
MAS3301 Bayesian Statistics

Problems 5 and Solutions

Semester 2

2008-9

Problems 5

1. (Some of this question is also in Problems 4). I recorded the attendance of students at
tutorials for a module. Suppose that we can, in some sense, regard the students as a sample
from some population of students so that, for example, we can learn about the likely behaviour
of next year’s students by observing this year’s. At the time I recorded the data we had had
tutorials in Week 2 and Week 4. Let the probability that a student attends in both weeks be
θ11, the probability that a student attends in week 2 but not Week 4 be θ10 and so on. The
data are as follows.

Attendance Probability Observed frequency
Week 2 and Week 4 θ11 n11 = 25
Week 2 but not Week 4 θ10 n10 = 7
Week 4 but not Week 2 θ01 n01 = 6
Neither week θ00 n00 = 13

Suppose that the prior distribution for (θ11, θ10, θ01, θ00) is a Dirichlet distribution with den-
sity proportional to

θ311θ10θ01θ
2
00.

(a) Find the prior means and prior variances of θ11, θ10, θ01, θ00.
(b) Find the posterior distribution.
(c) Find the posterior means and posterior variances of θ11, θ10, θ01, θ00.
(d) Using the R function hpdbeta which may be obtained from the Web page (or other-

wise), find a 95% posterior hpd interval, based on the exact posterior distribution, for
θ00.

(e) Find an approximate 95% hpd interval for θ00 using a normal approximation based on
the posterior mode and the partial second derivatives of the log posterior density.
Compare this with the exact hpd interval.
Hint: To find the posterior mode you will need to introduce a Lagrange multiplier.

(f) The population mean number of attendances out of two is µ = 2θ11 + θ10 + θ01. Find
the posterior mean of µ and an approximation to the posterior standard deviation of µ.

2. Samples are taken from twenty wagonloads of an industrial mineral and analysed. The
amounts in ppm (parts per million) of an impurity are found to be as follows.

44.3 50.2 51.7 49.4 50.6 55.0 53.5 48.6 48.8 53.3
59.4 51.4 52.0 51.9 51.6 48.3 49.3 54.1 52.4 53.1

We regard these as independent samples from a normal distribution with mean µ and variance
σ2 = τ−1.

Find a 95% posterior hpd interval for µ under each of the following two conditions.
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(a) The value of τ is known to be 0.1 and our prior distribution for µ is normal with mean
60.0 and standard deviation 20.0.

(b) The value of τ is unknown. Our prior distribution for τ is a gamma distribution with
mean 0.1 and standard deviation 0.05. Our conditional prior distribution for µ given τ
is normal with mean 60.0 and precision 0.025τ (that is, standard deviation

√
40τ−1/2).

3. We observe a sample of 30 observations from a normal distribution with mean µ and precision
τ. The data, y1, . . . , y30, are such that

30∑
i=1

yi = 672 and
30∑
i=1

y2
i = 16193.

(a) Suppose that the value of τ is known to be 0.04 and that our prior distribution for
µ is normal with mean 20 and variance 100. Find the posterior distribution of µ and
evaluate a posterior 95% hpd interval for µ.

(b) Suppose that we have a gamma(1, 10) prior distribution for τ and our conditional prior
distribution for µ given τ is normal with mean 20 and variance (0.1τ)−1. Find the
marginal posterior distribution for τ, the marginal posterior distribution for µ and the
marginal posterior 95% hpd interval for µ.

4. The following data come from the experiment reported by MacGregor et al. (1979). They
give the supine systolic blood pressures (mm Hg) for fifteen patients with moderate essential
hypertension. The measurements were taken immediately before and two hours after taking
a drug.

Patient 1 2 3 4 5 6 7 8
Before 210 169 187 160 167 176 185 206
After 201 165 166 157 147 145 168 180
Patient 9 10 11 12 13 14 15
Before 173 146 174 201 198 148 154
After 147 136 151 168 179 129 131

We are interested in the effect of the drug on blood pressure. We assume that, given pa-
rameters µ, τ, the changes in blood pressure, from before to after, in the n patients are
independent and normally distributed with unknown mean µ and unknown precision τ. The
fifteen differences are as follows.

-9 -4 -21 -3 -20 -31 -17 -26 -26 -10 -23 -33 -19 -19 -23

Our prior distribution for τ is a gamma(0.35, 1.01) distribution. Our conditional prior dis-
tribution for µ given τ is a normal N(0, [0.003τ ]−1) distribution.

(a) Find the marginal posterior distribution of τ.

(b) Find the marginal posterior distribution of µ.

(c) Find the marginal posterior 95% hpd interval for µ.

(d) Comment on what you can conclude about the effect of the drug.

5. The lifetimes of certain components are supposed to follow a Weibull distribution with known
shape parameter α = 2. The probability density function of the lifetime distribution is

f(t) = αρ2t exp[−(ρt)2]

for 0 < t <∞.
We will observe a sample of n such lifetimes where n is large.
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(a) Assuming that the prior density is nonzero and reasonably flat so that it may be disre-
garded, find an approximation to the posterior distribution of ρ. Find an approximate
95% hpd interval for ρ when n = 300,

∑
log(t) = 1305.165 and

∑
t2 = 3161776.

(b) Assuming that the prior distribution is a gamma(a, b) distribution, find an approximate
95% hpd interval for ρ, taking into account this prior, when a = 2, b = 100, n = 300,∑

log(t) = 1305.165 and
∑
t2 = 3161776.

6. Given the value of λ, the number Xi of transactions made by customer i at an online store
in a year has a Poisson(λ) distribution, with Xi independent of Xj for i 6= j. The value of λ
is unknown. Our prior distribution for λ is a gamma(5,1) distribution.

We observe the numbers of transactions in a year for 45 customers and

45∑
i=1

xi = 182.

(a) Using a χ2 table (i.e. without a computer) find the lower 2.5% point and the upper 2.5%
point of the prior distribution of λ.
(These bound a 95% symmetric prior credible interval).

(b) Find the posterior distribution of λ.

(c) Using a normal approximation to the posterior distribution, based on the posterior mean
and variance, find a 95% symmetric posterior credible interval for λ.

(d) Find an expression for the posterior predictive probability that a customer makes m
transactions in a year.

(e) As well as these “ordinary customers,” we believe that there is a second group of indi-
viduals. The number of transactions in a year for a member of this second group has,
given θ, a Poisson(θ) distribution and our beliefs about the value of θ are represented
by a gamma(1,0.05) distribution.
A new individual is observed who makes 10 transactions in a year. Given that our prior
probability that this is an ordinary customer is 0.9, find our posterior probability that
this is an ordinary customer.
Hint: You may find it best to calculate the logarithms of the predictive probabilities
before exponentiating these. For this you might find the R function lgamma useful.
It calculates the log of the gamma function. Alternatively it is possible to do the
calculation using the R function dnbinom.

(N.B. In reality a slightly more complicated model is used in this type of application).

7. The following data give the heights in cm of 25 ten-year-old children. We assume that, given
the values of µ and τ, these are independent observations from a normal distribution with
mean µ and variance τ−1.

66 66 69 61 58 53 78 71 49 57 54 61 49
64 63 60 53 51 65 70 55 55 74 70 42

(a) Assuming that the value of τ−1 is known to be 64 and our prior distribution for µ is
normal with mean 55 and standard deviation 5, find a 95% hpd interval for the height
in cm of another ten-year-old child drawn from the same population.

(b) Assume now that the value of τ is unknown but we have a prior distribution for it which
is a gamma(2,128) distribution and our conditional prior distribution for µ given τ is
normal with mean 55 and variance (2.56τ)−1. Find a 95% hpd interval for the height in
cm of another ten-year-old child drawn from the same population.
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8. A random sample of n = 1000 people was chosen from a large population. Each person
was asked whether they approved of a proposed new law. The number answering “Yes” was
x = 372. (For the purpose of this exercise all other responses and non-responses are teated
as simply “Not Yes”). Assume that x is an observation from the binomial(n, p) distribution
where p is the unknown proportion of people in the population who would answer “Yes.”

Our prior distribution for p is a uniform distribution on (0, 1).

Let p = Φ(θ) so θ = Φ−1(p) where Φ(y) is the standard normal distribution function and
Φ−1(z) is its inverse.

(a) Find the maximum likelihood estimate of p and hence find the maximum likelihood
estimate of θ.

(b) Disregarding the prior distribution, find a large-sample approximation to the posterior
distribution of θ.

(c) Using your approximate posterior distribution for θ, find an approximate 95% hpd
interval for θ.

(d) Use the exact posterior distribution for p to find the actual posterior probability that θ
is inside your approximate hpd interval.

Notes: • The standard normal distribution function Φ(x) =
∫ x
−∞ φ(u) du where φ(u) =

(2π)−1/2 exp{−u2/2}.
• Let l be the log-likelihood. Then

dl

dθ
=
dl

dp

dp

dθ

and

d2l

dθ2
=

d

dθ

{
dl

dp

dp

dθ

}
=

d

dθ

{
dl

dp

}
dp

dθ
+
dl

dp

d2p

dθ2

=
d2l

dp2

(
dp

dθ

)2

+
dl

dp

d2p

dθ2

• Derivatives of p :

dp

dθ
= φ(θ)

d2p

dθ2
= −θφ(θ)

• You can evaluate Φ−1(u) using R with
qnorm(u,0,1)

and φ(u) is given by
dnorm(u,0,1)

9. The amounts of rice, by weight, in 20 nominally 500g packets are determined. The weights,
in g, are as follows.

496 506 495 491 488 492 482 495 493 496
487 490 493 495 492 498 491 493 495 489

Assume that, given the values of parameters µ, τ, the weights are independent and each has
a normal N(µ, τ) distribution.

The values of µ and τ are unknown. Our prior distribution is as follows. We have a
gamma(2, 9) prior distribution for τ and a N(500, (0.005τ)−1) conditional prior distribution
for µ given τ.
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(a) Find the posterior probability that µ < 495.
(b) Find the posterior predictive probability that a new packet of rice will contain less than

500g of rice

10. A machine which is used in a manufacturing process jams from time to time. It is thought
that the frequency of jams might change over time as the machine becomes older. Once every
three months the number of jams in a day is counted. The results are as follows.

Observation i 1 2 3 4 5 6 7 8
Age of machine ti (months) 3 6 9 12 15 18 21 24
Number of jams yi 10 13 24 17 20 22 20 23

Our model is as follows. Given the values of two parameters α, β, the number of jams yi on
a dat when the machine has age ti months has a Poisson distribution

yi ∼ Poisson(λi)

where
loge(λi) = α+ βti.

Assume that the effect of our prior distribution on the posterior distribution is negligible and
that large-sample approximations may be used.

(a) Let the values of α and β which maximise the likelihood be α̂ and β̂. Assuming that
the likelihood is differentiable at its maximum, show that these satisfy the following two
equations

8∑
i=1

(λ̂i − yi) = 0

8∑
i=1

ti(λ̂i − yi) = 0

where
loge(λ̂i) = α̂+ β̂ti

and show that these equations are satisfied (to a good approximation) by

α̂ = 2.552 and β̂ = 0.02638.

(You may use R to help with the calculations, but show your commands).
You may assume from now on that these values maximise the likelihood.

(b) Find an approximate symmetric 95% posterior interval for α+ 24β.
(c) Find an approximate symmetric 95% posterior interval for exp(α + 24β), the mean

jam-rate per day at age 24 months.

(You may use R to help with the calculations, but show your commands).

Homework 5

Solutions to Questions 9 and 10 of Problems 5 are to be submitted in the Homework Letterbox no
later than 4.00pm on Tuesday May 5th.

Reference

MacGregor, G.A., Markandu, N.D., Roulston, J.E. and Jones, J.C., 1979. Essential hypertension:
effect of an oral inhibitor of angiotensin-converting enzyme. British Medical Journal, 2,
1106-1109.
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Solutions

1. (a) Prior distribution is Dirichlet(4,2,2,3).
So A0 = 4 + 2 + 2 + 3 = 11.
The prior means are

a0,i

A0
.

The prior variances are
a0,i

(A0 + 1)A0
−

a2
0,i

A2
0(A0 + 1)

.

Prior means:

θ11 :
4
11

= 0.3636

θ10 :
2
11

= 0.1818

θ01 :
2
11

= 0.1818

θ00 :
3
11

= 0.2727

Prior variances:

θ11 :
4

12× 11
− 42

112 × 12
= 0.019284

θ10 :
2

12× 11
− 22

112 × 12
= 0.012397

θ01 :
2

12× 11
− 22

112 × 12
= 0.012397

θ00 :
3

12× 11
− 32

112 × 12
= 0.016529

NOTE: Suppose that we are given prior means m1, . . . ,m4 and one prior standard
deviation s1. Then

a0i = miA0

and

s21 =
m1A0

(A0 + 1)A0
− m2

1A
2
0

A2
0(A0 + 1)

=
m1(1−m1)
A0 + 1

.

Hence

A0 + 1 =
m1(1−m1)

s21
=

0.3636(1− 0.3636)
0.019284

= 12.

Hence A0 = 11 and a0i = 11mi. For example a01 = 11× 0.3636 = 4.

(b) Posterior distribution is Dirichlet(4+25, 2+7, 2+6, 3+13). That is Dirichlet(29,9,8,16).

(c) Now A1 = 29 + 9 + 8 + 16 = 62.
The posterior means are

a1,i

A1
.

The posterior variances are

a1,i

(A1 + 1)A1
−

a2
1,i

A2
1(A1 + 1)

.
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Posterior means:

θ11 :
29
62

= 0.4677

θ10 :
9
62

= 0.1452

θ01 :
8
62

= 0.1290

θ00 :
16
62

= 0.2581

Posterior variances:

θ11 :
29

63× 62
− 292

622 × 63
= 0.003952

θ10 :
9

63× 62
− 92

622 × 63
= 0.001970

θ01 :
8

63× 62
− 82

622 × 63
= 0.001784

θ00 :
16

63× 62
− 162

622 × 63
= 0.003039

(d) Posterior distribution for θ00 is beta(16, 62− 16). That is beta(16,46).
Using the R command hpdbeta(0.95,16,46) gives 0.15325 < θ00 < 0.36724.

(e) The log posterior density is (apart from a constant)

4∑
j=1

(a1,j − 1) log θj .

Add λ(
∑j
j=1 θj−1) to this and differentiate wrt θj then set the derivative equal to zero.

This gives

a1,j − 1

θ̂j
+ λ = 0

which leads to

θ̂j = − (a1,j − 1)
λ

.

However
∑4
j=1 θj = 1 so

−
4∑
j=1

(a1,j − 1)
λ

= 1

so

λ = −
4∑
j=1

(a1,j − 1)

and
θ̂j =

a1,j − 1∑
a1,k − 4

.

Hence the posterior mode for θ00 is

θ̂00 =
15
58

= 0.2586.
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The second derivatives of the log likelihood are

∂2l

∂θ2j
= −a1,j − 1

θ2j
and

∂2l

∂θj∂θk
= 0.

Since the mixed partial second derivatives are zero, the information matrix is diagonal
and the posterior variance of θj is approximately

θ̂2j
a1,j − 1

=
(a1,j − 1)2

(a1,j − 1)(
∑
a1,k − 4)2

=
(ai,j − 1

(
∑
a1,k − 4)2

.

The posterior variance of θ00 is approximately

15
582

= 0.00445898.

The approximate 95% hpd interval is 0.2586± 1.96
√

0.00445898. that is

0.12772 < θ00 < 0.38948.

This is a little wider than the exact interval.
(f) Approximation based on posterior mode and curvature:

Posterior modes:
θ11 :

28
58

θ10 :
8
58

θ01 :
7
58

So, approx. posterior mean of µ is

2× 28
58

+
8
58

+
7
58

=
71
58

= 1.22414.

Approx. posterior variances:

θ11 :
28
582

θ10 :
8

582
θ01 :

7
582

Since the (approx.) covariances are all zero, the approx. posterior variance of µ is

4× 28
582

+
8

582
+

7
582

=
127
582

= 0.0377527

so approx. standard deviation is
√

0.0377527 = 0.1943.

N.B. There is an alternative exact calculation, as follows, which is also acceptable.
Posterior mean:

2× 29
62

+
9
62

+
8
62

= 1.20968.

Posterior covariances:

− a1,ja1,k

A2
1(A1 + 1)

var(µ) = 4var(θ11) + var(θ10) + var(θ01)
+4covar(θ11, θ10) + 4covar(θ11, θ01) + 2covar(θ10, θ01)

= 4
(

29
63× 62

− 292

63× 622

)
+
(

9
63× 62

− 92

63× 622

)
+
(

8
63× 62

− 82

63× 622

)
−4
(

29× 9
63× 622

)
− 4

(
29× 8

63× 622

)
− 2

(
9× 8

63× 622

)
=

133
63× 62

− 5625
63× 622

= 0.0108229.

So the standard deviation is 0.1040. The difference is quite big!
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2. From the data
n∑
i=1

yi = 1028.9
n∑
i=1

y2
i = 53113.73

ȳ = 51.445 s2n =
1
n

n∑
i=1

(yi − ȳ)2 =
1
n

{
53113.73− 1

20
1028.92

}
= 9.09848

(a) Prior mean: M0 = 60.0
Prior precision: P0 = 1/202 = 0.0025
Data precision: Pd = nτ = 20× 0.1 = 2
Posterior precision: P1 = P0 + Pd = 2.0025
Posterior mean:

M1 =
0.0025× 60.0 + 2× 51.445

2.0025
= 51.4557

Posterior std. dev.: √
1

2.0025
= 0.706665

95% hpd interval: 51.4557± 1.96× 0.706665. That is

50.0706 < µ < 52.8408

(b) Prior τ ∼ gamma(d/2, dv/2) where

d/2
dv/2

=
1
v

= 0.1

so v = 10 and √
d/2

(dv/2)2
=

1
v

√
2
d

= 0.05

so
√

2/d = 0.5 so 2/d = 0.25 so d = 8.
Hence

d0 = 8
v0 = 10
c0 = 0.025
m0 = 60.0

m1 =
c0m0 + nȳ

c0 + n
=

0.025× 60.0 + 1028.9
20.025

= 51.4557

c1 = c0 + n = 20.025
d1 = d0 + n = 28

r2 =
1
n

∑
(yi −m0)2 = (ȳ −m0)2 + s2n

= (51.445− 60)2 + 9.09848 = 82.2865

vd =
c0r

2 + ns2n
c0 + n

= 9.189846

v1 =
d0v0 + nvd
d0 + n

= 9.42132

95% hpd interval:

M1 ± t28
√
v1
c1
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That is
M1 ± 2.048× 0.68591

That is
50.051 < µ < 52.860

3. (a) We have

P0 = 0.01
Pd = nτ = 30× 0.04 = 1.2
P1 = 0.01 + 1.2 = 1.21
M0 = 20
ȳ = 22.4

M1 =
P0M0 + Pdȳ

P1
=

0.01× 20 + 1.2× 22.4
1.21

= 22.380

Posterior:

µ ∼ N(22.380, 1.21−1). That is µ ∼ N(22.380, 0.8264).

95% hpd interval: 22.380± 1.96
√

0.8264. That is

20.60 < µ < 24.16

(b) We have

d0 = 2
d1 = d0 + n = 32
v0 = 10
c0 = 0.1
c1 = c0 + n = 30.1
m0 = 20
ȳ = 22.4

m1 =
c0m0 + nȳ

c0 + n
=

0.1× 20 + 30× 22.4
30.1

= 22.392

s2n =
1
n


n∑
i=1

y2
i −

1
n

(
n∑
i=1

yi

)2
 = 38.0067

(ȳ −m0)2 = (22.4− 20)2 = 5.76
r2 = (ȳ −m0)2 + s2n = 43.7667

vd =
c0r

2 + ns2n
c0 + n

= 38.0258

v1 =
d0v0 + nvd
d0 + n

= 36.27419

Marginal posterior distribution for τ : d1v1τ = 11670.77τ ∼ χ2
32.

Marginal posterior distribution for µ:

µ−m1√
v1/c1

=
µ− 22.392√
36.27419/30.1

∼ t32

95% hpd interval:

m1 ± 2.037
√
v1
c1
.
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That is

22.392± 2.037

√
36.27419

30.1
.

That is
20.16 < µ < 24.63.

4. Data:
n = 15

∑
y = −284

∑
y2 = 6518

ȳ = −18.9333 s2n =
1
15

{
6518− 2842

15

}
=

1140.9333
15

= 76.06222

Calculate posterior:

d0 = 0.7
v0 = 2.02/0.7 = 2.8857
c0 = 0.003
m0 = 0
d1 = d0 + 15 = 15.7

(ȳ −m0)2 = ȳ2 = 358.4711
r2 = (ȳ −m0)2 + s2n = 434.5333

vd =
c0r

2 + ns2n
c0 + n

= 76.1339

v1 =
d0v0 + nvd
d0 + n

= 72.8681

c1 = c0 + 15

m1 =
c0m0 + nȳ

c0 + n
=
−284
15.003

= 18.9295

(a) Marginal posterior distribution for τ is gamma(d1/2, d1v1/2). That is

gamma(7.85, 572.014).

(Alternatively d1v1τ ∼ χ2
d1
. That is 1144.025τ ∼ χ2

15.7).

(b) Marginal posterior for µ:

µ−m1√
v1/c1

=
µ− 18.9295√

4.8569
∼ t15.7

(c) We can use R for the critical points of t15.7: ±2.1232

qt(0.975,15.7)

95% interval: −18.9295± 2.1232
√

4.8569. That is

−23.61 < µ < −14.25.

(d) Comment, e.g., since zero is well outside the 95% interval it seems clear that the drug
reduces the blood pressure.
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5. (a) The likelihood is

L =
n∏
i=1

2ρ2ti exp[−(ρti)2]

= 2nρ2n

(
n∏
i=1

ti

)
exp[−ρ2

n∑
i=1

t2i ]

The log likelihood is

l = n log 2 + 2n log ρ+
n∑
i=1

log(ti)− ρ2
n∑
i=1

t2i .

So

∂l

∂ρ
=

2n
ρ
− 2ρ

n∑
i=1

t2i

and, setting this equal to zero at the mode ρ̂, we find

n = ρ̂2
n∑
i=1

t2i

ρ̂2 =
n∑
t2i

ρ̂ =
√

n∑
t2i

=

√
300

3161776
= 0.0097408.

The second derivative is
∂2l

∂ρ2
= −2n

ρ2
− 2

n∑
i=1

t2i

so the posterior variance is approximately

1
2(n/ρ̂2 +

∑
t2i )

=
1

2(
∑
t2i +

∑
t2i )

= 7.90695× 10−8.

Our 95% hpd interval is therefore 0.0097408± 1.96
√

7.90695× 10−8. That is

0.009190 < ρ < 0.010292.

(b) The prior density is proportional to ρ1e−100ρ so the log prior density is log ρ−100ρ plus
a constant. The log posterior is therefore g(ρ) plus a constant where

g(ρ) = (2n+ 1) log ρ− 100ρ− ρ2
n∑
i=1

t2i .

So
∂g

∂ρ
=

2n+ 1
ρ

− 100− 2ρ
n∑
i=1

t2i .

Setting this equal to zero at the mode ρ̂ we find

2
n∑
i=1

t2i ρ̂
2 + 100ρ̂− (2n+ 1) = 0.
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This quadratic equation has two solutions but one is negative and ρ must be positive so

ρ̂ =
−100 +

√
1002 + 8(

∑
t2i )(2n+ 1)

4
∑
t2i

= 0.0097410.

The second derivative is
∂2g

∂ρ2
= −2n+ 1

ρ2
− 2

n∑
i=1

t2i

so the posterior variance is approximately

1
2[(n+ 1/2)/ρ̂2 +

∑
t2i ]

= 7.900519× 10−8.

Our 95% hpd interval is therefore 0.0097410± 1.96
√

7.900519× 10−8. That is

0.009190 < ρ < 0.010292.

So the prior makes no noticeable difference in this case.

6. (a) λ ∼ gamma(5, 1) so 2λ ∼ gamma(5, 1/2), i.e. gamma(10/2, 1/2), i.e. χ2
10.

From tables, 95% interval, 3.247 < 2λ < 20.48. That is

1.6235 < λ < 10.24

(b) Prior density prop. to λ5−1e−λ.

Likelihood

L =
45∏
i=1

e−λλxi

xi!
=
e−45λλ

∑
xi∏

xi!
∝ e−45λλ182.

Posterior density prop. to λ187−1e−46λ. This is a

gamma(187, 46)

distribution.

(c) Posterior mean:
147
46

= 4.0652

Posterior variance:

187
462

= 0.088774

Posterior sd: √
187
462

= 0.29728

95% interval 4.0652± 1.96× 0.29728. That is

3.4826 < λ < 4.6479

(d) Joint prob. of λ, X = m:

46187

Γ(187)
λ187−1e−46λλ

me−λ

m!
=

46187

Γ(187)
Γ(187 +m)

47187+m

1
m!

47187+m

Γ(187 +m)
λ187+m−1e−47λ
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Integrate out λ:

Pr(X = m) =
46187

47187+m

Γ(187 +m)
Γ(187)m!

=
(186 +m)!

186!m!

(
46
47

)187( 1
47

)m
=

(
186 +m

m

)(
46
47

)187( 1
47

)m
(e) Joint probability (density) of θ, X = m:

0.05e−0.05θ θ
me−θ

m!
=

0.05
m!

Γ(1 +m)
1.05m+1

1.05m+1

Γ(1 +m)
θm+1−1e−1.05θ

Integrate out θ :

Pr(X = m) =
0.05

1.05m+1

Γ(1 +m)
m!

=
(

0.05
1.05

)(
1

1.05

)m
Log posterior probs:
“Ordinary”:

log(P1) = log[Γ(187 + 10)]− log[Γ(187)]− log[Γ(11)] + 187 log(46/47) + 10 log(1/47)
= log[Γ(197)]− log[Γ(187)]− log(Γ(11)] + 187 log(46)− 197 log(47)
= −5.079796

> lgamma(197) - lgamma(187) - lgamma(11) + 187*log(46) - 197*log(47)
[1] -5.079796

“Type 2”:

log(P2) = log(0.05/1.05) + 10 log(1/1.05)
= log(0.05)− 11 log(1.05)
= −3.532424

Hence the predictive probabilities are as follows.

“Ordinary”: P1 = exp(−5.079796) = 0.006221178
“Type 2”: P2 = exp(−3.532424) = 0.02923396

Hence the posterior probability that this is an ordinary customer is

9× 0.006221178
9× 0.006221178 + 1× 0.02923396

= 0.65698

7.

8.
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9. Prior:

τ ∼ gamma
(

4
2
,

18
2

)
so d0 = 4, d0v0 = 18, v0 = 4.5.

µ | τ ∼ N(500, (0.005τ)−1) so m0 = 500, c0 = 0.005.

Data: ∑
y = 9857, n = 20, ȳ =

9857
20

= 492.85

∑
y2 = 4858467, s2n =

1
n

{∑
y2 − nȳ2

}
=

444.55
20

= 22.2275

Posterior:
c1 = c0 + n = 20.005

m1 =
c0m0 + nȳ

c0 + n
= 492.8518

d1 = d0 + n = 24
r2 = (ȳ −m0)2 + s2n = 73.35

vd =
c0r

2 + ns2n
c0 + n

= 22.2403

v1 =
d0v0 + nvd
d0 + n

= 19.2836

(2 marks)(a)

µ− 492.8518√
19.2836/20.005

∼ t24

Pr(µ < 495) = Pr

(
µ− 492.8518√
19.2836/20.005

<
495− 492.8518√
19.2836/20.005

)
= Pr(t24 < 2.1990) = 0.9807

(Eg. use R: pt(2.1880,24) ).

(3 marks)(b)

cp =
c1

c1 + 1
=

20.005
21.005

= 0.9524

Y − 492.8518√
19.2836/0.9524

∼ t24

Pr(Y < 500) = Pr

(
Y − 492.8518√
19.2836/0.9524

<
500− 492.8518√
19.2836/0.9524

)
= Pr(t24 < 1.5886) = 0.9374

(Eg. use R: pt(1.5886,24) ).

(3 marks)
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10. (a) Likelihood:

L =
8∏
i=1

e−λiλyi

i

yi!

Log likelihood:

l = −
∑

λi +
∑

yi log λi −
∑

log(yi!)

= −
∑

λi +
∑

yi(α+ βti)−
∑

log(yi!)

Derivatives:

∂λi
∂α

=
∂

∂α
eα+βti = λi

∂λi
∂β

=
∂

∂β
eα+βti = λiti

∂l

∂α
= −

∑ ∂λi
∂α

+
∑

yi = −
∑

λi +
∑

yi = −
∑

(λi − yi)

∂l

∂β
= −

∑ ∂λi
∂β

+
∑

yiti = −
∑

λiti +
∑

yiti = −
∑

ti(λi − yi)

At the maximum

∂l

∂α
=

∂l

∂β
= 0.

Hence α̂ and β̂ satisfy the given equations.
Calculations in R:

> y<-c(10,13,24,17,20,22,20,23)
> t<-seq(3,24,3)
> lambda<-exp(2.552+0.02638*t)
> sum(lambda-y)
[1] 0.001572513
> sum(t*(lambda-y))
[1] -0.003254096

These values seem close to zero but let us try a small change to the parameter values:

> lambda<-exp(2.55+0.0264*t)
> sum(lambda-y)
[1] -0.2522928
> sum(t*(lambda-y))
[1] -3.606993

The results are now much further than zero suggesting that the given values are very
close to the solutions.

(5 marks)

(b) Second derivatives:
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∂2l

∂α2
= −

∑ ∂λi
∂α

= −
∑

λi

∂2l

∂β2
= −

∑
ti
∂λi
∂α

= −
∑

t2iλi

∂2l

∂α∂β
= −

∑ ∂λi
∂β

= −
∑

tiλi

Variance matrix:

V = −

(
∂2l
∂α2

∂2l
∂α∂β

∂2l
∂α∂β

∂2l
∂β2

)

Numerically using R:

> lambda<-exp(2.552+0.02638*t)
> d2<-matrix(nrow=2,ncol=2)
> d2[1,1]<- -sum(lambda)
> d2[1,2]<- - sum(t*lambda)
> d2[2,1]<- - sum(t*lambda)
> d2[2,2]<- - sum((t^2)*lambda)
> V<- - solve(d2)
> V

[,1] [,2]
[1,] 0.038194535 -0.0021361807
[2,] -0.002136181 0.0001449430

The mean of α+ 24β is 2.552 + 24× 0.02638 = 3.18512.
The variance is 0.038194535 + 242 ∗ 0.0001449430 + 2 × 1 × 24 × (−0.0021361807) =
0.01914501.
Alternative matrix-based calculation in R:

> dim(m)<-c(1,2)
> v<-m%*%V%*%t(m)
> v

[,1]
[1,] 0.01914501

The approximate 95% interval is

3.18512± 1.96
√

0.01914501

That is
2.9139 < α+ 24β < 3.4563

(5 marks)

(c) The interval for λ24 is
e2.9139 < eα+24β < e3.4563.

That is

18.429 < λ24 < 31.700.

(2 marks)
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