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3 Parameters and likelihood

3.1 Introduction

Now, from where did I get the probabilities in table 1? Well, I could have thought of them
directly. There are, after all, only four possible outcomes. However, in fact I thought less directly.
Especially when the number of possible outcomes starts to increase it becomes helpful to structure
our thoughts by introducing parameters. We also often make use of ideas such as that all individuals
in a group appear, in some way, “the same” to us.

Introduce unknowns T1, T2 such that Ti = 1 if Si and Ti = 0 otherwise (i.e. if S̄i, where this
denotes “not Si”). Consider a quantity θ such that, if we knew the value of θ, then Pr(S1) =
Pr(S2) = θ and T1, T2 are independent given θ. We can think of θ as the unknown proportion
of animals that have the gene. We can represent this situation in a diagram or graphical model.
There are various kinds of graphical model but the diagram shown here is a directed acyclic graph
or DAG. The nodes are connected by directed arrows (called arcs or edges) and it is impossible
to find a path along the directions of the arrows which returns to where you started. The term
influence diagram is also sometimes used for such graphs. See figure 2.

In this case we would say that, in terms of possessing the gene, the animals are exchangeable.
That is T1 and T2 are exchangeable.

Suppose that, before we observe either animal, we believe that θ can have only two values,
0.1 and 0.4, and we give these probabilities of 2/3 and 1/3 respectively. This is called a prior
probability distribution for θ. (It is, of course, unrealistic to allow only two values but we will put
this right very soon).

θ = 0.1 θ = 0.4
Prior probs. π1 = 2/3 π2 = 1/3

Pr(S|θ) 0.1 0.4

We can now easily work out the joint probabilities for θ, T1, T2.

Pr(θ, T1, T2) = Pr(θ) Pr(T1|θ) Pr(T2|θ)

Notice how this relates to the diagram.
We can find the probabilities in the original table by summing over the distribution of θ.

Pr(S1 ∧ S2) = (2/3)× 0.12 + (1/3)× 0.42 = 0.06
Pr(S1 ∧ S̄2) = (2/3)× 0.1× 0.9 + (1/3)× 0.4× 0.6 = 0.14
Pr(S̄1 ∧ S2) = (2/3)× 0.9× 0.1 + (1/3)× 0.6× 0.4 = 0.14
Pr(S̄1 ∧ S̄2) = (2/3)× 0.92 + (1/3)× 0.62 = 0.66

Pr(S1) = (2/3)× 0.1 + (1/3)× 0.4 = 0.2
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Figure 2: Graphical model for animals example

Now, if we observe the first animal, we can apply Bayes’ rule to find the posterior probabilities
for the values of θ.

Pr(θ = 0.1|S1) =
π1 × 0.1

π1 × 0.1 + π2 × 0.4

=
(2/3)× 0.1

(2/3)× 0.1 + (1/3)× 0.4
=

1
3

Similarly Pr(θ = 0.4|S1) = 2/3. In fact we can deduce the following simple form of Bayes’ rule.

“Posterior ∝ Prior × Likelihood”

Here the “likelihood” is Pr(S1|θ).
Now the information propagates through θ to T2 and the probability of S2 becomes (1/3) ×
0.1 + (2/3)× 0.4 = 0.3.

3.2 A slightly less simple example

We keep the same example except that this time there are twenty animals. We can use the same
diagram as above except that there are twenty nodes T1, . . . , T20.

What happens if we observe 3 animals with the gene out of twenty observed?
The likelihood is proportional to θ3(1−θ)17. The likelihood function, scaled so that its maximum

value is 1.0, is shown in figure 3. The maximum of this function occurs at θ = 3/20.
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Figure 3: Scaled likelihood in the animals’ gene example, with 3 animals out of twenty observed
with the gene.

The posterior probabilities are proportional to:

(2/3)× 0.130.917 = 1.1118× 10−4

(1/3)× 0.430.617 = 3.61× 10−6

So the posterior probability that θ = 0.1 is

Pr(θ = 0.1|D) =
1.1118

1.1118 + 0.0361
= 0.969

We can now find predictive probabilities for future animals. E.g. the probability that two new
animals both have the gene:
0.969× 0.12 + 0.031× 0.42 = 0.01465.
In effect we are adding two extra nodes, T21, T22 to our diagram but not observing these.
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3.3 The continuous form of Bayes’ theorem

So far, in our animals’ gene example, our prior probability distribution for θ, the proportion of
animals with the gene, has been rather unrealistic. We are not likely, in practice, to believe that
there are only two possible values. It would be more realistic to suppose that any value between
0 and 1 was possible. This requires a continuous prior distribution for θ. How does this affect the
application of Bayes’ theorem?

If our prior pdf for θ is f (0)(θ) and our likelihood (That is the conditional probability of the
data given θ) is L(θ) then our posterior pdf for θ (the conditional pdf of θ given the data) is

f (1)(θ) =
f (0)(θ)L(θ)∫
f (0)(θ)L(θ) dθ

. (1)

This is the form of Bayes’ theorem which is used when the unknown is continuous. We see
that, once again

Posterior ∝ Prior × Likelihood

where, this time, “Prior” and “Posterior” are probability density functions.

Proof: Suppose we divide the range of our unknown θ into short intervals of equal length, δθ.
Thus interval i is [θi, θi+1) and θi+1 = θ + δθ. Suppose that our prior probability that
θi ≤ θ < θi+1 is p(0)

i = F (0)(θi+1)− F (0)(θi) where F (0)(θ) is the prior distribution function
of θ. Let the likelihood, evaluated at θ = θi, be L(θi). Then, by Bayes’ theorem, the posterior
probability that θi ≤ θ < θi+1 is given approximately by

p
(1)
i ≈

p
(0)
i L(θi)∑
j p

(0)
j L(θj)

where the sum in the denominator is taken over all of the intervals.

Now, if f (0)(θ) and f (1)(θ) are respectively the prior and posterior probability density func-
tions, then p

(0)
i ≈ f (0)(θi)δθ and p

(1)
i ≈ f (1)(θi)δθ. So

f (1)(θi)δθ ≈
f (0)(θi)L(θi)δθ∑
j f

(0)(θj)L(θj)δθ

and, dividing both sides by δθ,

f (1)(θi) ≈
f (0)(θi)L(θi)∑
j f

(0)(θj)L(θj)δθ
.

Now consider what happens if we increase the number of intervals and let δθ → 0. Informally
it is easy to see that, in the limit, we obtain (1).

3.4 The example with a continuous prior distribution

More realistically we might have a continuous prior probability distribution for θ.
Prior p.d.f. f (0)(θ).
Posterior p.d.f.:

f (0)(θ)θ3(1− θ)17∫ 1

0
f (0)(θ)θ3(1− θ)17.dθ

The integration is straightforward in this case. In more complicated cases, especially when
there are many unknowns, the integration has been the main computational problem. In the past
this was a major obstacle to the use of Bayesian inference. In recent years huge progress has
been made and we can now routinely handle complicated problems with very large numbers of
unknowns.
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In fact the calculation is particularly simple if we use a conjugate prior distribution. This
simply means a prior distribution which “matches” the likelihood in the sense that the posterior
distribution belongs to the same family as the prior distribution. In this example the conjugate
family is the family of beta distributions. The prior p.d.f. is proportional to

θa−1(1− θ)b−1

where we specify the values of a and b.
The posterior p.d.f. is then proportional to

θa+3−1(1− θ)b+17−1.

The prior mean is

a

a+ b

and the posterior mean is

a+ 3
a+ b+ 20

.

We might, of course, feel that our prior beliefs are not represented by a conjugate distribution.
In this case we could use a different distribution and employ numerical methods of integration. We
might however be able to use a mixture of conjugate prior distributions to approximate the shape
we want. The posterior is then a mixture of the conjugate posterior distributions, although the
weights are changed. We will consider this in more detail in a later lecture.
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4 Bayes’ Rule

4.1 Theory

In general we can use Bayes’ rule to change our prior probability distribution, which expresses our
beliefs about parameters before we see the data, to a posterior probability distribution representing
beliefs about the parameters given the data.

Suppose we have a prior probability density function for a vector θ of parameters, fθ(θ). Suppose
the p.d.f. for a vector Y of observations given θ is fY |θ(y | θ). This latter p.d.f. is treated as a
function of θ once y is observed and is called the likelihood.

Then our posterior p.d.f. is

fθ|y(θ | y) =
fθ(θ)fY |θ(y | θ)∫

θ
fθ(θ)fY |θ(y | θ).dθ

.

We can think of this as

Pr(θ | y) =
Pr(θ) Pr(y | θ)

Pr(y)
.

Often it is sufficient to write

fθ|y(θ | y) ∝ fθ(θ)fY |θ(y | θ).

That is posterior ∝ prior × likelihood.
When Y or θ is discrete rather than continuous, the probability density functions are replaced

by probabilities as appropriate.

4.2 Example: The rate of a Poisson process

We wish to model the occurrence of events in time as a Poisson process with rate λ. (This is a
model for the times when events occur if the events occur “at random.” The rate is the average
number per unit time).

Suppose our prior probability density function for λ is proportional to

λα−1e−βλ.

This means that our prior distribution for λ is a gamma distribution. The probability density
function for a gamma(α, β) distribution is

f(x) =

{
0 (x < 0)
βαxα−1e−βx

Γ(α) (x ≥ 0)

where Γ(y) is the gamma function which has the property that Γ(y) = (y − 1)Γ(y − 1) and, if n is
a positive integer, Γ(n) = (n− 1)!.

We observe the process for τ time units. Events occur at times t1, t2, . . . , tn. Writing t0 = 0,
the likelihood is

L =
n∏
i=1

{λe−λ(ti−ti−1)}e−λ(τ−tn).

The last term is for the probability that no events occur in (tn, τ).
We can simplify L to

L = λne−λτ .

This is effectively the probability of n events in (0, τ), i.e.

(λτ)ne−λτ/n! ∝ λne−λτ .

Hence the posterior p.d.f. is proportional to
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12.40 3, 6, 9,15,24,28,30 12.50 4,30,34,47
12.41 7,12,14,16,21,24,30,50 12.51 0, 4,18,21,52,57,59
12.42 9,22,28,46,53 12.52 4, 9,29,30,31,38,59
12.43 22,25,35,38,58 12.53 2, 6,31,53
12.44 2, 5, 8,10,14,17,27,30,45 12.54 7, 9,13,24,39,47
12.45 3,46 12.55 28,46,49,59
12.46 13,42,51 12.56 6, 9,14,35,41,46
12.47 0, 9,11,18,23,26,39,51 12.57 8,10,15,22,25,49,52,59
12.48 35,39,55 12.58 31,34,53,55,56
12.49 8,10,19,20,33,45,56,58 12.59 2,31,34,38,54,59

Table 2: Times of arrival of motor vehicles

3 3 3 6 9 4 2 37 5 2 2 5 3 6 20 19 13 6 18 7
29 3 10 3 20 4 3 3 2 4 3 10 3 15 18 43 27 29 9 9
9 2 7 5 3 13 12 44 4 16 13 2 9 1 13 12 11 2 6 26
4 13 13 4 14 3 31 5 2 5 5 20 1 1 7 21 3 4 25 22

14 2 4 11 15 8 41 18 3 10 7 3 5 21 6 5 22 2 5 7
3 24 3 7 32 3 19 2 1 6 29 3 4 16 5

Table 3: Inter arrival times of motor vehicles

λα+n−1e−(β+τ)λ.

This is clearly a gamma distribution so the posterior p.d.f. is

(β + τ)α+nλα+n−1e−(β+τ)λ

Γ(α+ n)
.

The posterior mean is (α+ n)/(β + τ) and the posterior variance is (α+ n)/(β + τ)2.

4.3 Conjugate and non-conjugate priors

We are not, of course, restricted to using a prior of the form

λα−1e−βλ.

This particular form works out neatly because it is the conjugate form of prior for this like-
lihood. If our beliefs can not be adequately represented by a conjugate prior we may resort to
numerical evaluation of the posterior distribution. The normalising constant, to make the posterior
p.d.f. integrate to 1, may be found, if necessary, by numerical integration. In complicated mod-
els numerical approaches are commonly used. Monte Carlo integration has become particularly
popular since about 1990.

Another approach is to form the prior density as a mixture of conjugate prior densities with dif-
ferent parameters. This keeps the calculation relatively straightforward while allowing considerable
flexibility.

4.4 Chester Road traffic

At one time I worked in an office overlooking Chester Road in Sunderland. The times of arrivals
of motor vehicles passing a point in Chester Road going East, from 12.40 till 13.00 on Wednesday
30th September 1987 are given in Table 2.

These can be converted to time intervals between vehicles. These intervals, in seconds, are
given in Table 3. (The first value is the time till the first arrival).
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Figure 4: Inter arrival times (115 observations) with negative exponential p.d.f.

A histogram of these data is shown in Figure 4 together with a plot of the p.d.f. of a negative
exponential distribution, the parameter of which was chosen so that the distribution had the same
mean as the observed data. The fit appears satisfactory.

No evidence of nonzero correlations between successive inter-arrival times was found, either by
plotting ti against ti−1 or by estimating the correlation coefficients. Similarly a plot of ti against
i showed no obvious pattern.

Suppose the prior expectation for the rate of arrival was, say, 1 vehicle every 5 seconds, i.e.
λ0 = 0.2. Suppose we were almost certain that the rate would be less than 1 vehicle every 2
seconds. Let us say that Pr(λ < 0.5) = 0.99. Suppose we use the conjugate (gamma) prior. Then
α/β = 0.2.

We require ∫ 0.5

0

f(λ).dλ = 0.99

where f(λ) is the p.d.f. of a gamma(α, α/0.2) distribution. We can evaluate this integral in R.
First we set up a vector of values for α and a corresponding vector for β. Then we evaluate the

integral for each pair of values.

> alpha<-seq(1,10)
> beta<-alpha/0.2
> prob<-pgamma(0.5,alpha,beta)
> d<-data.frame(alpha,beta,prob)
> d

alpha beta prob
1 1 5 0.9179150
2 2 10 0.9595723
3 3 15 0.9797433
4 4 20 0.9896639
5 5 25 0.9946545
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6 6 30 0.9972076
7 7 35 0.9985300
8 8 40 0.9992214
9 9 45 0.9995856
10 10 50 0.9997785

We find that we get approximately what we require with α = 4, β = 20.

Now τ = 1200 and n = 115.
Thus the posterior p.d.f. is

1220119

118!
λ118e−1220λ.

The prior mean was 0.2. The posterior mean is

119
1220

= 0.0975.

The prior variance was 0.01. The posterior variance is

119
12202

= 0.00008.

We can evaluate the posterior pdf and distribution function using R. The posterior standard
deviation is

√
119

1220
= 0.00894.

At a guess the important part of the posterior distribution is likely to be within ±3 standard
deviations of the posterior mean. That is roughly 0.07 to 0.13 so we create an array of λ values
from 0.070 to 0.130 in steps of 0.001. We can check that this covers the important part of the
distribution by looking at the distribution function. (In this case we find that very little of the
probability is outside the range).

> lambda<-seq(0.07,0.13,0.001)
> pdf<-dgamma(lambda,119,1220)
> cdf<-pgamma(lambda,119,1220)
> plot(lambda,pdf,type="l")
> plot(lambda,cdf,type="l")

Figure 5 shows the prior density the (scaled) likelihood and the posterior density. We see that
the posterior density is only slightly different from the likelihood, the difference being due to the
effect of the prior distribution.

We can also use the distribution function to see, for example, that, in the posterior distribution,

Pr(0.09 < λ < 0.11) = 0.91440− 0.20176 = 0.71264.
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Figure 5: Chester road traffic arrival rate. Dots: prior pdf, Dashes: scaled likelihood, Solid line:
posterior pdf.

4.5 Probability intervals

Probability interval A probability interval is an interval for an unknown quantity which con-
tains a given amount of probability. Probability intervals can, of course, be prior probability
intervals, based on the prior distribution, or posterior probability intervals, based on the pos-
terior distribution. (Later we will see that we can also have predictive probability intervals).

Example: There is an example above of a probability interval for λ in the Chester Road
example.

Symmetric probability interval A symmetric probability interval for an unknown quantity θ
is an interval t1 < θ < t2 which has the property that Pr(θ < t1) = Pr(θ > t2). For
example, a 95% symmetric probability interval (t1, t2) for θ would have the property that
Pr(θ < t1) = 0.025, Pr(t1 < θ < t2) = 0.95, Pr(θ > t2) = 0.025.

Example: In the Chester Road example above, the posterior distribution for λ is gamma(119, 1220).
We can calculate a 95% symmetric posterior probability interval for λ as follows, using R.

> qgamma(0.025,119,1220)
[1] 0.08080462
> qgamma(0.975,119,1220)
[1] 0.1158291

Thus our interval is 0.0808 < λ < 0.1158.

Highest probability density (hpd) interval A hpd or “highest probability density” interval
for θ is a probability interval for θ with the property that no point outside the interval has
a probability density greater than any point inside the interval. In other words, the interval
captures the “most likely” values of the unknown.

It is easy to see that, of all possible 100α% probability intervals for θ, the hpd interval is the
shortest.
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It is also easy to see that, if the pdf of θ is f(θ) and the 100α% hpd interval is (t1, t2), then
t1, t2 satisfy the following two properties.

∫ t2

t1

f(θ) dθ = α

f(t1) = f(t2)

The first of these is true for any 100α% probability interval. The two together make the
interval a hpd interval.

If the density f(θ) is unimodal and symmetric then the symmetric interval and the hpd
interval coincide. Otherwise they do not.

Example: Finding a hpd interval in a non-symmetric distribution is not straightforward and
we will leave the question of how to do it to a later lecture. A 95% posterior hpd interval for
λ in the Chester Road example is 0.0803 < λ < 0.1153.
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