Recap and Outline

Chapter 2

Presenting Data

Stem and Leaf Plots

- Simple to produce.
- Easy to interpret.
- Applicable to all data types.
- Use of computer packages.

Stem and Leaf Plots

- Frequency tables have limitations.
- Graphical methods can provide clearer picture.

Consider the following data

$$
\begin{array}{|llllllll|}
\hline 11 & 12 & 8 & 15 & 21 & 25 & 19 & 9 \\
\hline
\end{array}
$$

0	8	9

1	1	2	5	9

2	1	5

Stem Leaf

$$
n=8, \quad \text { stem } \text { unit }=10, \quad \text { leaf } \text { unit }=1
$$

Recovering the data
Observation $=$ stem label \times stem unit + leaf digit \times leaf unit

Stem and Leaf Plots

Construct a stem and leaf plot for the following data on time (in seconds) it takes to get through to an operator at a call centre:

```
54}556 50 67 55 38 49 45 39 50 
45
30
```


Bar Charts

- Simple to produce.
- Easy to interpret.
- Applicable to categorical data and ungrouped discrete data.

Data on lengths (in cm) of items on a production line:

2.97	3.81	2.54	2.01	3.49	3.09	1.99	2.64	2.31	2.22

Stem and leaf plot:

```
\(n=10\)
\(1 \mid 9\)
20023
25056
3004
38
Stem unit \(=1 \mathrm{~cm}, \quad\) Leaf unit \(=0.1 \mathrm{~cm}\).
```


Bar Charts

1. Decide what goes on each axis, by convention

- Horizontal (x-axis) the variable being measured
- Vertical (y-axis) the frequency.

2. Find the maximum frequency
3. Decide on an appropriate number scale for this axis.
4. Draw the axes.
5. Draw the bars.

- All bars the same width.
- All gaps between bars equal

Bar Charts

Recalling our mode of transport example

Student	Mode	Student	Mode	Student	Mode
1	Car	11	Walk	21	Walk
2	Walk	12	Walk	22	Metro
3	Car	13	Metro	23	Car
4	Walk	14	Bus	24	Car
5	Bus	15	Train	25	Car
6	Metro	16	Bike	26	Bus
7	Car	17	Bus	27	Car
8	Bike	18	Bike	28	Walk
9	Walk	19	Bike	29	Car
10	Car	20	Metro	30	Car

Bar Charts

Mode	Frequency
Car	10
Walk	7
Bike	4
Bus	4
Metro	4
Train	1
Total	30

Multiple Bar Charts

Daily sales of CDs (in $£$) by music type for an independent retailer

Day	Chart	Dance	Rest	Total
Monday	12000	10000	2700	24700
Tuesday	11000	8000	3000	22000
Wednesday	9000	6000	2000	17000
Thursday	10000	5000	2500	17500
Friday	12000	11000	3000	26000
Saturday	19000	12000	4000	35000
Sunday	10000	8000	2000	20000
Total	83000	60000	19200	162200

Histograms

- Simple to produce.
- Easy to interpret.
- Applicable to grouped continuous data.

Histograms

For equal class interval histograms

1. Produce a grouped frequency table.
2. Find the maximum frequency.
3. Draw the vertical axis from zero to this maximum value.
4. Draw the horizontal axis and include the full range of classes.
5. Draw a bar for each class in the frequency table.

Example

Frequency table for the data on service times for a credit card call centre is

Service time	Frequency
$175 \leq$ time <180	1
$180 \leq$ time <185	3
$185 \leq$ time <190	3
$190 \leq$ time <195	6
$195 \leq$ time <200	10
$200 \leq$ time <205	12
$205 \leq$ time <210	8
$210 \leq$ time <215	3
$215 \leq$ time <220	3
$220 \leq$ time <225	1
Total	50

