Chapter 8

The Binomial and Poisson Distributions

Binomial Distribution

Scenario

- Each person/item has only two possible (exclusive)
 responses (Yes/No, Defective/Not defective etc)
 - each trial is a success or failure
- The survey/experiment is a random sample
 - the responses are independent.
- P(success) = p
- X = total number of successes out of n trials

Outline

- Binomial Distribution
- Poisson Distribution

Binomial Distribution

- X = total number of successes out of n trials
- Probability distribution

$$P(X = r) = {}^{n}C_{r} p^{r} (1 - p)^{n-r}, \quad r = 0, 1, ..., n$$

- $X \sim Bin(n, p)$
- Mean and variance are

$$E(X) = np,$$
 $Var(X) = np(1-p)$

Example: die-rolling experiment

- Success ↔ getting a three
- X = number of successes out of 4 trials
- $X \sim Bin(4, 1/6)$
- Probability distribution

$$P(X = r) = {}^{n}C_{r} p^{r} (1 - p)^{n - r}, \quad r = 0, 1, ..., n$$
$$= {}^{4}C_{r} \left(\frac{1}{6}\right)^{r} \left(1 - \frac{1}{6}\right)^{4 - r}, \quad r = 0, 1, 2, 3, 4$$

so that

$$P(X = 0) = {}^{4}C_{0} \left(\frac{1}{6}\right)^{0} \left(1 - \frac{1}{6}\right)^{4} = \left(\frac{5}{6}\right)^{4} = 0.4823$$

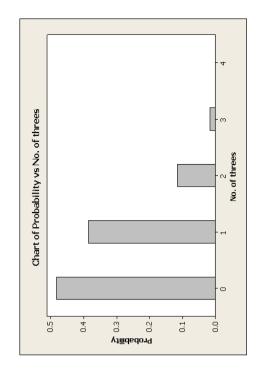
$$P(X = 1) = {}^{4}C_{1} \left(\frac{1}{6}\right)^{1} \left(1 - \frac{1}{6}\right)^{3} = 4 \times \frac{1}{6} \times \left(\frac{5}{6}\right)^{3} = 0.3858$$

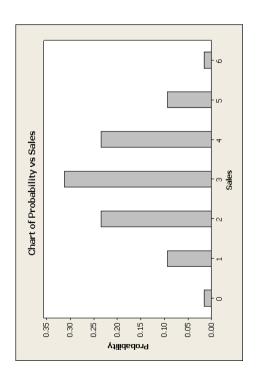
Another example:

A salesperson has a 50% chance of making a sale on a customer visit and she arranges 6 visits in a day. What are the probabilities of her making 0,1,2,3,4,5 and 6 sales?

Let X= number of sales. Assuming the visits result in sales independently, $X\sim Bin(6,0.5)$ and

No. of sales	Probability	Cumulative Probability
r	P(X=r)	$P(X \le r)$
0	0.015625	0.015625
1	0.093750	0.109375
2	0.234375	0.343750
3	0.312500	0.656250
4	0.234375	0.890625
5	0.093750	0.984375
6	0.015625	1.000000
sum	1.000000	





Poisson Distribution

- Counts of events occurring randomly in time
- X = number of calls to an ISP
- Probability distribution

$$P(X = r) = \frac{\lambda^r e^{-\lambda}}{r!}, \quad r = 0, 1, 2, \dots$$

- $X \sim Po(\lambda)$
- Mean and variance are

$$E(X) = \lambda, \qquad Var(X) = \lambda$$

 $X \sim Po(5)$

$$P(X = r) = \frac{5^r e^{-5}}{r!}, \quad r = 0, 1, 2, \dots$$

Probability Cumulative Probability

r	P(X=r)	$P(X \le r)$
0	0.0067	0.0067
1	0.0337	0.0404
2	0.0843	0.1247
3	0.1403	0.2650
4	0.1755	0.4405
5	0.1755	0.6160
6	0.1462	0.7622
7	0.1044	0.8666
8	0.0653	0.9319
9	0.0363	0.9682
10	0.0181	0.9863
÷	i	i i
sum	1.000000	

Example:

An Internet service provider (ISP) has thousands of subscribers, but each one will call with a very small probability. The ISP knows that on average 5 calls will be made in one minute.

Let X = number of calls made in a minute.

Then $X \sim Po(5)$ and

$$P(X = r) = \frac{\lambda^r e^{-\lambda}}{r!}, \quad r = 0, 1, 2, \dots$$
$$= \frac{5^r e^{-5}}{r!}, \quad r = 0, 1, 2, \dots$$

For example,

$$P(X=4) = \frac{5^4 e^{-5}}{4!} = 0.1755$$

