1. A factory contains six machines. The probability that one of these machines develops a fault in a week's operation is 0.2 . Each machine behaves independently of the others. Find the probability that at least four of the machines develop faults in a week.

Solution

Let $\operatorname{Pr}(i)$ be the probability that i machines develop faults. Then the probability that at least four develop faults is

$$
P=\operatorname{Pr}(4)+\operatorname{Pr}(5)+\operatorname{Pr}(6)
$$

Now

$$
\operatorname{Pr}(i)={ }^{6} C_{i} \times 0.2^{i} \times 0.8^{6-i}
$$

It is easy to see that

$$
{ }^{n} C_{i}={ }^{n} C_{n-i}
$$

so

$$
\begin{aligned}
{ }^{6} C_{4} & ={ }^{6} C_{2}=\frac{6 \times 5}{2 \times 1}=15 \\
{ }^{6} C_{5} & ={ }^{6} C_{1}=6 \\
{ }^{6} C_{6} & ={ }^{6} C_{0}=1
\end{aligned}
$$

and

$$
\begin{aligned}
P & =15 \times 0.2^{4} \times 0.8^{2}+6 \times 0.2^{5} \times 0.8+1 \times 0.2^{6} \\
& =0.01536+0.001536+0.000064 \\
& =0.017
\end{aligned}
$$

2. The weights of packets produced by a machine follow a normal distribution. The mean and standard deviation of the distribution can be altered by adjusting the machine. It is required to adjust the machine so that the proportion of packets with weights less than 490 g is 5% and the proportion of packets with weights greater than 505 g is 5%. Find the mean and standard deviation which must be used.

Solution

The upper 95% point of the standard normal distribution is 1.6449 so 490 and 505 must be respectively 1.6449 standard deviations below and above the mean. So the mean must be $(490+505) / 2=497.5$ and the standard deviation must be $(505-497.5) / 1.6449=4.56$.
3. A company called "Prune," which currently markets personal computers, will need to choose between at most three options in three years' time:

- a_{1} - continue to market its current machine (called Prunejuice);
- a_{2} - market an improved version of Prunejuice instead (called Pruneplus);
- a_{3} - market a much more powerful machine instead (called Superprune).

Prune can choose between a_{1}, a_{2}, a_{3} but can not implement more than one of them.
A machine can be marketed only if it has been researched and developed ($\mathrm{R} \& \mathrm{D}$) successfully. The event that a R \& D programme could be successful for Pruneplus and the event that it would be successful for Superprune are considerd independent with current respective probabilities 0.9 and 0.6 . If neither of the new machines has been successfully researched and developed in the next three years then Prune would be forced to choose option $a_{1}-$ to market its current machine. Prune now needs to choose whether to:
(a) $\mathrm{R} \& \mathrm{D}$ neither machine (decision d_{1}) at a cost of $\$ 0$.
(b) R \& D Pruneplus only (decision d_{2}) at a cost of $\$ 3,000,000$.
(c) R \& D Superprune only (decision d_{3}) at a cost of $\$ 5,000,000$.
(d) R \& D both Pruneplus and Superprune (decision d_{4}) at a cost of $\$ 8,000,000$.

Given successful R \& D, Prune expects to make $\$ 2000000$ net profit from Prune juice, $\$$ 10000000 net profit from Pruneplus and $\$ 18000000$ net profit from Superprune. Draw a decison tree representing Prune's current decision problem and advise Prune on its best plan of action given that the aim is to maximise the expected net profit less costs.

Solution

R \& D:
The probability that both Pruneplus and Superprune are successful is $0.9 \times 0.6=0.54$.
The probability that Pruneplus is a success and Superprune is not is $0.9 \times 0.4=0.36$.
The probability that Superprune is a success but Pruneplus is not is $0.1 \times 0.6=0.06$.
The probability that neither Superprune nor Pruneplus is a success is $0.1 \times 0.4=0.04$.

So, we R \& D Superprune.
If it is a success, we market Superprune.
Otherwise we market Prunejuice.

