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19 Odds and Bayes Factors

19.1 Hypotheses

Hypothesis: A hypothesis is a proposition (statement) which may or may not be true.

Simple hypothesis: If a hypothesis specifies everything about a model, including all parameter
values, it is called a simple hypothesis. E.g. “X ∼ binomial(10, 0.5)”.

Composite hypothesis: If a hypothesis leaves some parameter values unknown, it is called a
composite hypothesis. E.g. “X ∼ binomial(10, θ) where θ is unknown”.

19.2 Comparing two simple hypotheses

This is the simplest case but it is relatively rare.

The prior probabilities for the two hypotheses are π1, π2.

The likelihoods are L1, L2.

The posterior probabilities are then

p1 =
π1L1

π1L1 + π2L2
, p2 =

π2L2

π1L1 + π2L2
.

The prior odds in favour of hypothesis 1 are π1/π2.

The posterior odds in favour of hypothesis 1 are

p1

p2
=
π1L1

π2L2
.

Notice that posterior odds = prior odds × likelihood ratio.

The likelihood ratio (also called the Bayes factor), is L1/L2, and does not depend on the prior
probabilities. It is therefore an objective measure of the weight of evidence in favour of
hypothesis 1.

If we are choosing between k simple hypotheses with prior probabilities π1, . . . , πk and likeli-
hoods L1, . . . , Lk then we can easily work out p̃i = πiLi and then

pi =
p̃i∑k
j=1 p̃j

.

19.3 Examples

19.3.1 Example 1

In the “animals” example in Section 3.2 we really had two simple hypotheses, H1 : θ = 0.1, with
prior probability π1 = 2/3, and H2 : θ = 0.4, with prior probability π2 = 1/3. We observe twenty
animals and count the number Y with a particular gene. Under H1 we have Y ∼ bin(20, 0.1) and,
under H2 we have Y ∼ bin(20, 0.4). We observe that y = 3 animals have the gene. So we find

Lj =
(

20
3

)
θ3j (1− θj)17

where θ1 = 0.1 and θ2 = 0.4. Hence the likelihood ratio in favour of H1 is

L1

L2
=

0.130.917

0.430.617
=

1.667718× 10−4

1.083306× 10−5
= 15.39471.

The prior odds in favour of H1 are π1/π2 = 2.0. So the posterior odds are 2.0×15.39471 = 30.78941.
Hence the posterior probability of H1 is 30.78941/(1 + 30.78941) = 0.969.

114



19.3.2 Example 2

A person A is suspected of having committed a crime. As a result of forensic science work, evidence
E is found. Let H1 be the hypothesis that A did commit the crime and H2 be the hypothesis
that A did not commit the crime. Under H1 the probability of the evidence E being found is
L1 and, under H2, it is L2. For example, suppose that L1 = 0.8 and L2 = 0.0002. Then the
likelihood ratio in favour of H1 is 0.8/0.0002 = 4000. This appears to be strong evidence in favour
of the guilt of A. However our posterior probability for H1 also depends on our prior probabilities.
There may be many people who could have committed the crime and, in the absence of any other
evidence, we should perhaps assign equal prior probabilities to them. Suppose that 10000 other
people, apart from A, could have committed the crime. Then the prior odds in favour of H1 are
1/10000 = 0.0001. The posterior odds are therefore 4000/10000 = 0.4 and the posterior probability
of H1 is 0.4/1.4 = 0.286. This may seem surprisingly small but it illustrates the importance of not
confusing the probability of the evidence given that the suspect is innocent, which is very small,
with the probability that the suspect is innocent given the evidence, which, in this case, is much
larger.

How large does π1 have to be so that the posterior probability p1 > 0.5? We require p1/p2 > 1
so π1L1 > π2L2 and π1/π2 > L2/L1 = 1/4000, the reciprocal of the likelihood ratio. So we require

π1 >
L2/L1

1 + L2/L1
=

L2

L1 + L2
=

0.0002
0.8002

= 0.0002499.

19.4 Composite hypotheses

In a composite hypothesis there are parameters with values which are not specified by the hypoth-
esis.

Example: We are interested in the mean of a normal distribution and have hypotheses about its
value but we do not specify the precision (or variance).

• Model: Given the parameters, Y1, . . . , Yn are normal with mean µ and precision τ.

• Hypotheses: H1 : µ < µ0 and H2 : µ ≥ µ0. These are both composite hypotheses both
because we do not specify completely the value of µ and because we do not specify the
value of τ.

In general:

Hypotheses: H1, H2, with prior probabilities π1, π2 and unspecified parameters θ.

Conditional prior density f
(0)
j (θ) for θ given hypothesis Hj .

Marginal likelihood: The condititional probability (density) of observing data y given hypothe-
sis j and the value of θ gives us the likelihood Lj(θ; y). The probability (density) of observing
data y given hypothesis j is therefore∫

f
(0)
j (θ)Lj(θ; y) dθ.

This is called the marginal likelihood of hypothesis Hj . Notice that it is the prior predictive
density evaluated at the observed value of the data, y.

The posterior odds in favour of H1 are therefore

p1

p2
=
π1

π2
×
∫
f

(0)
1 (θ)L1(θ; y) dθ∫
f

(0)
2 (θ)L2(θ; y) dθ

.

The Bayes factor is the ratio of the marginal likelihoods. The Bayes factor is also equal to

p1/p2

π1/π2
.

Notice that it now depends on the priors, f (0)
1 , f

(0)
2 , as well as the likelihoods so it is not

“objective.” However, in some cases, the priors have little effect on the Bayes factor.
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19.5 Examples

19.5.1 Example 1

In an industrial quality control application we are interested in the precision of a particular dimen-
sion of amnufactured components. Twenty components are measured and the difference between
the actual measurement and the nominal value is recorded in each case. The values are given in
µm, where 1µm is 10−6m).

Our model for these values, yi, is that, given the values of parameters µ, τ,

yi ∼ N(µ, τ−1)

and yi is independent of yj for i 6= j.
Our prior distribution for µ, τ is as follows.
The distribution of τ is

τ ∼ gamma(d0/2, d0v0/2)

that is
d0v0τ ∼ χ2

d0

where d0 = 6 and v0 = 2500.
The conditional distribution of µ | τ is

µ | τ ∼ N(m0, [c0τ ]−1)

where m0 = 0 and c0 = 0.5.
We have two hypotheses:

• HA : τ < 0.0004

• HB : τ ≥ 0.0004

The data are as follows.

163 51 87 70 -31 -85 30 37 -26 65
-3 81 -50 -3 -21 64 92 -26 71 72

Find the Bayes factor in favour of HA.
Solution:

We have the standard conjugate prior.
In the prior:

Pr(τ < 0.0004) = Pr(d0v0τ < d0v0 × 0.0004)
= Pr(d0v0τ < 6)
= 0.57681

since d0v0τ ∼ χ2
6.

(E.g. use pchisq(6,6) in R).

Hence the prior odds are

0.57681
1− 0.57681

.
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In the posterior:

d1v1τ ∼ χ2
d1

where

d1 = d0 + n = 26

s2n =
1
n

∑
(yi − ȳ)2 =

1
n

{∑
y2
i − nȳ2

}
= 3481.19

r2 =
1
n

∑
(yi −m0)2 = (ȳ −m0)2 + s2n = 4498.8

vd =
c0r

2 + ns2n
c0 + n

= 3506.01

v1 =
d0v0 + nvd
d0 + n

= 3273.85

Hence

Pr(τ < 0.0004) = Pr(d1v1τ < d1v1 × 0.0004)
= Pr(d1v1τ < 34.048)
= 0.86618

since d1v1τ ∼ χ2
26.

(E.g. use pchisq(34.048,26) in R).

Hence the posterior odds are

0.86618
1− 0.86618

.

So the Bayes factor is

0.86618
(1− 0.86618)

(1− 0.57681)
0.57681

= 4.749.

19.5.2 Sufficiency

Suppose that we wish to find a Bayes factor to compare two hypotheses concerning a, possibly
vector, parameter θ. In some cases we will have available a sufficient statistic T for θ. Then we can

117



write the conditional density of the data Y given θ as

fY |θ(y | θ) = fT |θ(t | θ)fY |t(y | t).

(See Section 12).
In such a case, when we find the two marginal likelihoods, fY |t(y | t) will be left as a common

factor in both, since it does not involve θ. Therefore it will cancel from the Bayes factor. It follows
that we can find the Bayes factor by considering the predictive distributions of the sufficient statistic
T.

19.5.3 Example 2: The mean of a normal distribution

Model: Sample Y1, . . . , Yn from a normal sampling distribution, N(µ, τ), where the observations
are independent given the parameters. Suppose that τ is known.

Hypotheses: • H0 : µ = m∗, where m∗ is a specified value,
• H1 : µ 6= m∗.

Prior: Under H1, we have a normal prior distribution for µ with mean m0 and precision p0. For
convenience we write p0 = c0τ.

We know that the sample mean Ȳ =
∑n
i=1 Yi/n is sufficient for µ so we find its predictive

distributions under the two hypotheses.
The conditional distribution of Ȳ given µ is N(µ, [nτ ]−1).
We can represent the joint distribution of µ and Ȳ in terms of µ and D where D = Ȳ − µ ∼

N(0, [nτ ]−1) and D is independent of µ. It is easy to check that this gives the correct means,
variances and covariances.

Therefore, under H1,

Ȳ = µ+D ∼ N(m0, [c0τ ]−1 + [nτ ]−1) = N(m0, [nc0τ/c1]−1)

where c1 = c0 +n. Under H0, Ȳ ∼ N(m∗, [nτ ]−1) since there is no contribution to the variance
from µ.
So the marginal likelihood under H1 is

L̄1 = (2π)−1/2[nc0τ/c1]1/2 exp
{
−nc0τ

2c1
(ȳ −m0)2

}
.

The likelihood under H0 is

L0 = (2π)−1/2[nτ ]1/2 exp
{
−nτ

2
(ȳ −m∗)2

}
.

Hence the Bayes factor in favour of H1 is

K =
L̄1

L0
=
(
c0
c1

)1/2

exp
{
−nτ

2

[
c0
c1

(ȳ −m0)2 − (ȳ −m∗)2
]}

.
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If m0 = m∗, which would often be the case, then the Bayes factor simplifies to

K =
(
c0
c1

)1/2

exp
{
n2τ

2c1
(ȳ −m∗)2

}
.

Example: Suppose that we give twenty nine-year-old children from a population of interest a
reading test. The standard score in this test, for a nine-year-old, is 100. The standard deviation
of scores is known to be 10 so τ = 10−2 = 0.01. We wish to look at the evidence for and against
the hypothesis H0 that the mean for children in this population is µ = m∗ = 100, compared to
the more general hypothesis H1. Our conditional prior distribution for µ under H1 is N(m0, p

−1
0 )

where m0 = m∗ = 100 and p−1
0 = 202 = 400 so p0 = c0τ = 0.0025 and c0 = 0.25.

Our data give n = 20, ȳ = 97.5 and Sd =
∑20
i=1(yi− ȳ)2 = 2130.72. Hence c1 = c0 + 20 = 20.25

and the Bayes factor in favour of H1 is

K =
(

0.25
20.15

)1/2

exp
{

202 × 0.01
2× 20.25

(97.5− 100)2
}

= 0.206.

This Bayes factor would be interpreted as giving some evidence against H1 and in favour of
H0. It may seem surprising that an observed value of ȳ which lies in the set of values of µ allowed
by H1 but not by H0 should provide evidence in favour of H0 but this is a feature of the use of
sharp hypotheses. Remember that the probability of observing Ȳ equal to m∗ is zero so it will
never happen.
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20 Vague Priors

20.1 Introduction

Probably the most frequent objection to the use of Bayesian inference in statistics concerns the
use of the prior distribution. It is argued that this introduces an element of subjectivity into the
analysis and that this is undesirable. Even without this objection, people sometimes feel that they
have little or no prior information and that the prior distribution should reflect this ignorance.
For these reasons people sometimes try to use prior distributions which have one or more of the
following properties.

• The prior distribution has, in some sense, little effect on the posterior distribution. This is
often taken to mean that the posterior distribution is (at least almost) proportional to the
likelihood. It could also mean, for example, that changing the prior mean has little effect on
the posterior mean.

• The prior distribution conveys little information about the value of the parameter. Typically
this means that the prior distribution has a large variance.

• The prior distribution is a “standard” prior which is automatically chosen in some way. Such
a prior is sometimes called a reference prior.

Prior distributions satisfying these requirements are sometimes described as “noninformative”,
although, as we will see, this description may be misleading.

20.2 Example: Normal mean with known precision

Suppose we wish to learn about the mean µ of a normal N(µ, τ−1) distribution where the value
of τ is known. We will observe a sample of n observations y1, . . . , yn which are independent given
µ. Suppose the prior distribution for µ is µ ∼ N(M0, P

−1
0 ). The posterior distribution is then

µ | y1, . . . , yn ∼ N(M1, P1)

where

M1 =
P0M0 + Pdȳ

P0 + Pd
P1 = P0 + Pd

Pd = nτ

(see Lecture 14).
Suppose we make P0 very small to reflect prior ignorance about the value of µ. (That is, we

make the prior variance very large). The resulting prior distribution would be called a vague or
diffuse prior distribution. Then

M1 ≈ ȳ

P1 ≈ Pd.

The choice of M0 then has (virtually) no effect on the posterior distribution.

20.3 Proper and improper priors

Suppose, in 20.2, we let P0 → 0. Then it would appear that we have exactly

M1 = ȳ

P1 = Pd.

However, consider what happens to the prior pdf of µ as P0 → 0. The pdf is
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f0(µ) = (2π)−1/2P
1/2
0 exp

{
−P0

2
(µ−M0)2

}
.

Clearly, as P0 → 0, f0(µ)→ 0 for all µ. In the limit the pdf is zero everywhere and we can no
longer integrate it and get a total probability of 1.

This seems to be a problem but, since we only need to work in terms of proportionality when
we apply Bayes’ theorem, it is sometimes still possible to get “sensible” answers in some case, even
when we use such an “impossible” prior distribution.

Definition
(The definitions are given in terms of a real scalar variable. There are similar definitions for

vectors and variables on other sets).

Proper pdf : A pdf f(x) is a proper pdf if and only if f(x) ≥ 0 for all x,
∫∞
−∞ f(x) dx exists and

∫ ∞
−∞

f(x) dx = 1.

Improper pdf : For the purposes of this module, a function f(x) such that f(x) ≥ 0 for all x
but

∫∞
−∞ f(x) dx does not exist or

∫ ∞
−∞

f(x) dx 6= 1.

is an improper pdf.

Proper and improper priors : A prior distribution with a proper pdf is a proper prior distri-
bution. A prior distribution with an improper pdf is an improper prior distribution.

According to this definition, if
∫∞
−∞ f(x) dx = 2, for example, then f(x) is not a proper pdf.

However this would easily be put right by dividing f(x) by 2. However we do come across the
use of prior “distributions” with improper densities where the integral is undefined. The normal
example in 20.2 is an example of this when we let P0 → 0. In this case, the corresponding posterior
distribution is defined and is proper. It is N(ȳ, P−1

d ).
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20.4 Example 20.2 continued

Suppose that τ = 0.0625. That is σ2 = 16. Suppose that

n = 20,
∑

y = 350.27, ȳ =
350.27

20
= 17.5135.

Suppose that we have a vague (improper) uniform prior.
Posterior mean:

M1 = ȳ = 17.5135

Posterior precision:
P1 = nτ = 20× 0.0625 = 1.25

Posterior variance:

V1 = P−1
1 =

1
1.25

= 0.8 =
σ2

n

So

µ ∼ N(17.5135, 0.8)

95% posterior credible interval:

ȳ ± 1.96

√
σ2

n

That is

16.65 < µ < 18.37

20.5 Uniform priors

It is often thought that the uniform distribution provides a suitable noninformative prior (but
see 20.7 below). For example, if we wish to learn about the parameter θ in a binomial(N, θ)
distribution then a uniform(0,1) prior distribution for θ would mean that the posterior distribution
would be exactly proportional to the likelihood and this might seem appropriate since we know
that 0 ≤ θ ≤ 1.

In cases where the parameter has an infinite range, e.g. the mean µ in a normal distribution,
where −∞ < µ < ∞, or the mean λ of a Poisson distribution, where 0 < λ < ∞, the uniform
distribution presents a problem since it has a finite range.

Suppose, for example, that we want to learn about the mean height of people in some faraway
country and we propose that, given the parameters, the height y, in metres, of an individual has
a normal N(µ, τ−1) distribution. Then we could give µ a uniform prior distribution on a suitably
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wide, but finite, range. For example we could use µ ∼ U(0, 10). We are hardly likely to find
any individuals with heights less than 0 or greater than 10m! The posterior density will then
be proportional to the likelihood between the limits and zero outside the limits. Provided that
the limits are wide enough the resulting posterior distribution (if τ is assumued known) will be
approximately N(ȳ, P−1

d ). (It is only approximate because the normal distribution is truncated
at the prior limits but this might be a very small effect).

The uniform prior in this example is proper but we only get an approximately normal posterior
and we have to choose the limits of the uniform distribution. If we let the limits tend to −∞
and ∞, then the prior becomes improper but the limiting posterior distribution is exactly normal
N(ȳ, P−1

d ).

20.6 Example: Normal mean with unknown precision, uniform priors

(See lecture 14 for comparison).
Our model is

Y ∼ N(µ, τ−1).

Both µ and τ are unknown.
We will observe y1, . . . , yn.
Suppose that we give µ and τ independent uniform priors.

µ ∼ U(c1, c2), τ ∼ U(0, d)

where c1, c2, d are chosen so that the posterior density is effectively proportional to the likelihood.
That is d very large, c1 << E0(Y ), c2 >> E0(Y ).

The posterior density is then approximately proportional to the likelihood

L(µ, τ) ∝ τn/2 exp
{
−τ

2
[Sd + n(ȳ − µ)2]

}
∝ τn/2e−(Sd/2)τ exp

{
−nτ

2
(ȳ − µ)2

}
∝ τ (n−1)/2e−(Sd/2)τ (2π)−1/2(nτ)1/2 exp

{
−nτ

2
(µ− ȳ)2

}
∝ (Sd/2)(n+1)/2

Γ[(n+ 1)/2]
τ (n+1)/2−1e−(Sd/2)τ (2π)−1/2(nτ)1/2 exp

{
−nτ

2
(µ− ȳ)2

}
So, in the posterior, the conditional distribution of µ given τ is

µ | τ ∼ N(ȳ, (nτ)−1)

and the marginal distribution of τ is

τ ∼ gamma([n+ 1]/2, Sd/2).

That is
Sdτ = (n+ 1)s2τ ∼ χ2

n+1

where

s2 =
Sd
n+ 1

=
∑

(y − ȳ)2

n+ 1
.

The marginal distribution of µ is given by

µ− ȳ√
s2/n

∼ tn+1.
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20.7 The problem of transformations

In 20.5 we suggested that a uniform prior distribution might be considered “noninformative.”
However a uniform distribution for θ implies a non-uniform distribution for, e.g. θ2 or for exp(θ).
Consider, for example, a uniform U(0,1) prior for the parameter θ of a geometric(θ) distribution.
The mean of this distribution (given θ) is µ = θ−1. The implied prior density for µ is

f (0)
µ (µ) = f

(0)
θ (θ)/|J |

where f (0)
θ (θ) is the prior density of θ so f (0)

θ (θ) = 1 for 0 < θ < 1 and J = dµ/dθ = −θ−2 = −µ2.
Therefore the prior density of µ is

f (0)
µ (µ) = µ−2 (1 < µ <∞).

This is a proper pdf but it is certainly not uniform. So how can a prior be noninformative for θ
but not noninformative for 1/θ?

20.8 Jeffreys priors

As a way of overcoming the difficulty described in 20.7 Jeffreys proposed using a prior which turns
out to be the same whether or not we transform the parameter (considering 1-1 transformations).

Let us restrict our attention to scalar parameters. The Jeffreys prior for a parameter θ has
density proportional to

√
I(θ). Here I(θ) is the Fisher information

I(θ) = −E
(
d2 log(L)
dθ2

)
where L is the likelihood. We notice straight away that this depends on the likelihood but it does
not depend on the actual values of the data because we take expectations over the distribution of
the data given θ.

Suppose φ = g(θ) where g is a 1-1 function. Then the Jeffreys prior for φ is the same whether we
derive it directly or whether we first find the Jeffreys prior for θ and then apply the transformation.

Proof : Let l = log(L). Then

dl

dφ
=

dl

dθ

dθ

dφ

d2l

dφ2
=

dl

dθ

d2θ

dφ2
+
d2l

dθ2

(
dθ

dφ

)2

It can be shown that

E
(
dl

dθ

)
= 0

so

I(φ) = −E
(
d2l

dφ2

)
= I(θ)

(
dθ

dφ

)2

.

Therefore the Jeffreys prior for φ would have density proportional to√
I(θ)

∣∣∣∣ dθdφ
∣∣∣∣

but this is exactly what we would get if we gave the Jeffreys prior with density proportional
to
√
I(θ) to θ.

Local history : Sir Harold Jeffreys (1891-1989) was born in Fatfield, County Durham. He was a
student at Armstrong College from 1907 to 1910 when he graduated. At that time Armstrong
College was part of Durham University but, of course, was located here in Newcastle. It
eventually became Newcastle University. There is a plaque in the ground floor corridor of
the Armstrong building leading from the quadrangle.
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Examples

In the Poisson and normal cases we assume a sample of n independent (given the parameter)
observations.

Poisson :

L ∝ e−nλλ
∑

x

l = log(L) = constant − nλ+
∑

x log(λ)

dl

dλ
= −n+

∑
x

λ
d2l

dλ2
= −

∑
x

λ2

I(λ) = −E
(
d2l

dλ2

)
=

nλ

λ2
=
n

λ

Therefore the Jeffreys prior has density proportional to√
1
λ

= λ−1/2.

This is improper but it does lead to a proper posterior.

Normal mean with known precision τ :

L ∝ exp
{
−τ

2

∑
(yi − µ)2

}
l = log(L) = constant − τ

2

∑
(yi − µ)2

dl

dµ
= τ

∑
(yi − µ)

d2l

dµ2
= −nτ

I(µ) = −E
(
d2l

dµ2

)
= nτ

Therefore the Jeffreys prior has density proportional to
√
τ ,

i.e. a constant. This is improper but it does lead to a proper posterior. (See 20.5).
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Binomial : We have an observation x from bin(n, θ).

L ∝ θx(1− θ)n−x

l = log(L) = constant + x log(θ) + (n− x) log(1− θ)
dl

dθ
=

x

θ
− n− x

1− θ
d2l

dθ2
= − x

θ2
− n− x

(1− θ)2

I(θ) = −E
(
d2l

dθ2

)
=

nθ

θ2
+

n− nθ
(1− θ)2

=
n

θ
+

n

1− θ
=

n

θ(1− θ)

Therefore the Jeffreys prior has density proportional to√
θ−1(1− θ)−1 = θ−1/2(1− θ)−1/2.

This is a beta(1/2, 1/2) distribution. This is proper.
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