Outline

Chapter 6

Decision Making Using Probability

- Conditional Probability
- Tree Diagrams
- Optimal Decisions

Conditional Probability

If we have two events A and B then

P(A|B)

is the probability of A given that B has occurred.

Utility companies – forecast periods of high demand:

P(High demand|air temperature is below normal) = 0.6

P(High demand|air temperature is normal) = 0.2

P(High demand|air temperature is above normal) = 0.05.

Conditional Probability

General formula:

$$P(A|B) = \frac{P(A \text{ and } B)}{P(B)}$$

Example

Sales of CD singles at a local outlet:

	< 30	30 – 50	50+
Male	0.275	0.125	0.025
Female	0.325	0.175	0.075

From this table, we can calculate

P(Male) = P(Male and < 30) + P(Male and 30 - 50)+ P(Male and 50+)= 0.275 + 0.125 + 0.025 = 0.425

and

P(Female) = P(Female and < 30) + P(Female and 30 - 50)+ P(Female and 50+)= 0.325 + 0.175 + 0.075 = 0.575. Also, the age distribution of the customers is

$$P(< 30) = Pr(Male and < 30) + Pr(Female and < 30)$$

= 0.275 + 0.325 = 0.6

P(30-50) = Pr(Male and 30-50) + Pr(Female and 30-50)= 0.125 + 0.175 = 0.3

P(50+) = Pr(Male and 50+) + Pr(Female and 50+)= 0.025 + 0.075 = 0.1.

Tree Diagrams

- Experiment with multiple outcomes
- Represent each experiment by a circle
- Branches from it represent outcomes
- Each outcome has a probability associated with it

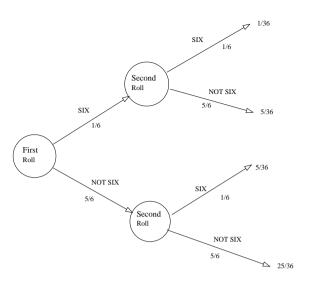
Also

$$P(\mathsf{Male}|\mathsf{30-50}) = \frac{P(\mathsf{Male and } \mathsf{30-50})}{P(\mathsf{30-50})} = \frac{0.125}{0.3} = 0.4167$$

$$P(\text{Female}|30-50) = 1 - P(\text{Male}|30-50) = 1 - 0.4167 = 0.5833$$

and

$$P(< 30|\text{Male}) = \frac{P(\text{Male and } < 30)}{P(Male)} = \frac{0.275}{0.425} = 0.6471$$


$$P(30-50|\text{Male}) = \frac{P(\text{Male and } 30-50)}{P(Male)} = \frac{0.125}{0.425} = 0.2941$$

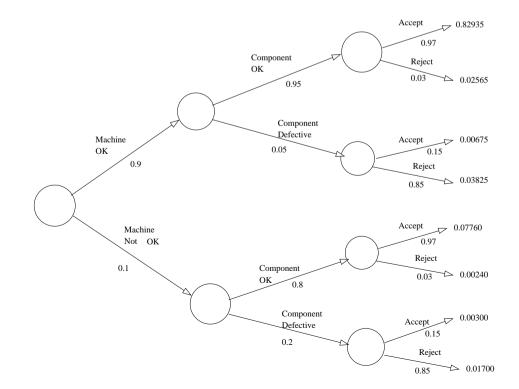
$$P(50 + |Male) = 1 - P(<30|Male) - P(30 - 50|Male)$$

= 1 - 0.6471 - 0.2941 = 0.588.

Tree Diagrams

Consider the probability of throwing two consecutive 6's on a die.

$$P(\text{Six and Six}) = \frac{1}{6} \times \frac{1}{6} = \frac{1}{36}$$


Example

- A machine produces components. The machine may be OK or not.
- The components may be defective or not.
- The components are tested and may be accepted or rejected.

P(Machine OK) = 0.9

 $P(\text{Component OK} \mid \text{Machine OK}) = 0.95$

- $P(\text{Component OK} \mid \text{Machine faulty}) = 0.8$
- P(Accept component | Component OK) = 0.97
- $P(\text{Accept component} \mid \text{Component defective}) = 0.15$

Example ctd

Expected Monetary Value (EMV)

P(accepted)	=	0.82935 + 0.00675 + 0.07760 + 0.00300
	=	0.9167
P(defective)	=	$(0.9 \times 0.05) + (0.1 \times 0.2)$
	=	0.045 + 0.02 = 0.065
		0.00675 + 0.00300 = 0.00975
$P(accepted \mid defective)$	=	$\frac{0.00975}{0.065} = 0.15$
P(defective accepted)	=	$\frac{0.00975}{0.9167} = 0.010636$
P(machine OK and accepted)	=	0.82935 + 0.00675 = 0.8361
$P(machine OK \mid accepted)$	=	$\frac{0.8361}{0.9167} = 0.9121$
P(machine OK and rejected)		
P(rejected)	=	1 - P(accepted) = 0.0833
P(machine OK rejected)	=	$\frac{0.0639}{0.0833} = 0.7671$

For a single event

 $EMV = P(Event) \times$ Monetary value of Event

The expected monetary value of a project with several possible outcomes is

 $EMV = \sum P(\text{Event}) \times \text{Monetary value of Event}$

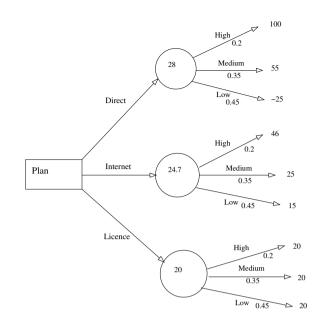
where the sum is over all possible events.

Optimal Decisions

Best decision \longleftrightarrow Largest EVM

Example: launch of a new product

- Three options
 - Direct
 - Internet
 - Licence


Decision Trees

High, medium or low chance of success with probabilities 0.2, 0.35 and 0.45 respectively

Likely profits:

	High	Medium	Low
Direct	100	55	-25
Internet	46	25	15
Licence	20	20	20

What should the company do?

