Chapter 2

Presenting Data

Recap and Outline

• Frequency tables have limitations.

• Graphical methods can provide clearer picture.

• Use of computer packages.

Stem and Leaf Plots

• Simple to produce.

• Easy to interpret.

• Applicable to all data types.

Stem and Leaf Plots

Consider the following data

n = 8, stem unit = 10, leaf unit = 1.

Recovering the data

Observation = stem label \times stem unit + leaf digit \times leaf unit

Construct a stem and leaf plot for the following data on time (in seconds) it takes to get through to an operator at a call centre:

54	56	50	67	55	38	49	45	39	50
45	51	47	53	29	42	44	61	51	50
30	39	65	54	44	54	72	65	58	62

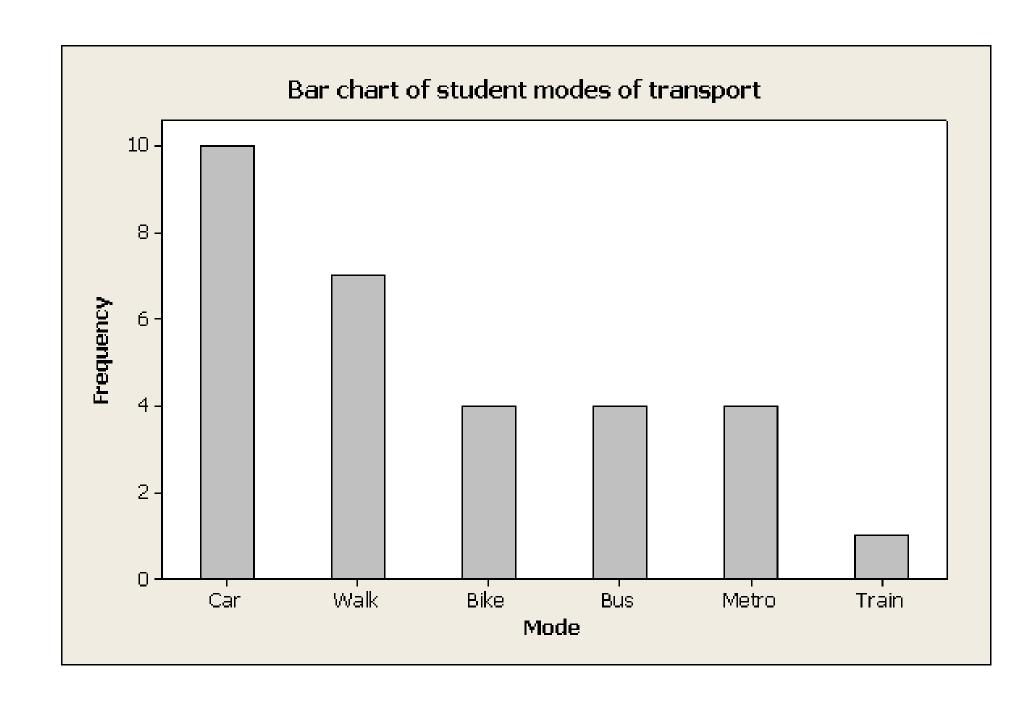
Stem and Leaf Plots

Data on lengths (in cm) of items on a production line:

Stem and leaf plot:

$$n = 10$$
 $1 \mid 9$
 $2 \mid 0 \mid 2 \mid 3$
 $2 \mid 5 \mid 6 \mid 9$
 $3 \mid 0 \mid 4$
 $3 \mid 8$

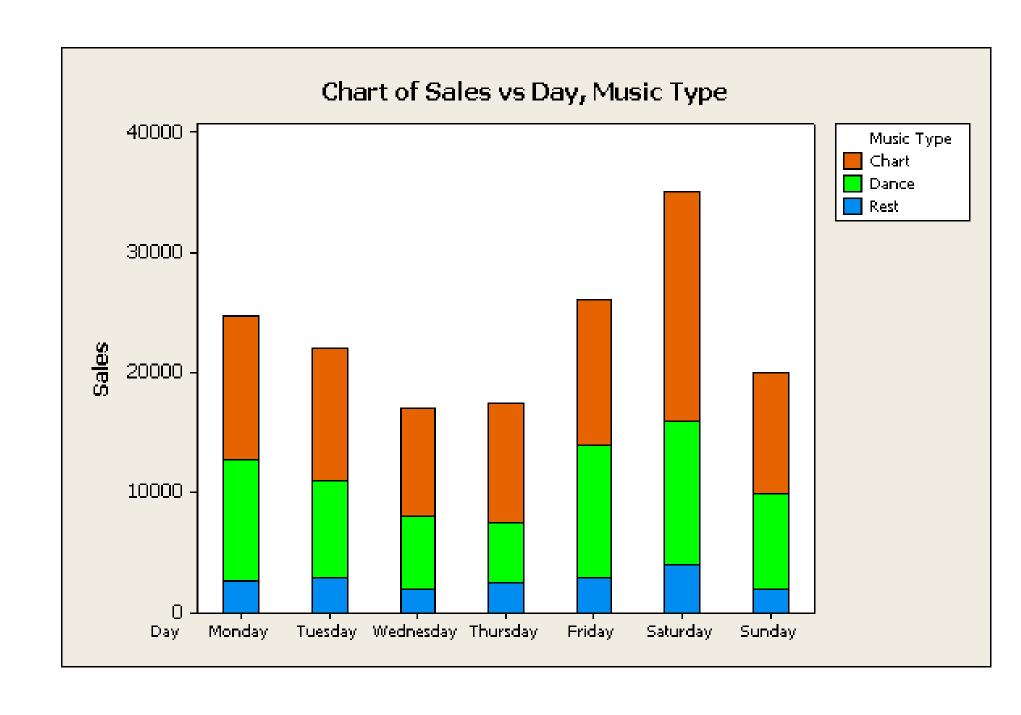
Stem unit = 1 cm, Leaf unit = 0.1 cm.


- Simple to produce.
- Easy to interpret.
- Applicable to categorical data and ungrouped discrete data.

- 1. Decide what goes on each axis, by convention
 - \bullet Horizontal (x-axis) the variable being measured.
 - Vertical (y-axis) the frequency.
- 2. Find the maximum frequency.
- 3. Decide on an appropriate number scale for this axis.
- 4. Draw the axes.
- 5. Draw the bars.
 - All bars the same width.
 - All gaps between bars equal.

Recalling our mode of transport example

Student	Mode	Student	Mode	Student	Mode
1	Car	11	Walk	21	Walk
2	Walk	12	Walk	22	Metro
3	Car	13	Metro	23	Car
4	Walk	14	Bus	24	Car
5	Bus	15	Train	25	Car
6	Metro	16	Bike	26	Bus
7	Car	17	Bus	27	Car
8	Bike	18	Bike	28	Walk
9	Walk	19	Bike	29	Car
10	Car	20	Metro	30	Car


Mode	Frequency		
Car	10		
Walk	7		
Bike	4		
Bus	4		
Metro	4		
Train	1		
Total	30		

Multiple Bar Charts

Daily sales of CDs (in \pounds) by music type for an independent retailer

Day	Chart	Dance	Rest	Total
Monday	12000	10000	2700	24700
Tuesday	11000	8000	3000	22000
Wednesday	9000	6000	2000	17000
Thursday	10000	5000	2500	17500
Friday	12000	11000	3000	26000
Saturday	19000	12000	4000	35000
Sunday	10000	8000	2000	20000
Total	83000	60000	19200	162200

Histograms

• Simple to produce.

• Easy to interpret.

• Applicable to grouped continuous data.

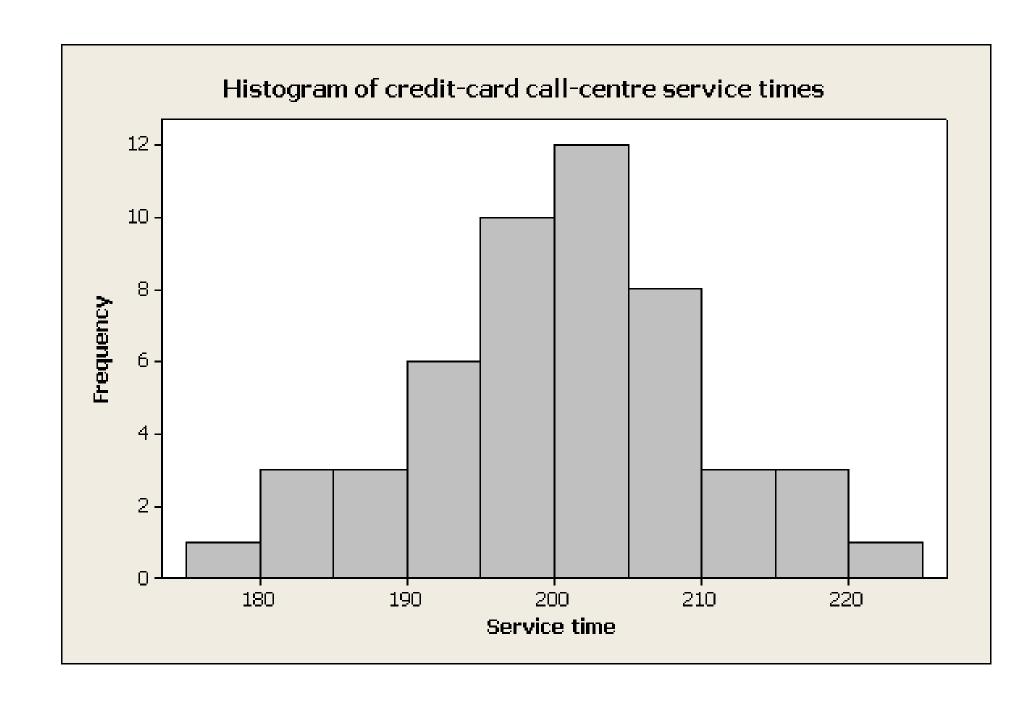
Histograms

Appear similar to bar charts, but with two critical differences:

- the horizontal (x-axis) is a continuous scale.
- the area of the rectangle is proportional to the frequency.

Generally take equal sized intervals.

Histograms


For equal class interval histograms

- 1. Produce a grouped frequency table.
- 2. Find the maximum frequency.
- 3. Draw the vertical axis from zero to this maximum value.
- 4. Draw the horizontal axis and include the full range of classes.
- 5. Draw a bar for each class in the frequency table.

Example

Frequency table for the data on service times for a credit card call centre is

Service time	Frequency
$175 \le time < 180$	1
$180 \leq time < 185$	3
$185 \leq time < 190$	3
$190 \leq time < 195$	6
$195 \leq time < 200$	10
$200 \leq time < 205$	12
$205 \leq time < 210$	8
$210 \leq time < 215$	3
$215 \leq time < 220$	3
$220 \leq time < 225$	1
Total	50

