Chapter 8

Outline

- Binomial Distribution

The Binomial and Poisson Distributions

Binomial Distribution

Scenario

- Each person/item has only two possible (exclusive) responses (Yes/No, Defective/Not defective etc) - each trial is a success or failure
- The survey/experiment is a random sample
- the responses are independent.
- $P($ success $)=p$
- $X=$ total number of successes out of n trials

Example: die-rolling experiment

- Success \leftrightarrow getting a three
- $X=$ number of successes out of 4 trials
- $X \sim \operatorname{Bin}(4,1 / 6)$
- Probability distribution

$$
\begin{aligned}
P(X=r) & ={ }^{n} \mathrm{C}_{r} p^{r}(1-p)^{n-r}, \quad r=0,1, \ldots, n \\
& ={ }^{4} \mathrm{C}_{r}\left(\frac{1}{6}\right)^{r}\left(1-\frac{1}{6}\right)^{4-r}, \quad r=0,1,2,3,4
\end{aligned}
$$

so that

$$
\begin{aligned}
& P(X=0)={ }^{4} C_{0}\left(\frac{1}{6}\right)^{0}\left(1-\frac{1}{6}\right)^{4}=\left(\frac{5}{6}\right)^{4}=0.4823 \\
& P(X=1)={ }^{4} C_{1}\left(\frac{1}{6}\right)^{1}\left(1-\frac{1}{6}\right)^{3}=4 \times \frac{1}{6} \times\left(\frac{5}{6}\right)^{3}=0.3858
\end{aligned}
$$

Another example:

A salesperson has a 50% chance of making a sale on a customer visit and she arranges 6 visits in a day. What are the probabilities of her making $0,1,2,3,4,5$ and 6 sales?

Let $X=$ number of sales. Assuming the visits result in sales independently, $X \sim \operatorname{Bin}(6,0.5)$ and

No. of sales	Probability	Cumulative Probability
r	$P(X=r)$	$P(X \leq r)$
0	0.015625	0.015625
1	0.093750	0.109375
2	0.234375	0.343750
3	0.312500	0.656250
4	0.234375	0.890625
5	0.093750	0.984375
6	0.015625	1.000000
sum	1.000000	

Poisson Distribution

- Counts of events occurring randomly in time
- $X=$ number of calls to an ISP
- Probability distribution

$$
P(X=r)=\frac{\lambda^{r} e^{-\lambda}}{r!}, \quad r=0,1,2, \ldots
$$

- $X \sim \operatorname{Po}(\lambda)$
- Mean and variance are

$$
E(X)=\lambda, \quad \operatorname{Var}(X)=\lambda
$$

$$
X \sim P o(5)
$$

$$
P(X=r)=\frac{5^{r} e^{-5}}{r!}, \quad r=0,1,2, \ldots
$$

Probability Cumulative Probability

r	$P(X=r)$	$P(X \leq r)$
0	0.0067	0.0067
1	0.0337	0.0404
2	0.0843	0.1247
3	0.1403	0.2650
4	0.1755	0.4405
5	0.1755	0.6160
6	0.1462	0.7622
7	0.1044	0.8666
8	0.0653	0.9319
9	0.0363	0.9682
10	0.0181	0.9863
$:$	\vdots	$:$

Example:

An Internet service provider (ISP) has thousands of subscribers, but each one will call with a very small probability. The ISP knows that on average 5 calls will be made in one minute.

Let $X=$ number of calls made in a minute.
Then $X \sim P o(5)$ and

$$
\begin{array}{rlrl}
P(X=r) & =\frac{\lambda^{r} e^{-\lambda}}{r!}, & r=0,1,2, \ldots \\
& =\frac{5^{r} e^{-5}}{r!}, \quad r=0,1,2, \ldots
\end{array}
$$

For example,

$$
P(X=4)=\frac{5^{4} e^{-5}}{4!}=0.1755
$$

