Chapter 6

Decision Making Using Probability

Outline

- Conditional Probability
- Tree Diagrams
- Optimal Decisions

Conditional Probability

If we have two events A and B then

$$
P(A \mid B)
$$

is the probability of A given that B has occurred.

Utility companies - forecast periods of high demand:
$P($ High demandair temperature is below normal $)=0.6$
$P($ High demandair temperature is normal $)=0.2$
$P($ High demandair temperature is above normal $)=0.05$.

Conditional Probability

General formula:

$$
P(A \mid B)=\frac{P(A \text { and } B)}{P(B)}
$$

Example

Sales of CD singles at a local outlet:

	<30	$30-50$	$50+$
Male	0.275	0.125	0.025
Female	0.325	0.175	0.075

From this table, we can calculate

$$
\begin{aligned}
P(\text { Male })= & P(\text { Male and }<30)+P(\text { Male and } 30-50) \\
& \quad+P(\text { Male and } 50+) \\
= & 0.275+0.125+0.025=0.425
\end{aligned}
$$

and

$$
\begin{aligned}
P(\text { Female })= & P(\text { Female and }<30)+P(\text { Female and } 30-50) \\
& \quad+P(\text { Female and } 50+) \\
= & 0.325+0.175+0.075=0.575
\end{aligned}
$$

Also, the age distribution of the customers is

$$
\begin{aligned}
P(<30) & =\operatorname{Pr}(\text { Male and }<30)+\operatorname{Pr}(\text { Female and }<30) \\
& =0.275+0.325=0.6
\end{aligned}
$$

$$
P(30-50)=\operatorname{Pr}(\text { Male and } 30-50)+\operatorname{Pr}(\text { Female and } 30-50)
$$

$$
=0.125+0.175=0.3
$$

$$
\begin{aligned}
P(50+) & =\operatorname{Pr}(\text { Male and } 50+)+\operatorname{Pr}(\text { Female and } 50+) \\
& =0.025+0.075=0.1
\end{aligned}
$$

Also

$$
P(\text { Male } \mid 30-50)=\frac{P(\text { Male and } 30-50)}{P(30-50)}=\frac{0.125}{0.3}=0.4167
$$

$$
P(\text { Female } \mid 30-50)=1-P(\text { Male } \mid 30-50)=1-0.4167=0.5833
$$

and

$$
\begin{aligned}
P(<30 \mid \text { Male }) & =\frac{P(\text { Male and }<30)}{P(\text { Male })}=\frac{0.275}{0.425}=0.6471 \\
P(30-50 \mid \text { Male }) & =\frac{P(\text { Male and } 30-50)}{P(\text { Male })}=\frac{0.125}{0.425}=0.2941 \\
P(50+\mid \text { Male }) & =1-P(<30 \mid \text { Male })-P(30-50 \mid \text { Male }) \\
& =1-0.6471-0.2941=0.588
\end{aligned}
$$

Tree Diagrams

- Experiment with multiple outcomes
- Represent each experiment by a circle
- Branches from it represent outcomes
- Each outcome has a probability associated with it

Tree Diagrams

Consider the probability of throwing two consecutive 6's on a die.

$$
P(\text { Six and Six })=\frac{1}{6} \times \frac{1}{6}=\frac{1}{36}
$$

Example

- A machine produces components. The machine may be OK or not.
- The components may be defective or not.
- The components are tested and may be accepted or rejected.

$$
\begin{aligned}
P(\text { Machine OK }) & =0.9 \\
P(\text { Component OK } \mid \text { Machine OK }) & =0.95 \\
P(\text { Component OK } \mid \text { Machine faulty }) & =0.8 \\
P(\text { Accept component } \mid \text { Component OK }) & =0.97 \\
P(\text { Accept component } \mid \text { Component defective }) & =0.15
\end{aligned}
$$

Example ctd

$$
\begin{aligned}
P(\text { accepted }) & =0.82935+0.00675+0.07760+0.00300 \\
& =0.9167 \\
P(\text { defective }) & =(0.9 \times 0.05)+(0.1 \times 0.2) \\
& =0.045+0.02=0.065 \\
P(\text { defective and accepted }) & =0.00675+0.00300=0.00975 \\
P(\text { accepted } \mid \text { defective }) & =\frac{0.00975}{0.065}=0.15 \\
P(\text { defective } \mid \text { accepted }) & =\frac{0.00975}{0.9167}=0.010636 \\
P(\text { machine OK and accepted }) & =0.82935+0.00675=0.8361 \\
P(\text { machine OK } \mid \text { accepted }) & =\frac{0.8361}{0.9167}=0.9121 \\
P(\text { machine OK and rejected }) & =0.02565+0.03825=0.0639 \\
P(\text { rejected }) & =1-P(\text { accepted })=0.0833 \\
P(\text { machine OK } \mid \text { rejected }) & =\frac{0.0639}{0.0833}=0.7671
\end{aligned}
$$

Expected Monetary Value (EMV)

For a single event

$$
E M V=P(\text { Event }) \times \text { Monetary value of Event }
$$

The expected monetary value of a project with several possible outcomes is

$$
E M V=\sum P(\text { Event }) \times \text { Monetary value of Event }
$$

where the sum is over all possible events.

Optimal Decisions

Best decision \longleftrightarrow Largest $E V M$

Example: Iaunch of a new product

- Three options
- Direct
- Internet
- Licence

Decision Trees

High, medium or low chance of success with probabilities
$0.2,0.35$ and 0.45 respectively

Likely profits:

	High	Medium	Low
Direct	100	55	-25
Internet	46	25	15
Licence	20	20	20

What should the company do?

