Chapter 9

Continuous Probability Models

Outline

- Probability Density Functions (pdfs)
- The Uniform Distribution
- The Exponential Distribution

Continuous Data

Probability Density Functions (pdfs)

The key features of pdfs are

1. pdfs never take negative values
2. the area under a pdf is one: $P(-\infty<X<\infty)=1$
3. areas under the curve correspond to probabilities
4. $P(X \leq x)=P(X<x)$ since $P(X=x)=0$.

The Uniform Distribution

- Outcomes measured on a continuous scale.
- All outcomes equally likely.

Example: Environmental Health Officers visit local hotel at a "random" time during the working day (9.00 to 18.00)

- Let X be the time to their arrival at the hotel measured in terms of minutes from the start of the day.
- Then X is a random variable with a uniform distribution between 0 and 540, with pdf

$$
f(x)= \begin{cases}\frac{1}{540} & \text { for } 0 \leq x \leq 540 \\ 0 & \text { otherwise }\end{cases}
$$

The Uniform Distribution

General case:

Random variable X with a uniform distribution on a to b has pdf

$$
f(x)= \begin{cases}\frac{1}{b-a} & \text { for } a \leq x \leq b \\ 0 & \text { otherwise }\end{cases}
$$

and probabilities can be calculated using the formula

$$
P(X \leq x)= \begin{cases}0 & \text { for } x<a \\ \frac{x-a}{b-a} & \text { for } a \leq x \leq b \\ 1 & \text { for } x>b\end{cases}
$$

Probability that the inspectors visit the hotel in the morning (within 180 minutes after 9am) is

$$
P(X \leq 180)=\frac{180-0}{540-0}=\frac{1}{3}
$$

Probability of a visit during the lunch hour (12.30 to 13.30) is

$$
\begin{aligned}
P(210 \leq X \leq 270) & =P(X \leq 270)-P(X<210) \\
& =\frac{270-0}{540-0}-\frac{210-0}{540-0} \\
& =\frac{270-210}{540} \\
& =\frac{60}{540} \\
& =\frac{1}{9} .
\end{aligned}
$$

The Uniform Distribution

Mean:

$$
E(X)=\mu=\frac{(a+b)}{2}
$$

Variance:

$$
\operatorname{Var}(X)=\sigma^{2}=\frac{(b-a)^{2}}{12}
$$

The Exponential Distribution

- used to model lifetimes of products and times between "random" events
- arrivals of orders, customers in a queueing system, ...
- has one (positive) parameter λ

The Exponential Distribution

General form of pdf

$$
f(x)= \begin{cases}\lambda e^{-\lambda x} & \text { for } x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

and probabilities can be calculated using

$$
P(X \leq x)= \begin{cases}0 & \text { for } x<0 \\ 1-e^{-\lambda x} & \text { for } x>0\end{cases}
$$

The Exponential Distribution

Main features

1. it refers to positive quantities: $x>0$
2. larger values of x are increasingly unlikely exponential decay
3. the value of λ fixes the rate of decay - larger values of λ correspond to more rapid decay.

The Exponential Distribution

- $X=$ time between use of pay phone
- Model using exponential distribution with $\lambda=0.3$

Probability of the gap between phone users being less than 5 minutes is

$$
P(X<5)=1-e^{-0.3 \times 5}=1-0.223=0.777
$$

Probability that the gap is more than 10 minutes is

$$
\begin{aligned}
P(X>10) & =1-P(X \leq 10) \\
& =1-\left(1-e^{-0.3 \times 10}\right) \\
& =e^{-0.3 \times 10} \\
& =0.050
\end{aligned}
$$

Probability that the gap is between 5 and 10 minutes is

$$
\begin{aligned}
P(5<X<10) & =P(X<10)-P(X \leq 5) \\
& =0.950-0.777 \\
& =0.173
\end{aligned}
$$

The Exponential Distribution

Mean:

$$
E(X)=\mu=\frac{1}{\lambda}
$$

Variance:

$$
\operatorname{Var}(X)=\sigma^{2}=\frac{1}{\lambda^{2}}
$$

