Recap and Outline

Chapter 4

Summarising Data

- Graphical methods of presenting data
- Numerical methods for summarising data
- Basic calculations
- MINITAB

Definitions

Definitions

Algebraic Notation

$$\sum_{i=1}^{n} x_i = x_1 + x_2 + \dots + x_n$$

 x^k

Ordering with brackets: \times $\ \div$ then $\ +$ $\ -$

$$3 + 4^2 = 19$$

 $3^2 + 4^2 = 25$
 $(3 + 4)^2 = 49.$

In general

$$\sum x^2 \neq \left(\sum x\right)^2$$

Measures of Location

- The Mean
- The Median
- The Mode

The Mean (\overline{x})

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \quad \text{or} \quad \frac{\sum x}{n}$$

The Mean (\overline{x})

Date	Cars Sold	Date	Cars Sold
01/07/04	9	08/07/04	10
02/07/04	8	09/07/04	5
03/07/04	6	10/07/04	8
04/07/04	7	11/07/04	4
05/07/04	7	12/07/04	6
06/07/04	10	13/07/04	8
07/07/04	11	14/07/04	9

The mean number of cars sold per day is

$$\bar{x} = \frac{9+8+\ldots+8+9}{14} = 7.71.$$

The Mean (\overline{x})

Cars Sold $(x_{(j)})$	Frequency (f_j)
4	1
5	1
6	2
7	2
8	3
9	2
10	2
11	1
Total (n)	14

The sample mean is

$$\overline{x} = \frac{4 \times 1 + 5 \times 1 + 6 \times 2 + \ldots + 11 \times 1}{14} = 7.71.$$

In general

$$\overline{x} = \frac{1}{n} \sum_{j=1}^{k} f_j x_{(j)}$$

The Mean (\overline{x})

The Mean (\overline{x})

Data: sample mean is 9.73

8.4	8.7	9.0	9.0	9.2	9.3	9.3	9.5	9.6	9.6
9.6	9.7	9.7	9.9	10.3	10.4	10.5	10.7	10.8	11.4

Class Interval	Mid Point (m_j)	Frequency (f_j)
$8.0 \le x < 8.5$	8.25	1
$8.5 \le x < 9.0$	8.75	1
$9.0 \le x < 9.5$	9.25	5
$9.5 \le x < 10.0$	9.75	7
$10.0 \le x < 10.5$	10.25	2
$10.5 \le x < 11.0$	10.75	3
$11.0 \le x < 11.5$	11.25	1
Total (n)		20

Can approximate the sample mean using

$$\bar{x} = \frac{1}{n} \sum_{j=1}^{k} f_j m_j.$$

For these grouped data

$$\bar{x} = \frac{1}{20} (1 \times 8.25 + 1 \times 8.75 + \dots + 3 \times 10.75 + 1 \times 11.25)$$

= 9.775.

Close to correct value 9.73

The Median

- Simply the "middle" observation (ordered)
- Odd number of observations (*n*):

median
$$= \left(\frac{n+1}{2}\right)^{th}$$
 largest observation

• Even number of observations (*n*):

median = average of the
$$\left(\frac{n}{2}\right)^{th}$$
 and the $\left(\frac{n}{2}+1\right)^{th}$ largest observations

Data:

8.4 8.7 9.0 9.0 9.2 9.3 9.3 9.5 9.6 9.6 9.6 9.7 9.7 9.9 10.3 10.4 10.5 10.7 10.8

Sample size n = 19 is odd

median
$$= \left(\frac{n+1}{2}\right)^{th}$$
 largest observation
= 10^{th} largest observation
= 9.6

8.48.79.09.09.29.39.39.59.69.69.69.79.79.910.310.410.510.710.811.4

Sample size n = 20 is even

median = average of the
$$\left(\frac{n}{2}\right)^{th}$$
 and
the $\left(\frac{n}{2}+1\right)^{th}$ largest observations
= average of the 10th and the 11th largest observations
 $= \frac{9.6+9.6}{2}$
= 9.6

The Median

- Possible to estimate from an ogive
- The median is the *x*-value corresponding to 50% cumulative frequency

The Mode

- Discrete data: the most common value
- Continuous data: the most common class

Class	Frequency			
$10 \le x < 20$	10			
$20 \le x < 30$	15			
$30 \le x < 40$	30			

Measures of Spread

- Location is not sufficient
- Need some idea of the spread of the data

The Inter-Quartile Range

The Range

• The difference between the largest and smallest values

Range = max - min

• Not the best measure of spread

- The range of the middle half of the data.
- Divide data into four sections separated by *quartiles*
 - Lower quartile, Q1 has 25% of the data below it
 - Median, Q2 has 50% of the data below it
 - Upper quartile, Q3 has 75% of the data below it

Data: n = 20

8.4	8.7	9.0	9.0	9.2	9.3	9.3	9.5	9.6	9.6
9.6	9.7	9.7	9.9	10.3	10.4	10.5	10.7	10.8	11.4

Lower quartile

$$Q1 = \frac{(n+1)}{4}$$
th smallest observation
= $5\frac{1}{4}$ th smallest observation
= 9.225

Upper quartile

$$Q3 = \frac{3(n+1)}{4}$$
th smallest observation
= $15\frac{3}{4}$ th smallest observation
= 10.375

The Quartiles

Lower quartile

$$Q1 = \frac{(n+1)}{4}$$
th smallest observation

Upper quartile

$$Q3 = \frac{3(n+1)}{4}$$
th smallest observation

The Sample Variance (s^2)

The Inter-Quartile Range

The Inter-Quartile Range is the difference between the upper and lower quartiles:

$$IQR = Q3 - Q1$$

The average of the squared distances of the observations from the mean:

$$s^{2} = \frac{(x_{1} - \bar{x})^{2} + (x_{2} - \bar{x})^{2} + \dots + (x_{n} - \bar{x})^{2}}{n - 1}$$

General formula

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

or equivalently

$$s^{2} = \frac{1}{n-1} \left\{ \sum_{i=1}^{n} x_{i}^{2} - n (\bar{x})^{2} \right\}$$

Data: n = 20, sample mean is $\bar{x} = 9.73$

8.4 8.7 9.0 9.0 9.2 9.3 9.3 9.5 9.6 9.6 9.6 9.7 9.7 9.9 10.3 10.4 10.5 10.7 10.8 11.4

$$\sum x^2 = 8.4^2 + 8.7^2 + \dots + 11.4^2 = 1904.38$$
$$n(\bar{x})^2 = 1893.458$$

Sample variance is

$$s^{2} = \frac{1}{n-1} \left\{ \sum_{i=1}^{n} x_{i}^{2} - n(\bar{x})^{2} \right\}$$
$$= \frac{1}{19} (1904.38 - 1893.458) = 0.57484$$

Sample standard deviation is

$$s = \sqrt{s^2} = \sqrt{0.57484} = 0.75818$$

Can approximate the sample variance from grouped frequency data using

 $s^{2} = \frac{1}{n-1} \left\{ \sum_{i=1}^{k} f_{i} m_{i}^{2} - n \left(\bar{x}\right)^{2} \right\}$

The Sample Standard Deviation (s)

Standard Deviation =
$$\sqrt{Variance}$$

 $s = \sqrt{s^2}$

Calculator: use σ_{n-1} or s buttons NOT σ_n or σ buttons

Box and Whisker Plots

Summary statistics in MINITAB

MINITAB can be used to calculate many of basic numerical summary statistics described so far using

Stats > Basic Statistics > Display Descriptive Statistics

Plot of summary statistics from data:

- Minimum (min)
- Lower quartile (Q1)
- Median (Q2)
- Upper quartile (Q3)
- Maximum (*max*)