Normal pdf with mean 30 and sd 10

The Normal Distribution

There are four important characteristics of the normal distribution.

- It is symmetrical about it's mean, μ.
- It's mean, median and mode all coincide.
- The area under the curve is equal to 1 .
- The curve extends in both direction to infinity (∞).

Chapter 10

The Normal Distribution

- Calculating Probabilities

The Standard Normal Distribution

$$
Z \sim N(0,1)
$$

Normal pdfs with mean 10, 30, 50 and sd 10

Notation for the Normal Distribution

$$
X \sim N\left(\mu, \sigma^{2}\right)
$$

Standardising Random Variables

Any random variable X with mean, μ and variance, σ^{2} can be standardised as follows

1. Take the variable X
2. Subtract the mean, μ
3. Divide by the standard deviation, σ.

Hence a random variable X becomes a standard normal random variable Z.

$$
Z=\frac{X-\mu}{\sigma}
$$

Calculating Probabilities under the

 Standard Normal Distribution1. Find the row of interest.
2. Find the column of interest.
3. Read off the probability.

Standard Normal Distribution Tables

$$
P(Z<z), \text { where } Z \sim N(0,1)
$$

\mathbf{z}	-0.09	-0.08	-0.07	-0.06	-0.05	-0.04	-0.03	-0.02	-0.01	0.00
\vdots										
-1.4	0.0681	0.0694	0.0708	0.0721	0.0735	0.0749	0.0764	0.0778	0.0793	0.080ε
-1.3	0.0823	0.0838	0.0853	0.0869	0.0885	0.0901	0.0918	0.0934	0.0951	0.0968
\vdots										

Standard normal pdf

Example

From tables $\operatorname{Pr}(Z<1.05)=0.8531$ and $\operatorname{Pr}(Z<1.06)=0.8554$ so $\operatorname{Pr}(Z<1.054) \approx 0.8531+0.4 \times(0.8554-0.8531)=0.8540$.

So the probability that the total weight is less than 42 kg is 0.8540 .

From tables $\operatorname{Pr}(Z<1.25)=0.8944$ so
$\operatorname{Pr}(Z>1.25)=1-0.8944=0.1056$.

So the probability that a package weighs more than 4.75 kg is 0.1056 .

The weights of the packages are independent. Find the probability that the total weight of 10 packages is less than 42 kg .

Solution

Let the total weight be T.

$$
T \sim N\left(10 \times 4, \quad 10 \times 0.6^{2}\right)
$$

That is

$$
T \sim N(40,3.6)
$$

$$
\operatorname{Pr}(T<42)=\operatorname{Pr}\left(\frac{T-40}{\sqrt{3.6}}<\frac{42-40}{\sqrt{3.6}}\right)=\operatorname{Pr}(Z<1.054)
$$

Example

The weights of packages have a normal distribution with mean 4 kg and standard deviation 0.6 kg . Find the probability that a package weighs more than 4.75 kg .

Solution

$$
\begin{gathered}
X \sim N\left(4,0.6^{2}\right) \\
\operatorname{Pr}(X>4.75)=\operatorname{Pr}\left(\frac{X-4}{0.6}>\frac{4.75-4}{0.6}\right)=\operatorname{Pr}(Z>1.25)
\end{gathered}
$$

Example

Find an approximate value for the probability that, out of a batch of 80 packages, fewer than 10 weigh more than 4.75 kg .

Solution

The probability that a package weighs more than 4.75 kg is 0.1056 . Let Y be the number in the batch which weigh more than 4.75 kg . Then

$$
Y \sim \operatorname{Bin}(80,0.1056)
$$

Now $n p=80 \times 0.1056=8.448$ and
$n(1-p)=80 \times(1-0.1056)=80 \times 0.8944=71.552$. Therefore we can use a normal approximation with $\mu=n p=8.448$ and $\sigma^{2}=n p(1-p)=7.556$. The standard deviation is $\sqrt{7.556}=2.749$.

