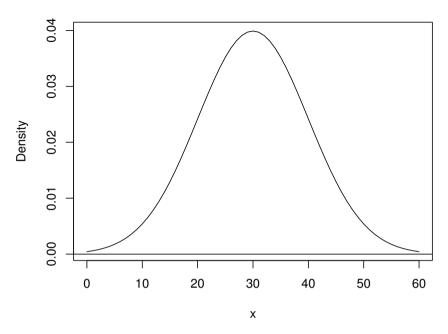
Normal pdf with mean 30 and sd 10



Outline

- The Normal Distribution.
- The Standard Normal Distribution.
- Calculating Probabilities

The Normal Distribution

There are four important characteristics of the normal distribution.

- It is symmetrical about it's mean, μ .
- It's mean, median and mode all coincide.
- The area under the curve is equal to 1.
- The curve extends in both direction to infinity (∞) .

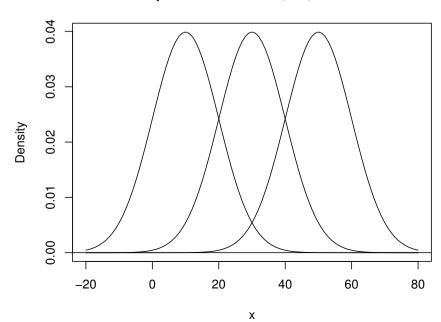
Chapter 10

The Normal Distribution

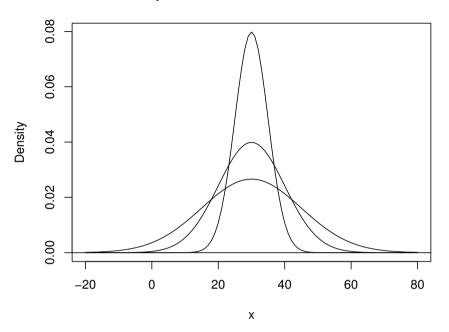
The Standard Normal Distribution

$$Z \sim N(0,1)$$
.

Normal pdfs with mean 10, 30, 50 and sd 10



Normal pdfs with mean 30 and sds 5, 10, 15



Notation for the Normal Distribution

$$X \sim N\left(\mu, \sigma^2\right)$$
.

Standardising Random Variables

Any random variable X with mean, μ and variance, σ^2 can be standardised as follows

- 1. Take the variable X.
- 2. Subtract the mean, μ .
- 3. Divide by the standard deviation, σ .

Hence a random variable \boldsymbol{X} becomes a standard normal random variable $\boldsymbol{Z}.$

$$Z = \frac{X - \mu}{\sigma}$$

Calculating Probabilities under the Standard Normal Distribution

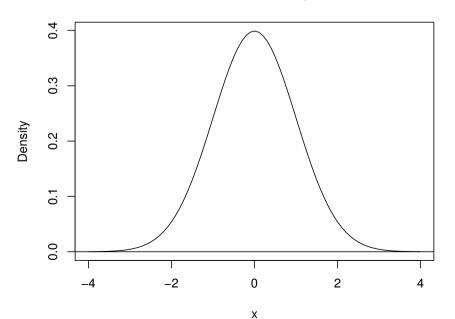
- 1. Find the row of interest.
- 2. Find the column of interest.
- 3. Read off the probability.

Standard Normal Distribution Tables

P(Z < z), where $Z \sim N(0,1)$.

Z	-0.09	-0.08	-0.07	-0.06	-0.05	-0.04	-0.03	-0.02	-0.01	0.00
:	:	:	:	:	:	:	:	:	:	:
-1.4	0.0681	0.0694	0.0708	0.0721	0.0735	0.0749	0.0764	0.0778	0.0793	0.080
-1.3	0.0823	0.0838	0.0853	0.0869	0.0885	0.0901	0.0918	0.0934	0.0951	0.096
:	:		:	:		:		:	:	:

Standard normal pdf



From tables $\Pr(Z < 1.05) = 0.8531$ and $\Pr(Z < 1.06) = 0.8554$ so $\Pr(Z < 1.054) \approx 0.8531 + 0.4 \times (0.8554 - 0.8531) = 0.8540$.

So the probability that the total weight is less than 42 kg is 0.8540.

From tables Pr(Z < 1.25) = 0.8944 so Pr(Z > 1.25) = 1 - 0.8944 = 0.1056.

So the probability that a package weighs more than $4.75~\mathrm{kg}$ is 0.1056.

Example

The weights of the packages are independent. Find the probability that the total weight of 10 packages is less than 42kg.

Solution

Let the total weight be T.

$$T \sim N(10 \times 4, 10 \times 0.6^2)$$

That is

$$T \sim N(40, 3.6)$$

$$\Pr(T < 42) = \Pr\left(\frac{T - 40}{\sqrt{3.6}} < \frac{42 - 40}{\sqrt{3.6}}\right) = \Pr(Z < 1.054)$$

Example

The weights of packages have a normal distribution with mean 4kg and standard deviation 0.6kg. Find the probability that a package weighs more than 4.75kg.

Solution

$$X \sim N(4, 0.6^2)$$

$$Pr(X > 4.75) = Pr\left(\frac{X - 4}{0.6} > \frac{4.75 - 4}{0.6}\right) = Pr(Z > 1.25)$$

The probability that fewer than 10 packages weigh more than 4.75kg is

$$\Pr\left(Z < \frac{9.5 - 8.448}{2.749}\right) = \Pr(Z < 0.3827)$$

From tables $\Pr(Z < 0.38) = 0.6480$ and $\Pr(Z < 0.39) = 0.6517$ so $\Pr(Z < 0.3827) = 0.6480 + 0.27 \times (0.6517 - 0.6480) = 0.6470$.

The required probability is approximately 0.647.

Example

Find an approximate value for the probability that, out of a batch of 80 packages, fewer than 10 weigh more than 4.75kg.

Solution

The probability that a package weighs more than 4.75 kg is 0.1056. Let Y be the number in the batch which weigh more than 4.75kg. Then

$$Y \sim \text{Bin}(80, 0.1056)$$

Now $np = 80 \times 0.1056 = 8.448$ and $n(1-p) = 80 \times (1-0.1056) = 80 \times 0.8944 = 71.552$. Therefore we can use a normal approximation with $\mu = np = 8.448$ and $\sigma^2 = np(1-p) = 7.556$. The standard deviation is $\sqrt{7.556} = 2.749$.