Chapter 4

Summarising Data

Recap and Outline

- Graphical methods of presenting data
- Numerical methods for summarising data
- Basic calculations
- MINITAB

Definitions

Algebraic Notation

1st random sample	1	5	7
2nd random sample	2	0	3
typical random sample	x_{1}	x_{2}	x_{3}

$$
\sum_{i=1}^{n} x_{i}=x_{1}+x_{2}+\cdots+x_{n}
$$

Definitions

Raising to powers:

$$
x^{k}
$$

Ordering with brackets: $\times \quad$ then +-

$$
\begin{aligned}
3+4^{2} & =19 \\
3^{2}+4^{2} & =25 \\
(3+4)^{2} & =49
\end{aligned}
$$

In general

$$
\sum x^{2} \neq\left(\sum x\right)^{2}
$$

Measures of Location

- The Mean
- The Median
- The Mode

The Mean (\bar{x})

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \quad \text { or } \quad \frac{\sum x}{n}
$$

The Mean (\bar{x})

Date	Cars Sold	Date	Cars Sold
$01 / 07 / 04$	9	$08 / 07 / 04$	10
$02 / 07 / 04$	8	$09 / 07 / 04$	5
$03 / 07 / 04$	6	$10 / 07 / 04$	8
$04 / 07 / 04$	7	$11 / 07 / 04$	4
$05 / 07 / 04$	7	$12 / 07 / 04$	6
$06 / 07 / 04$	10	$13 / 07 / 04$	8
$07 / 07 / 04$	11	$14 / 07 / 04$	9

The mean number of cars sold per day is

$$
\bar{x}=\frac{9+8+\ldots+8+9}{14}=7.71
$$

The Mean (\bar{x})

Cars Sold $\left(x_{(j)}\right)$	Frequency $\left(f_{j}\right)$
4	1
5	1
6	2
7	2
8	3
9	2
10	2
11	1
Total (n)	14

The sample mean is

$$
\bar{x}=\frac{4 \times 1+5 \times 1+6 \times 2+\ldots+11 \times 1}{14}=7.71
$$

In general

$$
\bar{x}=\frac{1}{n} \sum_{j=1}^{k} f_{j} x_{(j)}
$$

The Mean (\bar{x})

Data: sample mean is 9.73

8.4	8.7	9.0	9.0	9.2	9.3	9.3	9.5	9.6	9.6
9.6	9.7	9.7	9.9	10.3	10.4	10.5	10.7	10.8	11.4

Class Interval	Mid Point $\left(m_{j}\right)$	Frequency $\left(f_{j}\right)$
$8.0 \leq x<8.5$	8.25	1
$8.5 \leq x<9.0$	8.75	1
$9.0 \leq x<9.5$	9.25	5
$9.5 \leq x<10.0$	9.75	7
$10.0 \leq x<10.5$	10.25	2
$10.5 \leq x<11.0$	10.75	3
$11.0 \leq x<11.5$	11.25	1
Total (n)		20

The Mean (\bar{x})

Can approximate the sample mean using

$$
\bar{x}=\frac{1}{n} \sum_{j=1}^{k} f_{j} m_{j} .
$$

For these grouped data

$$
\begin{aligned}
\bar{x} & =\frac{1}{20}(1 \times 8.25+1 \times 8.75+\cdots+3 \times 10.75+1 \times 11.25) \\
& =9.775 .
\end{aligned}
$$

Close to correct value 9.73

The Median

- Simply the "middle" observation (ordered)
- Odd number of observations (n):

$$
\text { median }=\left(\frac{n+1}{2}\right)^{t h} \text { largest observation }
$$

- Even number of observations (n):

$$
\begin{aligned}
\text { median }= & \text { average of the }\left(\frac{n}{2}\right)^{t h} \text { and } \\
& \text { the }\left(\frac{n}{2}+1\right)^{t h} \text { largest observations }
\end{aligned}
$$

Data:

$$
\begin{array}{rrrrrrrrrr}
8.4 & 8.7 & 9.0 & 9.0 & 9.2 & 9.3 & 9.3 & 9.5 & 9.6 & 9.6 \\
9.6 & 9.7 & 9.7 & 9.9 & 10.3 & 10.4 & 10.5 & 10.7 & 10.8 &
\end{array}
$$

Sample size $n=19$ is odd

$$
\begin{aligned}
\text { median } & =\left(\frac{n+1}{2}\right)^{t h} \text { largest observation } \\
& =10^{t h} \text { largest observation } \\
& =9.6
\end{aligned}
$$

Data:

$$
\begin{array}{rrrrrrrrrr}
8.4 & 8.7 & 9.0 & 9.0 & 9.2 & 9.3 & 9.3 & 9.5 & 9.6 & 9.6 \\
9.6 & 9.7 & 9.7 & 9.9 & 10.3 & 10.4 & 10.5 & 10.7 & 10.8 & 11.4
\end{array}
$$

Sample size $n=20$ is even

$$
\begin{aligned}
\text { median }= & \text { average of the }\left(\frac{n}{2}\right)^{t h} \text { and } \\
& \quad \text { the }\left(\frac{n}{2}+1\right)^{t h} \text { largest observations } \\
= & \text { average of the } 10^{t h} \text { and the } 11^{t h} \text { largest observations } \\
= & \frac{9.6+9.6}{2} \\
= & 9.6
\end{aligned}
$$

The Median

- Possible to estimate from an ogive
- The median is the x-value corresponding to 50% cumulative frequency

The Mode

- Discrete data: the most common value
- Continuous data: the most common class

Class	Frequency
$10 \leq x<20$	10
$20 \leq x<30$	15
$30 \leq x<40$	30

Modal class is $30 \leq x<40$

Measures of Spread

- Location is not sufficient
- Need some idea of the spread of the data

The Range

- The difference between the largest and smallest values

$$
\text { Range }=\max -\min
$$

- Not the best measure of spread

The Inter-Quartile Range

- The range of the middle half of the data.
- Divide data into four sections separated by quartiles
- Lower quartile, Q1 has 25\% of the data below it
- Median, Q2 has 50\% of the data below it
- Upper quartile, Q3 has 75\% of the data below it

The Quartiles

Lower quartile

$$
Q 1=\frac{(n+1)}{4} \text { th smallest observation }
$$

Upper quartile

$$
Q 3=\frac{3(n+1)}{4} \text { th smallest observation }
$$

Data: $n=20$

8.4	8.7	9.0	9.0	9.2	9.3	9.3	9.5	9.6	9.6
9.6	9.7	9.7	9.9	10.3	10.4	10.5	10.7	10.8	11.4

Lower quartile

$$
\begin{aligned}
Q 1 & =\frac{(n+1)}{4} \text { th smallest observation } \\
& =5 \frac{1}{4} \text { th smallest observation } \\
& =9.225
\end{aligned}
$$

Upper quartile

$$
\begin{aligned}
Q 3 & =\frac{3(n+1)}{4} \text { th smallest observation } \\
& =15 \frac{3}{4} \text { th smallest observation } \\
& =10.375
\end{aligned}
$$

The Inter-Quartile Range

The Inter-Quartile Range is the difference between the upper and lower quartiles:

$$
I Q R=Q 3-Q 1
$$

The Sample Variance $\left(s^{2}\right)$

The average of the squared distances of the observations from the mean:

$$
s^{2}=\frac{\left(x_{1}-\bar{x}\right)^{2}+\left(x_{2}-\bar{x}\right)^{2}+\ldots+\left(x_{n}-\bar{x}\right)^{2}}{n-1}
$$

General formula

$$
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

or equivalently

$$
s^{2}=\frac{1}{n-1}\left\{\sum_{i=1}^{n} x_{i}^{2}-n(\bar{x})^{2}\right\}
$$

Can approximate the sample variance from grouped frequency data using

$$
s^{2}=\frac{1}{n-1}\left\{\sum_{i=1}^{k} f_{i} m_{i}^{2}-n(\bar{x})^{2}\right\}
$$

The Sample Standard Deviation (s)

$$
\begin{aligned}
\text { Standard Deviation } & =\sqrt{\text { Variance }} \\
s & =\sqrt{s^{2}}
\end{aligned}
$$

Calculator: use σ_{n-1} or s buttons NOT σ_{n} or σ buttons

Data: $n=20$, sample mean is $\bar{x}=9.73$

$$
\begin{array}{rlllrrrrrr}
8.4 & 8.7 & 9.0 & 9.0 & 9.2 & 9.3 & 9.3 & 9.5 & 9.6 & 9.6 \\
9.6 & 9.7 & 9.7 & 9.9 & 10.3 & 10.4 & 10.5 & 10.7 & 10.8 & 11.4 \\
& \\
& \sum x^{2}=8.4^{2}+8.7^{2}+\cdots+11.4^{2}=1904.38 \\
& n(\bar{x})^{2}=1893.458
\end{array}
$$

Sample variance is

$$
\begin{aligned}
s^{2} & =\frac{1}{n-1}\left\{\sum_{i=1}^{n} x_{i}^{2}-n(\bar{x})^{2}\right\} \\
& =\frac{1}{19}(1904.38-1893.458)=0.57484
\end{aligned}
$$

Sample standard deviation is

$$
s=\sqrt{s^{2}}=\sqrt{0.57484}=0.75818
$$

Summary statistics in MINITAB

MINITAB can be used to calculate many of basic numerical summary statistics described so far using

Stats > Basic Statistics > Display Descriptive Statistics

Box and Whisker Plots

Plot of summary statistics from data:

- Minimum (min)
- Lower quartile (Q1)
- Median (Q2)
- Upper quartile (Q3)
- Maximum (max)

