r^2
logprior<- -(delta1^2 + delta2^2 - 2*r*delta1*delta2)/(2*d)
J<-dnorm(eta1,0,1)*dnorm(eta2,0,1)
logprior<-logprior-log(J)
loglik<-x[1]*log(theta1)+(n[1]-x[1])*log(1-theta1)+x[2]*log(theta2)+(n[2]-x[2])*log(1-theta2)
logpos<-logprior+loglik
logpos<-logpos-max(logpos)
posterior<-exp(logpos)
int<-sum(posterior)*step1*step2
posterior<-posterior/int
prob<-sum(posterior*(theta1<theta2))*step1*step2
ans<-list(density=posterior,prob=prob)
ans
}

Figure 15: R function for probit example (7.3.2).
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Figure 16: Posterior density of θ1 and θ2 in probit example (7.3.2). The dashed line is θ1 = θ2.

−1.0 −0.5 0.0 0.5 1.0

0.
0

1.
0

2.
0

Log Relative risk

D
en

si
ty

Figure 17: Posterior density (solid) and prior density (dashes) of log relative risk in probit example
(7.3.2).
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Conjugate prior distributions A conjugate prior distribution is one where the form of the
posterior distribution is the same as the form of the prior distribution. That is f0(θ) and
f1(θ) are pdfs belonging to the same family of (e.g. they are both normal or they are both
gamma). Clearly the form of the conjugate prior depends on the form of the likelihood. So
there is a different conjugate distribution for a different data (or “sampling”) distribution.
In some cases there is no conjugate prior distribution.

We are not, of course, compelled to use a conjugate prior distribution. Our prior beliefs simply
might not be of the appropriate form. However, very often, a conjugate prior will be able to
represent our beliefs closely enough and the calculations then become much easier. When we feel
that we can not use a conjugate prior, even though one exists, we may be able to use a mixture of
conjugate priors to represent our beliefs. This topic will be discussed in a later lecture.

8.2 Beta distribution

In this lecture we will look at the beta distribution as a conjugate prior distribution.
If θ ∼ beta(a, b) then it has pdf given by

f(θ) =


0 (θ ≤ 0)
Γ(a+b)

Γ(a)Γ(b)θ
a−1(1− θ)b−1 (0 < θ < 1)

0 (θ ≥ 1)

where a > 0, b > 0 and Γ(u) is the gamma function

Γ(u) =
∫ ∞

0

wu−1e−w dw = (u− 1)Γ(u− 1).

If θ ∼ beta(a, b) then the mean of θ is

E(θ) =
a

a+ b

and the variance of θ is
var(θ) =

ab

(a+ b+ 1)(a+ b)2
.

Proof: The mean is

E(θ) =
∫ 1

0

θ
Γ(a+ b)
Γ(a)Γ(b)

θa−1(1− θ)b−1 dθ

=
Γ(a+ b)

Γ(a)
Γ(a+ 1)

Γ(a+ b+ 1)

∫ 1

0

Γ(a+ b+ 1)
Γ(a+ 1)Γ(b)

θa+1−1(1− θ)b−1 dθ

=
Γ(a+ b)

Γ(a)
Γ(a+ 1)

Γ(a+ b+ 1)

=
a

a+ b

46



Proof continued Similarly

E(θ2) =
Γ(a+ b)

Γ(a)
Γ(a+ 2)

Γ(a+ b+ 2)
=

(a+ 1)a
(a+ b+ 1)(a+ b)

.

So

var(θ) = E(θ2)− [E(θ)]2

=
(a+ 1)a

(a+ b)(a+ b+ 1)
− a2

(a+ b)2

=
a(a+ 1)(a+ b)− a2(a+ b+ 1)

(a+ b+ 1)(a+ b)2

=
(a2 + a)(a+ b)− a2(a+ b)− a2

(a+ b+ 1)(a+ b)2

=
ab

(a+ b+ 1)(a+ b)2

8.3 Binomial observations

8.3.1 Model

Suppose that we will observe X1, . . . , Xn where these are mutually independent given the value of
θ and

Xi ∼ binomial(Ni, θ)

where N1, . . . , Nn are known or will be observed and
∑n
i=1Ni = N.

Then the likelihood is

L(θ; x) =
n∏
i=1

(
Ni
xi

)
θxi(1− θ)Ni−xi

∝ θS(1− θ)N−S

where S =
∑n
i=1 xi.

The conjugate prior is a beta distribution which has a pdf proportional to

θa−1(1− θ)b−1

for 0 < θ < 1.
The posterior pdf is proportional to

θa−1(1− θ)b−1 × θS(1− θ)N−S = θa+S−1(1− θ)b+N−S−1.

This is proportional to the pdf of a beta(a+
∑
xi, b+N −

∑
xi) distribution.
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8.3.2 Example

Consider the example in section 3.4 where each animal may have a particular gene or not. The
prior pdf is proportional to

θa−1(1− θ)b−1

where we specify the values of a and b.
The posterior pdf is then proportional to

θa+3−1(1− θ)b+17−1.

This is also the pdf of a beta distribution.
The posterior distribution does depend on the choice of prior distribution, in this case repre-

sented by the parameters a and b. To illustrate this let us consider four quite different choices of
prior distribution, as follows.

Case 1 With a = b = 1 we obtain a uniform prior distribution for θ. In this case the posterior pdf
is simply proportional to the likelihood.

Case 2 With a = 2 and b = 1 we obtain a triangular prior distribution expressing a belief that
larger values of θ are more likely.

Case 3 With a = 1 and b = 2 we obtain a triangular prior distribution expressing a belief that
smaller values of θ are more likely.

Case 4 With a = b = 2 we obtain a quadratic prior distribution expressing the belief that values
of θ close to 0.5 are more likely.

Figure 18 shows, for each of these cases, the (scaled) likelihood and the prior and posterior pdf.
In this way we can examine the sensitivity of the posterior distribution to the prior specification.
Remember that the likelihood depends only on the data, not the prior, and is the same in all four
cases. In this example, with a fairly small sample size and strongly differing prior distributions, we
can see the effect of changes in the prior, although the effect is perhaps smaller than some might
expect. In the more general case where we observe x animals with the gene out of n animals, the
parameters of the posterior distribution are a+ x and b+ n− x. Clearly, as n becomes larger, the
effect of the prior parameters a and b becomes less important. If we do find that the posterior
distribution is very sensitive to the choice of prior, over a reasonable range of choices, then this
simply tells us that the data are not very informative and so change our beliefs relatively little.

The inferential process really consists of calculating the posterior probability distribution. Un-
like non-Bayesian statistics we do not need to have “estimators”, “confidence intervals” etc. How-
ever we might want to calculate particular posterior quantities for particular purposes, such as the
posterior probability that the mean concentration of a compound in the bloodstream is increased
after a particular treatment, or we may wish to summarise a posterior distribution simply for
convenience.

For example, we might calculate the mean and variance of the posterior distribution. In this
example, the prior mean is a/(a+b) and the prior variance is ab/[(a+b+1)(a+b)2]. The posterior
mean and variance are (a+ 3)/(a+ b+ 20) and (a+ 3)(b+ 17)/[(a+ b+ 21)(a+ b+ 20)2]. In the
general case of observing x out of n, the posterior mean and variance are (a+ x)/(a+ b+ n) and
(a + x)(a + n − x)/[(a + b + n + 1)(a + b + n)2]. Once again we see that the dependence on the
prior will decrease as the sample size increases.

We can also calculate the probability that an unknown lies within a certain interval or range.
We might have a particular interval in mind because it is of interest to us or we might simply
want to do this as another way to summarise a posterior distribution. For example we might
find an interval such that there is a posterior probability of 0.95 that an unknown θ lies in the
interval. Such an interval is sometimes called a 95% credible interval. Of course there are many
such intervals which we could validly calculate. Perhaps the easiest, but not necessarily the most
appropriate, is a symmetric interval such that the probability that θ is less than the lower limit is
equal to the probability that it is greater than the upper limit.

Table 5 gives prior and posterior means, standard deviations and symmetric 95% credible
intervals for θ in the four cases above.
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Case 1, (a=1, b=1)

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

θθ

D
en

si
ty

Case 2, (a=2, b=1)
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Case 3, (a=1, b=2)
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Case 4, (a=2, b=2)

Figure 18: Likelihood (solid line), prior pdf (dashes) and posterior pdf (dots) in Cases 1, . . . , 4.

Prior Posterior
Case a b Mean Std.dev. 95% interval Mean Std.dev. 95% interval

1 1 1 0.500 0.289 0.025 < θ < 0.975 0.182 0.080 0.054 < θ < 0.363
2 2 1 0.667 0.236 0.158 < θ < 0.987 0.217 0.084 0.078 < θ < 0.403
3 1 2 0.333 0.236 0.013 < θ < 0.842 0.174 0.077 0.052 < θ < 0.349
4 2 2 0.500 0.224 0.094 < θ < 0.906 0.208 0.081 0.075 < θ < 0.388

Table 5: Numerical summaries for the four cases.
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Practical 1

1: One dimensional conjugate example

We are interested in the proportion of patients given a certain drug who suffer a particular side
effect. Let this proportion be θ. Our prior distribution for θ is a beta(1, 4) distribution. We observe
a sample of n = 30 patients, of whom x = 5 suffer the side effect. Assume that we can regard this
observation as a value from the conditional binomial(30, θ) distribution of x given θ.

Use R to plot a graph showing the prior density, the likelihood and the posterior density of θ,
as follows.

1. Set up a grid of θ values.

theta<-seq(0,1,0.01)

2. Calculate the prior density.

prior<-dbeta(theta,1,4)

3. The likelihood is proportional to θ5(1 − θ)25 = θ6−1(1 − θ)26−1. This is proportional to the
density of a beta(6, 26) distribution. Calculate this.

likelihood<-dbeta(theta,6,26)

4. The posterior distribution is beta(1 + 5, 4 + 25). That is beta(6, 29). Calculate the posterior
density.

posterior<-dbeta(theta,6,29)

5. Plot the graph.

plot(theta,posterior,type="l",xlab=expression(theta),ylab="Density")
lines(theta,prior,lty=2)
lines(theta,likelihood,lty=3)

Note that I plotted the posterior density first because I knew that this would be the tallest
and that this would determine the height of the graph. Another way to achieve the same
end, without having to know this, would be as follows.

top<-max(c(prior,likelihood,posterior))
plot(theta,prior,type="l",ylim=c(0,top),lty=2,xlab=expression(theta),

ylab="Density")
lines(theta,likelihood,lty=3)
lines(theta,posterior)

2: One dimensional numerical example

This is exactly like the previous example except that we use a different prior distribution. The
prior density is now proportional to

g(θ) =
{

1.1− 2θ (0 < θ < 0.5)
0.1 (0.5 ≤ θ < 1) .

1. Set up a grid of θ values.

theta<-seq(0,1,0.01)

2. Calculate the prior density.
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prior<-rep(0.1,101)
prior<-prior+(1-2*theta)*(theta<0.5)

Now, to make this a proper density we need to divide by the integral which is 0.1+(0.5×1)/2 =
0.35.

prior<-prior/0.35

3. The likelihood is proportional to θ5(1 − θ)25 = θ6−1(1 − θ)26−1. This is proportional to the
density of a beta(6, 26) distribution. Calculate this.

likelihood<-dbeta(theta,6,26)

4. The posterior density is proportional to the prior density times the likelihood.

posterior<-prior*likelihood

We have to normalise this by dividing by the integral.

posterior<-posterior/(sum(posterior*0.01))

5. Plot the graph.

plot(theta,posterior,type="l",xlab=expression(theta),ylab="Density")
lines(theta,prior,lty=2)
lines(theta,likelihood,lty=3)

3: Two-dimensional numerical example (Weibull)

To illustrate the calculations in a two-parameter case analysed numerically we will look at inference
for the parameters of a Weibull distribution using the data in Table 4.

1. The data are available in a file weibex.txt which can be downloaded from the module Web
page.

2. To do the calculations in R we enter the data into a vector t.

t<-scan("weibex.txt")

(Alternatively you can simply type the numbers yourself).

3. From the module Web page, download a file called weibpost.r which contains a R function
to evaluate the posterior density in the case where α and ρ have independent gamma prior
distributions. It is written with the intention of being reasonably easy to follow rather than
being the most efficient program possible. Also I have added numbers to some of the lines
as comments, e.g. # 1, for reference.

4. Load the function into R. Type

weibpost<-

and then copy the contents of the file, paste it after this and press the “Enter” key.

5. Before we use the function we need to set up ranges of α and ρ values. For example:

alphgrid<-seq(0.6,1.6,0.005)
rhogrid<-seq(0.001,0.003,0.00001)
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Do this. This will allow us to create a 201 × 201 grid in the α, ρ plane. The values of α go
from 0.6 to 1.6 in steps of 0.005 and the values of ρ go from 0.001 to 0.003 in steps of 0.00001.
Of course these numbers are more or less guesses at this stage. We may have to change them
and try again.

6. We can get some idea of the sort of range to use by looking at the data. Since F (t) =
1−exp(−[ρt]α), we find that ln{− ln[1−F (t)]} = α ln ρ+α ln t. So, if we could plot ln{− ln[1−
F (t)]} against ln t, we should get a straight line with gradient α and intercept α ln ρ. Of course
we do not know what F (t) is, because we do not know the values of the parameters, but,
with a moderately large sample of data like that which we have here, we can get a rough
idea directly from the data. If the data arranged in increasing order are t(1), . . . , t(n), then
a rough estimate of F (t(j)) is given by (j − 0.5)/n. We can therefore plot a graph in R as
follows.

ltsort<-log(sort(t))
n<-length(t)
F<-((1:n)-0.5)/n
G<-log(-log(1-F))
plot(ltsort,G)

This gives us a line with approximate gradient 1.1 and approximate intercept −6.9. These
suggest a value for α around 1.1 and a value for ρ around exp(−6.9/1.1) ≈ 0.002. There are
methods we can use to get an idea how of wide the range around these values should be but
we will leave these until later in the module.

7. Next we specify the parameters of our prior distribution. We give α a gamma(1, 1) distribu-
tion and ρ independently a gamma(3, 1000) distribution as follows.

prior<-c(1,1,3,1000)

8. We can now create a two-dimensional array containing values of the posterior density by
typing

posterior<-weibpost(alphgrid,rhogrid,t,prior)

In the function weibpost, lines 1-4 are there simply to make it easier to see how the prior
parameters are used. Lines 10-13 create two-dimensional arrays of α and ρ values so that
every combination of values of α and ρ is represented by a position in the grid. The next
line computes

ln
{
αaα−1e−bααρaρ−1e−bρρ

}
which, apart from a constant, is the logarithm of the joint prior density. Line 18 then adds
to this, for each observation,

ln
{
αρ(ρti)α−1 exp [−(ρti)α]

}
which is the contribution to the log-likelihood of observation i. Line 20 adjusts the resulting
values so that they are not too large or too small before we exponentiate in line 21. Specifically
we adjust so that the largest value is zero. Then, after exponentiating, the largest value is 1.
This adjustment is allowed since we are going to rescale, ie normalise, the density anyway.
The actual integration takes place in line 22 and the posterior density is normalised in line
23.

9. Make a contour plot of the posterior density, like figure 6, using the following command.

contour(alphgrid,rhogrid,posterior,xlab=expression(alpha),ylab=expression(rho))

We see that we have succeeded in capturing the important part of the distribution within
our grid. If we had cut off an important part or if we had too much empty space we would
adjust our grid and try again.
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10. Produce a graph like figure 7 using the following commands.

alphgrid<-seq(0.6,1.6,0.01)
rhogrid<-seq(0.001,0.003,0.00002)
posterior<-weibpost(alphgrid,rhogrid,t,prior)
post<-posterior/1000
R<-rhogrid*1000
persp(alphgrid,R,post,xlab="Alpha",ylab="R",zlab="Density",phi=25,theta=45,

ticktype="detailed",nticks=2)

11. To calculate the marginal posterior density of α or ρ we can integrate along the rows or
columns of the array containing the posterior density. Calculate and plot the marginal
density of α as follows.

apost<-rowSums(posterior)*rstep
plot(alphgrid,apost,type="l",xlab=expression(alpha),ylab="Density")

Here rstep is the step size for ρ, i.e. 0.00001 in the original calculation of posterior.

12. Use the marginal density to calculate the posterior mean of α as follows.

> pmeana<-sum(alphgrid*apost)*astep
> pmeana

Here astep is the step size for α, i.e. 0.005 in the original calculation of posterior.

13. Now calculate the posterior mean directly without first finding the marginal density of α, as
follows.

> alpha<-matrix(alphgrid,nrow=101,ncol=101)
> pmeana<-sum(posterior*alpha)*0.00001*0.005
> pmeana

14. Each of the contours shown in figure 6 forms the boundary of a joint hpd region for α and ρ.
However we have not been able to specify the probability contained within the region. Find
a hpd region with a specified probability as follows. First sort the values of the posterior
density into ascending order.

postvec<-sort(c(posterior))

Next cumulatively sum them.

postvecsum<-cumsum(postvec)*astep*rstep

Now determine the level of the posterior density which will determine the contour which we
want. For example, if we want a 95% region then we want the integral over the region outside
the hpd region to be 0.05.

crit<-max(postvec[postvecsum<0.05])

Now label the points which are inside the hpd region with 1 and those outside with 0 and
draw the boundary as a contour.

hpd<-ifelse((posterior>crit),1,0)
contour(alphgrid,rhogrid,hpd,levels=c(0.5),xlab=expression(alpha),ylab=expression(rho),

drawlabels=FALSE)
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4: Two-dimensional numerical example (Probit)

This refers to the example in Section 7.3.2.

1. A file probit1.r containing the R function shown in Figure 15 can be downloaded from the
module Web page. Download this file and install the function.

probit1<-

Paste the contents of the file and press “Enter.”

2. Enter the data.

n<-c(560,540)
x<-c(44,62)

3. Specify the prior.

prior<-c(-1.24,-1.24,0.42,0.21,0.7)

4. Set up ranges for θ1 and θ2.

theta1<-seq(0.01,0.99,0.01)
theta2<-theta1

(Because of the way the function is written, we avoid θ = 0 and θ = 1. We could fix this bug,
of course).

5. Use the function to evaluate the posterior density.

posterior<-probit1(theta1,theta2,n,x,prior)

6. Make a contour plot of the posterior density.

contour(theta1,theta2,posterior$density)

(The result of the function is a list. One of the elements is the posterior density).

7. We see that the posterior probability is concentrated in one region so we adjust the ranges
for θ1 and θ2 and try again.

theta1<-seq(0.05,0.15,0.001)
theta2<-seq(0.05,0.15,0.001)
post<-probit1(theta1,theta2,n,x,prior)
dens<-post$density
contour(theta1,theta2,dens,xlab=expression(theta[1]),ylab=expression(theta[2]))

8. This time the result looks more satisfactory. We can add a line showing where θ1 = θ2.

abline(0,1,lty=2)

We can easily see that nearly all of the posterior probability lies in the region where θ2 > θ1.

9. The other element of the result of the function is the posterior probability that θ2 > θ1.
Extract this.

posterior$prob

10. To make the plot of the prior and posterior densities of the log relative risk, downsload the
function probit2 in the file probit2.r from the module Web page and install it in R.
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probit2<-

Paste the contents of the file.

11. Set up the data and prior. (They are the same as before so you should already have these).

n<-c(560,540)
x<-c(44,62)
prior<-c(-1.24,-1.24,0.42,0.21,0.7)

12. Set up ranges for γ, the log relative risk, and θ2.

gamma<-seq(-1,1,0.02)
theta2<-seq(0.05,0.15,0.001)

13. Use the function.

probit2(gamma,theta2,n,x,prior)

Reference

Anturane Reinfarction Trial Research Group, 1980. Sulfinpyrazone in the prevention of sudden
death after myocardial infarction. New England Journal of Medicine, 302, 250-256.
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