
MAS3301 Bayesian Statistics: Project

Solutions

Semester 2

2008-9

1 Background

When analysing proportions (eg. with a binomial model) we can often use a beta prior distribution.
However sometimes, particularly in more complicated cases, it is convenient to use a different form
of prior distribution. Typically we transform the proportion to put it onto a (−∞, ∞) scale, rather
than (0, 1), and then give the transformed proportion a normal distribution. In particular this
makes it easy to give a relationship to two or more proportions in our prior distribution.

One form of transformation which is often used is known as “logits.” If our proportion is θ
then we transform this to

η = log
(

θ

1− θ

)
(1)

and then give η a normal prior distribution.
This project is concerned with analyses of this type.

2 Data

Each student will use a different data set. Each data set is identified by a reference number. A
list of students and reference numbers and a separate list giving the data set for each reference
number are provided.

3 Tasks

1. Find an expression for the pdf of θ when η is given by (1) and η ∼ N(m, v). You may wish
to refer to Section 5.4 of the lecture notes.

2. Many people regard a beta(1, 1) distribution as a “noninformative” prior since the pdf is
a constant. It might be thought that, if we use a logit transformation and then give η
a N(0, v) prior distribution, then this will be “noninformative” if we make the variance
v large. However things are not as simple as this because, for large enough v, the prior
distribution for θ becomes bimodal.

(a) Use R to plot graphs of the pdf of θ when η is given by (1) and η ∼ N(0, v) for a range
of values of v in 1 ≤ v ≤ 4 and hence deduce, at least approximately, the value of v at
which the distribution of θ becomes bimodal.

(b) Find analytically the exact value of v at which the distribution of θ becomes bimodal
when η ∼ N(0, v). Hint: The density of θ is symmetric about θ = 1/2 so look at the
second derivative of the log density at this point.

3. Each patient in a sample of n1 patients with a certain chronic illness is given a treatment.
The number x1 who show a particular response is recorded. Your values of n1 and x1 are
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in your data set. Given the value of a parameter θ1, we regard x1 as an observation from
the binomial(n1, θ1) distribution. The value of θ1 is, however, unknown so we give it a prior
distribution by first transforming to η1 using (1) and then giving η1 a normal n(m1, v1) prior
distribution.

(a) In our prior beliefs, the lower quartile of θ1 is 0.4 and the upper quartile is 0.8. Use
these to find the lower and upper quartiles of η1 and hence find the values of m1 and
v1.

(b) Use numerical methods to find the posterior density of θ1 given your data and plot a
graph showing both the prior and posterior densities.

(c) Find the posterior probability that θ1 > 0.75.

4. In another experiment with the same disease two further groups of patients are used. Group
2 contains n2 patients and is given treatment T2. Group 3 contains n3 patients and is given
treatment T3. The number in Group j who show the response is xj . Given the values of
parameters θ2, θ3, xj is regarded as an observation from the binomial(nj , θj) distribution
and x2, x3 are independent.

Our prior distribution for θ2, θ3 is as follows. We transform θ2, θ3 to η2, η3 using (1) and
then give η1, η2 a bivariate normal prior distribution with parameters as follows.

E(η2) = E(η3 = 0.4
var(η2) = var(η3) = 0.6

covar(η2, η3) = 0.3

(a) Use R to find and plot the joint posterior density of θ2 and θ3.

(b) Find and plot the prior and posterior probability density functions of the log relative
risk γ where

γ = log
(
θ2/(1− θ2)
θ3/(1− θ3)

)
= log

(
θ2

1− θ2

)
− log

(
θ3

1− θ3

)
= η2 − η3

(c) Comment on your results.

Hint: Part 4 of Practical 1 should help with Task 4. You will need to modify the R functions
appropriately.

4 Submission

Reports are to be submitted to the General Office of the School of Mathematics and Statistics no
later than 4.00pm on Thursday 30th April (Week 10). As this counts for 10% of the module
mark you will need to hand in your report at the reception window.
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5 Solution

1. Find an expression for the pdf of θ when η is given by (1) and η ∼ N(m, v).

We have

η = log
(

θ

1− θ

)
so θ =

eη

1 + eη

and
dη

dθ
=
(

1− θ
θ

){
(1− θ) + θ

(1− θ)2

}
=

1
θ(1− θ)

=
(1 + eη)2

eη
.

So the density of θ is

fθ(θ) = fη(η)
dη

dθ

= (2πv)−1/2 exp
{
− 1

2v
(η −m)2

}
(1 + eη)2

eη

= (2πv)−1/2 exp

{
− 1

2v

(
log
[

θ

1− θ

]
−m

)2
}
θ−1(1− θ)−1

[5 marks]

2. (a) Use R to plot graphs of the pdf of θ when η is given by (1) and η ∼ N(0, v) for a range
of values of v in 1 ≤ v ≤ 4 and hence deduce, at least approximately, the value of v at
which the distribution of θ becomes bimodal.
Figure 1 shows some R commands to do this.
The resulting graph is shown in Figure 2. The curve becomes bimodal at approximately
v = 2.0.

[10 marks]

(b) Find analytically the exact value of v at which the distribution of θ becomes bimodal
when η ∼ N(0, v).
The density is

fθ(θ) = (2πv)−1/2 exp

{
− 1

2v

(
log
[

θ

1− θ

]
−m

)2
}
θ−1(1− θ)−1

The log density is

g(θ) = log[fθ(θ)] = −1
2

log(2πv)− 1
2v

(η −m)2 − log θ − log(1− θ).

The first derivative is

dg(θ)
dθ

= −1
v

(η −m)
dη

dθ
− 1
θ

+
1

1− θ
.

The second derivative is

d2g(θ)
dθ2

= −1
v

(
dη

dθ

)2

− 1
v

(η −m)
d2η

dθ2
+

1
θ2

+
1

(1− θ)2

where
dη

dθ
=

1
θ(1− θ)

and
d2η

dθ2
= − 1− 2θ

θ2(1− θ)2
.
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function(v)
{nv<-length(v)
theta<-seq(0.001,0.999,0.001)
eta<-log(theta/(1-theta))
jac<-theta*(1-theta)
thetadens<-matrix(nrow=999,ncol=nv)
for (i in 1:nv)

{sd<-sqrt(v[i])
etadens<-dnorm(eta,0,sd)
thetadens[,i]<-etadens/jac
}

top<-max(thetadens)
plot(theta,thetadens[,1],ylim=c(0,top),type="l",xlab=expression(theta),ylab="Density")
for (i in 2:nv)

{lines(theta,thetadens[,i],lty=i)
}

}

Figure 1: R commands for Task 2a

Put θ = 1/2 so η = 0,
dη

dθ
= 4,

d2η

dθ2
= 0

and
d2g(θ)
dθ2

= −16
v

+ 4 + 4.

Set this equal to zero and solve for v. This give v = 2.
The distribution becomes bimodal when v = 2.

[10 marks]

3. (a) In our prior beliefs, the lower quartile of θ1 is 0.4 and the upper quartile is 0.8. Use
these to find the lower and upper quartiles of η1 and hence find the values of m1 and v1.
The lower quartile of η1 is

log
(

0.4
1− 0.4

)
= −0.405465.

The upper quartile of η1 is

log
(

0.8
1− 0.8

)
= 1.386294.

The normal distribution is symmetric so the mean is half way between the quartiles. So
m = 0.49041.
The upper and lower quartiles of a normal distribution are ±0.67449 standard deviations
from the mean. So the standard deviation is

1.386294 + 0.405465
2× 0.67449

= 1.32823.

Hence the variance is v = 1.328232 = 1.7642.

[5 marks]
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Figure 2: Densities of θ for v = 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 (in descending order at θ = 0.5).
The solid line is for v = 2.0.
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task3<-function(n1,x1)
{q1<-log(0.4/(1-0.4))
q3<-log(0.8/(1-0.8))
m<-(q1+q3)/2
sd<-(q3-m)/qnorm(0.75,0,1)
v<-sd^2
theta<-seq(0.001,0.999,0.001)
eta<-log(theta/(1-theta))
etadens<-dnorm(eta,m,sd)
logprior<-log(etadens)-log(theta)-log(1-theta)
loglik<-x1*log(theta)+(n1-x1)*log(1-theta)
logpos<-logprior+loglik
logpos<-logpos-max(logpos)
pos<-exp(logpos)
pos<-pos/(sum(pos)*0.001)
prior<-exp(logprior)
plot(theta,pos,type="l",xlab=expression(theta[1]),ylab="Density")
lines(theta,prior,lty=2)
posprob<-sum(pos[theta>0.75])*0.001
ans<-list(m=m,v=v,theta=theta,prior=prior,posterior=pos,posprob=posprob)
ans
}

Figure 3: R function for Task 3.

(b) Use numerical methods to find the posterior density of θ1 given your data and plot a
graph showing both the prior and posterior densities.
The log likelihood, apart from a constant, is

log[θx1(1− θ)n1−x1 ] = x1 log(θ) + (n1 − x1) log(1− θ).

We can add this to the log prior density then exponentiate and normalise.
Figure 3 shows a R function to do the calculations.
Each student has different data but Figure 4 shows the graph for Data Set 1. The graph
was made using the following R command.

test<-task3(25,18)

[15 marks]

(c) Find the posterior probability that θ1 > 0.75.
We find this probability as ∫ 1

0.75

f
(1)
θ1

dθ1

where f
(1)
θ1

is the posterior density of θ1. This is calculated (approximately) in the
function task3 in the line

posprob<-sum(pos[theta>0.75])*0.001

Each student’s answer will be different but the answer for Data Set 1 is extracted as
follows.

test$posprob
[1] 0.3371888
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Figure 4: Prior (dashes) and posterior (solid) densities for θ1 in Task 3. (Data Set 1).

(Note also that there may also be slight numerical differences if students have used a
different set of points for evaluation in the numerical integration).

[5 marks]

4. (a) Use R to find and plot the joint posterior density of θ2 and θ3.
Because we are given the prior in terms of η2, η3, but we want the posterior for θ2, θ3
we need to transform between them and for this we need a Jacobian. So

J = |

∣∣∣∣∣ ∂η1
∂θ1

∂η1
∂θ2

∂η2
∂θ1

∂η2
∂θ2

∣∣∣∣∣ | = |
∣∣∣∣∣ 1
θ1(1−θ1) 0

0 1
θ2(1−θ2)

∣∣∣∣∣ |
= θ−1

1 (1− θ1)−1θ−1
2 (1− θ2)−1

Figure 5 shows a R function to do the calculations.
Each student has different data so the posterior distributions will be different. Figure
6 shows the plot for Data Set 1. I have superimposed the line θ2 = θ3.

The graph was produced with the following R commands.

> theta2<-seq(0.01,0.99,0.01)
> theta3<-seq(0.01,0.99,0.01)
> prior<-c(0.4,0.4,0.6,0.6,0.3)
> n<-c(55,20)
> x<-c(32,9)
> posterior<-logit1(theta2,theta3,n,x,prior)
> contour(theta2,theta3,posterior,xlab=expression(theta[2]),ylab=expression(theta[3]))
> abline(0,1)

Note that some students may have changed the ranges to avoid large areas of negligible
density. This is fine. In fact it is a good idea in terms of the numerical integration.

[20 marks]
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logit1<-function(theta1,theta2,n,x,prior)
{# Evaluates posterior density for logit example.
# prior is mean1, mean2, var1, var2, covariance
n1<-length(theta1)
n2<-length(theta2)
step1<-theta1[2]-theta1[1]
step2<-theta2[2]-theta2[1]
theta1<-matrix(theta1,nrow=n1,ncol=n2)
theta2<-matrix(theta2,nrow=n1,ncol=n2,byrow=T)
eta1<-log(theta1/(1-theta1))
eta2<-log(theta2/(1-theta2))
sd1<-sqrt(prior[3])
sd2<-sqrt(prior[4])
delta1<-(eta1-prior[1])/sd1
delta2<-(eta2-prior[2])/sd2
r<-prior[5]/(sd1*sd2)
d<-1-r^2
logprior<- -(delta1^2 + delta2^2 - 2*r*delta1*delta2)/(2*d)
logJ<- log(theta1)+log(1-theta1)+log(theta2)+log(1-theta2)
logprior<-logprior-logJ
loglik<-x[1]*log(theta1)+(n[1]-x[1])*log(1-theta1)+x[2]*log(theta2)+(n[2]-x[2])*log(1-theta2)
logpos<-logprior+loglik
logpos<-logpos-max(logpos)
posterior<-exp(logpos)
int<-sum(posterior)*step1*step2
posterior<-posterior/int
posterior
}

Figure 5: R function for Task 4a.
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Figure 6: Joint posterior density of θ2 and θ3 in Task 4. (Data Set 1).
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logit2<-function(eta2,gamma,n,x,prior)
{# Evaluates posterior density for 2009 project.
# prior is mean1, mean2, var1, var2, covariance for eta2, eta3, as in logit1
n1<-length(eta2)
ng<-length(gamma)
step1<-eta2[2]-eta2[1]
stepg<-gamma[2]-gamma[1]
eta2<-matrix(eta2,nrow=n1,ncol=ng)
gamma<-matrix(gamma,nrow=n1,ncol=ng,byrow=T)
eta3<-eta2-gamma
theta2<-exp(eta2)/(1+exp(eta2))
theta3<-exp(eta3)/(1+exp(eta3))
sd2<-sqrt(prior[3])
sdg<-sqrt(prior[3]+prior[4]-2*prior[5])
delta2<-(eta2-prior[1])/sd2
deltag<-(gamma-(prior[1]-prior[2]))/sdg
r<-(prior[3]-prior[5])/(sd2*sdg)
d<-1-r^2
logprior<- -(delta2^2 + deltag^2 - 2*r*delta2*deltag)/(2*d)
loglik<-x[1]*log(theta2)+(n[1]-x[1])*log(1-theta2)+x[2]*log(theta3)+(n[2]-x[2])*log(1-theta3)
logpos<-logprior+loglik
logpos<-logpos-max(logpos)
posterior<-exp(logpos)
int<-sum(posterior)*step1*stepg
posterior<-posterior/int
marginal<-colSums(posterior)*step1
ans<-list(joint=posterior,marginal=marginal)
ans
}

Figure 7: R function for Task 4b.

(b) Find and plot the prior and posterior probability density functions of γ = η2−η3. (Note,
I know that this is actually the log odds, not the log relative risk. That was a mistake
when I typed the question sheet. It does not affect the solution though).
Since γ = η2 − η3 it has a normal prior distribution. In fact η2 and γ have a bivariate
normal prior distribution (as do η3 and γ). The prior mean of γ is E0(γ) = 0. The prior
variance of γ is var0(γ) = 0.6 + 0.6− 2× 0.3 = 0.6. The prior covariance of η2 and γ is

covar0(η2, γ) = var0(η2)− covar0(η2, η3) = 0.6− 0.3 = 0.3.

There are various different ways to calculate the marginal posterior of γ. Figure 7 shows
a R function for one method. This function returns the joint posterior density of η2 and
γ as well as the marginal posterior density of γ. This is so that we can check whether
we have chosen appropriate ranges for η2 and γ.

Each student has different data so the posterior distributions will be different. Figure
8 shows the joint density plot for Data Set 1. Figure 9 shows the marginal density plot
for Data Set 1. I have superimposed a line at γ = 0 corresponding to θ2 = θ3.

The graphs were produced with the following R commands.

> eta2<-seq(-1.5,1.5,0.03)
> gamma<-seq(-2,2,0.04)
> test2<-logit2(eta2,gamma,n,x,prior)
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Figure 8: Joint posterior density of η2 and γ in Task 4b. (Data Set 1).

> post2<-test2$joint
> contour(eta2,gamma,post2,xlab=expression(eta[2]),ylab=expression(gamma))
> gammapost<-test2$marginal
> gammaprior<-dnorm(gamma,0,sqrt(0.6))
> plot(gamma,gammapost,type="l",xlab=expression(gamma),ylab="Density")
> lines(gamma,gammaprior,lty=2)
> abline(h=0)
> abline(v=0,lty=3)

[20 marks]

(c) Comment on your results.
Results will vary from one data set to another. In the case of Data Set 1, most of the
posterior probability is in the region where γ > 0, that is where θ2 > θ3. This shows
that, after seeing the data, it appears likely that a greater proportion of patients give
the response when given treatment T2 than when given treatment T3. (It would not be
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Figure 9: Prior (dashes) and posterior (solid) marginal densities for γ in Task 4b. (Data Set 1).
The vertical dotted line shows where the two treatments are equal.

difficult to calculate the posterior probability of this). Students should be given marks
for comments which show that they understand the meaning of the graphs.

[10 marks]
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