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Chapter 1

Collecting and Presenting Data

1.1 Introduction

Data are the key to many important management decisions. Is a new product selling well? Do
potential customers like the new advertising campaign? These are all questions that can be an-
swered with data. We begin this course with some basic methods of collecting, representing and
describing data. In this first lecture we will look at the different kinds of data that exist, how we
might obtain the data and basic methods for presenting them.

1.1.1 Examples

Sizing ClothesMost clothing now comes in essentially standard sizes but from where do these
standards come? By sampling from the general population as a whole, standards can be set around
the most common sizes. We can not say that an individual is exactly a standard size. However we
can say that they will probably fall within a range either side of a standard.

Car Maintenance If we were buying a new car, it would be useful to know how much it was
going to cost to run it over the next three years. Obviously we can not predict this exactly as
each individual car and each user will be slightly different. Collecting data from people who have
bought similar cars will give us some idea of the distribution of costs over the population of car
buyers, which in turn provides us with information as to the likely cost of running the car.

1.1.2 Definitions

The quantities measured in a study are calledrandom variablesand a particular outcome is called
anobservation. A collection of observations is thedata. The collection of all possible outcomes is
the population.

If we were interested in the height of people doing management courses at Newcastle, that would
be our random variable, a particular person’s height would be the observation and if we measured
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everyone doing MAS187, those would be our data, which form a sample from the population of
all students registered with the School of Management.

In practice it is difficult to observe whole populations, unless we are interested in a very limited
population, e.g. the students taking MAS187. In reality we are usually observe a subset of the
population, we will come back to sampling later in section 1.2.

Variables are of two types,qualitativeandquantitative. Qualitative variables have non-numeric
outcomes. They are usuallycategorical. Examples of qualitative variable include sex of a person
or animal, colour of a car, mode of transport, football team supported. Quantitative variables have
numeric outcomes with a natural ordering. Examples include people’s height, time to failure of a
component, number of defective components in a batch.

Quantitative variables are usually of one of two types:discreteor continuous. Discrete random
variables can only take a sequence of distinct values which are usually the integers, although not
necessarily so. Discrete variables are countable, for example the number of defective pieces in a
manufacturing batch, the number of people in a tutorial group, or a person’s shoe size. There are
other kinds of discrete data.Ordinal data are data are ordered but which are not really numbers in
the usual sense. For example, if you are asked to rank a response to a question between 1 and 10,
from strongly disagree to strongly agree, an answer of 8 obviously indicates stronger agreement
than one of 4, but not necessarily twice as strong in any meaningful sense.

Continuous variables can take any value over some continuous scale. Simple examples include
height, weight, time taken to be served in a bank queue or the fuel consumption of a car. The
important thing to note about continuous data is that, no matter how small an interval we consider,
it is always possible (in theory, at least) to make an observation in the interval by using sufficiently
precise measurement. We can measure to differing degrees of accuracy using different equipment
but we could never say absolutely precisely how much someone weighs. Continuous variables
are often expressed up to a number of significant digits and could appear to be discrete. It is the
underlying variable which defines their status and not the form in which they are expressed.

1.1.3 Surveys

Surveys or questionnaires are often used to gain insight into the impact of many management
decisions. For example, the market prospects of a new product or customer views on the impact
and potential of the new technologies. When preparing a survey there are many key questions to
consider:

• what is the purpose of the survey?

• what is the target population?

• is there a list of the target population?

• how can bias be avoided?

• how accurate does the survey have to be?

• what resources are available for conducting the survey?
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• how are the data to be collected?

There are many ways of collecting survey information. Each has its advantages and disadvantages
regarding the cost of implementation, the response rate (of successfully completed questionnaires),
the speed with which the survey can be completed and the quality and accuracy of the information
collected. The three main ways are:

Postal questionnaire– low cost, low response rate, slow turn around time, low quality information

Telephone interviewing– moderate cost, moderate response rate, fast turn around time, good qual-
ity information (?)

Face-to-face interviewing– high cost, high response rate, fast turn around time, high quality infor-
mation

1.2 Sampling

We can rarely observe the whole population. Instead we observe some sub-set of this called the
sample. The difficulty is in obtaining arepresentativesample. For example if you were to ask the
people leaving a gym if they took exercise this would produce abiasedsample and would not be
representative of the population as a whole. The importance of obtaining a representative sample
can not be stressed too highly. As we will see later we use the data from our samples in order to
make inferences about the population and these inferences influence the decision making process.

There are three general forms of sampling techniques.

Random samplingwhere the members of the sample are chosen by some random mechanism.

Quasi-random samplingwhere the mechanism for choosing the sample is only partly random.

Non-random samplingwhere the sample is specifically selected rather than randomly selected.

1.2.1 Simple Random Sampling

This method is the simplest to understand. If we had a population of 200 students we could put
all their names into a hat and draw out 20 names as our sample. Each name has an equally likely
chance of being drawn and so the sample is completely random. Furthermore each possible sample
of 20 has an equal chance of being selected. In reality the drawing of the names would be done by
a computer and the population and samples would be considerably larger.

The disadvantages of this method are that we often do not have a complete list of the population.
For example if you were surveying the market for some new software, the population would be
everybody with a compatible computer. It would be almost impossible to find this information
out. Not all elements of the population are equally accessible and hence you could waste time and
money trying to obtain data from people who are unwilling to provide it. Thirdly it is possible
that purely by chance you could pick an unrepresentative sample, either over or under representing
elements of the population. Using our software example you could pick by chance only companies
that have recently updated their software and hence would not be interested in your new package.

7



1.2.2 Stratified Sampling

This is a form of random sample where clearly defined groups, orstrata, exist within the popu-
lation, for example males and females, working or not working, age groups etc. If we know the
overall proportion of the population that falls into each of these groups, we can randomly sample
from each of the groups and then adjust the results according to the known proportions. For ex-
ample, if we assume that the population is 55% female and 45% male and we wanted a sample of
1000. We would first decide to have 550 females and 450 males in our sample. We would then
pick the members of our sample from their respective groups randomly. We do not have to make
the numbers in the samples proportional to the numbers in the strata because we can adjust the
results but sampling within each stratum ensures that that stratum is properly represented in our
results and gives us more precise information about the population as a whole. Such sampling
should generally reflect the major groupings within the population.

The disadvantages are that we need clear information on the size and composition of each group
or stratum which can be difficult to obtain. We still need to know the entire population so as to
sample from it.

1.2.3 Systematic Sampling

This is a form of quasi-random sampling which can be used where the population is clearly struc-
tured. For example you were interested in obtaining a 10% sample from a batch of components
being manufactured, you would select the first component at random, after that you pick every
tenth item to come off the production line. This simplicity of selection makes this a particularly
easy sampling scheme to implement, especially in a production setting.

The disadvantages of this method are that it is not random and if there is a pattern in the process it
may be possible to obtain a biased sample. It is only really applicable to structured populations.

1.2.4 Multi-stage Sampling

This is another form of quasi-random sampling. These types of sampling schemes are common
where the population is spread over a wide geographic areas which might be difficult or expensive
to sample from. Multi-stage sampling works, for example, by dividing the area into geographi-
cally distinct area, randomly selecting one of these areas and then sampling, whether by random,
stratified or systematic sampling schemes within this area. For example, if we were interested in
sampling school children, we might take a random (or stratified) sample of education authorities,
then, within each selected authority, a random (or stratified) sample of schools, then, within each
selected school, a random (or stratified) sample of pupils. This is likely to save time and cost less
than sampling from the whole population.

The sample can be biased if the stages are not carefully selected. Indeed the whole scheme needs
to be carefully thought through and designed to be truly representative.
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1.2.5 Cluster Sampling

This is a method of non-random sampling. For example, a geographic area is sub-divided into
clusters and all the members of the cluster are then surveyed. This differs from multi-stage sam-
pling covered in section 1.2.4 where the members of the cluster were sampled randomly. Here no
random sampling occurs. The advantage of this method is that, because the sampling takes place
in a concentrated area, it is relatively inexpensive to perform.

The very fact that small clusters are picked to allow the entire cluster to be surveyed introduces
the strong possibility of “bias” within the sample. If you were interested in the take up of organic
foods and were sampling via the cluster method you could easily get biased results, if for example
you picked an economically deprived area, the proportion of those surveyed that ate organically
might be very low, while if you picked a middle class suburb the proportion is likely to be higher
than the overall population. (Technically, this is not strictlybiasbut innefficiencybut, for now, it
should be clear that there is a problem).

1.2.6 Judgemental sampling

This is an entirely non-random method of sampling. The person interested in obtaining the data
decides whom they are going to ask. This can provide a coherent and focused sample by choosing
people with experience and relevant knowledge to provide their opinions. For example the head
of a service department might suggest particular clients to survey based on his judgement. They
might be people he believes will be honest or have strong opinions.

This methodology is non-random and relies on the judgement of the person making the choice and
hence it can not be guaranteed to be representative. It is prone to bias.

1.2.7 Accessibility sampling

Here the most easily accessible individuals are sampled. This is clearly prone to bias and only has
convenience and cheapness in its favour. For example, a sample of grain taken from the top of a
silo might be quite unrepresentative of the silo as a whole in terms of moisture content.

1.2.8 Quota Sampling

This method is similar to stratified sampling but uses judgemental (or some other) sampling rather
than random sampling within groups. We would classify the population by any set of criteria we
choose to sample individuals and stop when we have reached our quota. For example if we were
interested in the purchasing habits of 18-23 year old male students, we would stop likely candidates
in the street, if they matched the requirements we would ask our questions until we had reached
our quota of 50 such students. This type of sampling can lead to very accurate results as it is
specifically targeted, which saves time and expense.

The accurate identification of the appropriate quotas can be problematic. This method is highly
reliant on the individual interviewer selecting people to fill the quota. If this is done poorly bias
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can be introduced into the sample.

1.2.9 Sample Size

When considering collecting data, it is important to ensure that the sample contains a sufficient
number of members of the population for adequate analysis to take place. Larger samples will
generally give more precise information about the population. Unfortunately, in reality, questions
of expense and time tend to limit the size of the sample it is possible to take. For example, national
opinion polls often rely on samples in the region of 1000.

1.3 Frequency Tables

Once we have collected our data, often the first stage of any analysis is to present them in a simple
and easily understood way. Tables are perhaps the simplest means of presenting data. There are
many types of tables. For example, we have all seen tables listing sales of cars by type, or exchange
rates, or the financial performance of companies. These types of tables can be very informative.
However they can also be difficult to interpret, especially those which contain vast amounts of data.

Frequency tables are amongst the most common tables used and perhaps the most easily under-
stood. They can be used with continuous, discrete, categorical and ordinal data. Frequency tables
have uses in some of the techniques we will see in the next lecture.

1.3.1 Frequency Tables

The following table presents the modes of transport used daily by 30 students to get to and from
University.

Student Mode Student Mode Student Mode
1 Car 11 Walk 21 Walk
2 Walk 12 Walk 22 Metro
3 Car 13 Metro 23 Car
4 Walk 14 Bus 24 Car
5 Bus 15 Train 25 Car
6 Metro 16 Bike 26 Bus
7 Car 17 Bus 27 Car
8 Bike 18 Bike 28 Walk
9 Walk 19 Bike 29 Car
10 Car 20 Metro 30 Car

The table obviously contains much information. However it is difficult to see which method of
transport is the most widely used. One obvious next step would be to count the number of students
using each mode of transport:
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Mode Frequency
Car 10

Walk 7
Bike 4
Bus 4

Metro 4
Train 1
Total 30

This gives us a much clearer picture of the methods of transport used.

Also of interest might be therelativefrequency of each of the modes of transport. The relative fre-
quency is simply the frequency expressed as a proportion of the total number of students surveyed.
If this is given as a percentage, as here, this is known as thepercentage relative frequency.

Mode Frequency Relative Frequency (%)
Car 10 33.3

Walk 7 23.4
Bike 4 13.3
Bus 4 13.3

Metro 4 13.3
Train 1 3.4
Total 30 100

The data presented in the tables above are, of course, categorical. However other forms of data can
also be presented in frequency tables. The following table shows the raw data for car sales at a new
car showroom over a two week period in July.

Date Cars Sold Date Cars Sold
01/07/04 9 08/07/04 10
02/07/04 8 09/07/04 5
03/07/04 6 10/07/04 8
04/07/04 7 11/07/04 4
05/07/04 7 12/07/04 6
06/07/04 10 13/07/04 8
07/07/04 11 14/07/04 9

Presenting these data in a relative frequency table by number of days on which numbers of cars
were sold, we get the following table:
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Cars Sold Tally Frequency Relative Frequency %

Totals

1.3.2 Continuous Data Frequency Tables

With discrete data and especially with small data sets it is easy to count the quantities in the defined
categories. With continuous data this is not possible. Strictly speaking, no two observations are
precisely the same. With such observations we group the data together. For example the following
data set represents the service time in seconds for callers to a credit card call centre.

214.8412 220.6484 216.7294 195.1217 211.4795
195.8980 201.1724 185.8529 183.4600 178.8625
196.3321 199.7596 206.7053 203.8093 203.1321
200.8080 201.3215 205.6930 181.6718 201.7461
180.2062 193.3125 188.2127 199.9597 204.7813
198.3838 193.1742 204.0352 197.2206 193.5201
205.5048 217.5945 208.8684 197.7658 212.3491
209.9000 197.6215 204.9101 203.1654 192.9706
208.9901 202.0090 195.0241 192.7098 219.8277
208.8920 200.7965 191.9784 188.8587 206.8912

To produce a continuous data frequency table we first need to divide the range of the variable
into smaller ranges calledclass intervals. The class intervals should, between them, cover every
possible value. There should be no gaps between the intervals. One way to ensure this is to
include the boundary value as the smallest value in the next class above. This can be written as for
example,20 ≤ obs < 30. This means we include all observations (represented by “obs”) within
this class interval that have a value of at least 20 up to values just below 30. Often for simplicity
we would write the class intervals up to the number of decimal places in the data and avoid using
the inequalities. For example 20 up to 29.999 if we were working to 3 decimal places. We need
also to include the full range of data in our table and so we need to identify the minimum and
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maximum points. (Sometimes our last class might be “greater than such and such”). Thirdly the
class interval width should be a convenient number, for example 5, 10, 100 depending on the data.
Obviously we do not want so many classes that each one has only one or two observations in it. The
appropriate number of classes will vary from data set to data set. However, with simple examples
that you would work through by hand, it is unlikely that you would have more than ten to fifteen
classes. Bearing this in mind, let us create a frequency table for these data. As with discrete data
frequency tables, we might also be interested in the percentage relative frequency of each class.
This is simply calculated by taking the number in the class, dividing it by the total number in the
sample and then multiplying this by 100% to obtain a percentage.

The data above give the following frequency table.

Class Interval Tally Frequency Relative Frequency %

Totals
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1.4 Exercises 1

Identify the type of data described in each of the following examples.

1. An opinion poll was taken asking people which party they would vote for in a general elec-
tion.

2. In a steel production process the temperature of the molten steel is measured and recorded
every 60 seconds.

3. A market researcher stops you in Northumberland Street and asks you to rate between 1
(disagree strongly) and 5 (agree strongly) your response to opinions presented to you.

4. The hourly number of units produced by a beer bottling plant is recorded.

The following table includes data for the number of telephone call made by 50 students in a month.

98 99 99 100 100
101 100 104 97 101
102 100 99 101 99
100 96 99 101 99
99 98 95 99 99
97 101 100 101 101

103 102 96 98 103
98 100 102 99 101
98 99 100 98 99

102 98 99 99 97

Put these data into a relative frequency table.

The following data are the recorded length (in seconds) of 50 mobile phone calls made by one
student. Construct a frequency table appropriate for these data.

281.4837 293.4027 306.5106 286.6464 298.4445
312.7291 327.7353 311.5926 314.8501 303.3484
270.7399 293.9364 310.9137 346.4497 304.6044
304.1124 320.7182 283.6594 337.5806 259.6408
305.4378 317.9180 289.5667 286.9626 300.5140
278.3108 300.1725 292.6725 312.9645 302.5770
293.2735 267.5344 326.9056 257.7226 285.9805
299.6535 293.9145 303.9191 323.7993 263.5242
281.1613 306.9344 310.2583 301.6963 313.9611
314.8500 292.0031 302.4314 267.9781 292.0917
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Chapter 2

Graphical methods for presenting data

2.1 Introduction

We have looked at ways of collecting data and then collating them into tables. Frequency tables
are useful methods of presenting data, they do however have their limitations. With large amounts
of data graphical presentation methods are often clearer to understand. Here we look at methods
for presenting graphical representations of data of the types we have seen previously.

2.2 Stem and Leaf plots

Stem and leaf plotsare a quick easy and way of graphically representing data. They can be used
with both discrete and continuous data. The method for creating a stem and leaf plot is similar to
that for creating a grouped frequency table. The first stage, as with grouped frequency tables, is
to decide on a reasonable number of intervals which span the range of data. The interval widths
for a stem and leaf plot must be equal. Because of the way the plot works it is best to make the
width either an integer power of 10 (e.g.1 = 100 or 10 = 101 or 100 = 102 or 1000 = 103 or
. . . or 0.1 = 10−1 or 0.01 = 10−2 or 0.001 = 10−3 or . . . ) or 2 or 5 times a power of 10 (e.g.
20 = 2× 101 or 0.05 = 5× 10−2). We can use 2 or 5 because these are factors of 10. We are not
free as a result of this condition to choose the boundaries of the intervals. Once we have decided
on our class intervals we can construct the stem and leaf plot. This is perhaps best described by
demonstration.

Consider the following data,11, 12, 9, 15, 21, 25, 19, 8. The first step is to decide on a interval
widths which can be the same as thestem unit. One obvious choice would be10s. This would
make theleaf unit1. The stem and leaf plot is constructed as below.

0 8 9
1 1 2 5 9
2 1 5

Stem Leaf
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n = 8, stem unit= 10, leaf unit= 1.

You can clearly see where the data have been put. The stem units are to the left of the vertical line,
while the leaves are to the right. So, for example, our first observation, 11, is made up of a stem
unit of one 10 and a leaf unit one 1.

As an example where the interval width is not a power of 10, consider the following observations

17, 18, 15, 14, 12, 19, 20, 21, 24, 15.

If you were to choose 10 as the stem unit and 1 as the leaf unit, the stem and leaf plot would look
like

n = 10

1 2 4 5 5 7 8 9
2 0 1 4

Stem unit= 10, Leaf unit= 1.

Here the interval width is 20.

There is not much of a visible pattern in the data in this plot. If we choose5× 100 = 5 units as our
interval width, the stem unit remaining as 10’s, again with 1 as our leaf unit, the stem and leaf plot
would look as follows.

n = 10

1 2 4
1 5 5 7 8 9
2 0 1 4

Stem unit= 10, Leaf unit= 1.

Changing the interval width like this produces a plot which starts to show some sort of pattern in
the data. Graphical presentations are intended to draw out such patterns.

Let us work through the following example. The observations in the table below are the recorded
time in seconds it takes to get through to an operator at a telephone call centre.

54 56 50 67 55 38 49 45 39 50
45 51 47 53 29 42 44 61 51 50
30 39 65 54 44 54 72 65 58 62
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n =

Stem Leaf

Stem unit= Leaf unit=

If there is more than one significant figure in the data, the extra digits are cut not rounded to the
nearest value, that is to say2.97 would become2.9. To illustrate this, consider the following data
on lengths (incm) of items on a production line:

2.97, 3.81, 2.54, 2.01, 3.49, 3.09, 1.99, 2.64, 2.31, 2.22.

The stem and leaf plot for this is as follows.

n = 10

1 9
2 0 2 3
2 5 6 9
3 0 4
3 8

Stem unit= 1 cm, Leaf unit= 0.1 cm.

Here the interval width is5× 10−1 = 0.5. This allows for greater clarity in the plot.

2.2.1 Using Minitab

With the small data sets we have seen so far, it is obviously relatively easy to create the stem
and leaf plots by hand. With larger data sets this would be more problematic and certainly time
consuming. Fortunately there are computer packages that will create these plots for us.MINITAB
is one such package and we will be using this as an example of what it is possible to achieve using
computers.MINITAB is an application found on university PC clusters and is run by clicking on

Start > All Programs > Statistical Software > Minitab 14 > Minitab 14
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You will see two windows: a session window and a worksheet. Data are entered into columns
labelled C1, C2, C3 etc in the worksheet. Suppose C1 contains some data. To obtain a stem and
leaf plot of these data you would need to do the following:

Graph > Stem-and-Leaf...

This brings up the window below. You need to type in C1 underVariable and clickOK. If
you want you can choose the stem unit by entering a value inIncrement first, otherwise the
programme selects this for you.

This creates a stem and leaf plot in the session window:

18



It is easy to see some of the advantages of a graphical presentation of data. For example, here
you can clearly see that the data are centered around a value in the low 200’s and fall away on
either side. From stem and leaf plots we can quickly and easily tell if the data are symmetric or
asymmetric. We can see whether there are anyoutliers, that is, observations which are either much
larger or much smaller than is typical of the data. We could perhaps even tell whether the data are
multi-modal. That is to say, whether there are two or more peaks on the graph with a gap between
them. If so this might suggest that the sample might contain data from two or more groups.

2.3 Bar Charts

Bar Chartsare common and clear ways of presenting categorical data or any ungrouped discrete
frequency observations. As with stem and leaf plots, various computer packages allow you to
produce these with relative ease. First let us work through the process of producing these by hand.
This will enable you to get a clear idea of how these charts are constructed.

Constructing a bar chart is a 5 step process:

1. First decide what goes on each axis of the chart. By convention the variable being measured
goes on the horizontal (x-axis) and the frequency goes on the vertical (y-axis).

2. Next decide on a numeric scale for the frequency axis. This axis represents the frequency
in each category by its height. It must start at zero and include the largest frequency. It is
common to extend the axis slightly above the largest value so you are not drawing to the
edge of the graph.

3. Having decided on a range for the frequency axis we need to decide on a suitable num-
ber scale to label this axis. This should have sensible values, for example,0, 1, 2, . . . , or
0, 10, 20 . . . , or other such values as make sense given the data.

4. Draw the axes and label them appropriately.

5. Draw a bar for each category. When drawing the bars it is essential to ensure the following:

• the width of each bar is the same;

• the bars are separated from each other by equally sized gaps.

Recall the example on students’ modes of transport:
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Student Mode Student Mode Student Mode
1 Car 11 Walk 21 Walk
2 Walk 12 Walk 22 Metro
3 Car 13 Metro 23 Car
4 Walk 14 Bus 24 Car
5 Bus 15 Train 25 Car
6 Metro 16 Bike 26 Bus
7 Car 17 Bus 27 Car
8 Bike 18 Bike 28 Walk
9 Walk 19 Bike 29 Car
10 Car 20 Metro 30 Car

The first logical step is again to put these into a frequency table, giving

Mode Frequency
Car 10

Walk 7
Bike 4
Bus 4

Metro 4
Train 1
Total 30

We can then present this information as a bar chart:
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Such graphs are easily drawn usingMINITAB :

1. First enter the data in the worksheet, either in summary format or as raw data, with column
C1 containing the categories and the (raw or frequency) counts in column C2.

2. Graph > Bar Chart...

3. Select the appropriate data format (raw data or tabulated data), the columns containing the
data, and the graph format

Note: options exist to configure the graph e.g.Label can be used to give the graph a title.

4. When ready click onOK
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This procedure produces the chart

This bar chart clearly shows that the most popular mode of transport is the car and that the metro,
walking and cycling are all equally popular (in our small sample). Bar charts provide a simple
method of quickly spotting simple patterns of popularity within a discrete data set.

2.4 Multiple Bar Charts

The data below gives the daily sales of CDs (in£) by music type for an independent retailer.

Day Chart Dance Rest Total
Monday 12000 10000 2700 24700
Tuesday 11000 8000 3000 22000
Wednesday 9000 6000 2000 17000
Thursday 10000 5000 2500 17500
Friday 12000 11000 3000 26000
Saturday 19000 12000 4000 35000
Sunday 10000 8000 2000 20000
Total 83000 60000 19200 162200

Bar charts could be drawn of total sales per music type in the week, or of total daily sales. It
might be interesting to see daily sales broken down into music types. This can be done in a similar
manner to the bar charts produced previously. The only difference is that the height of the bars is
dictated by the total daily sales, and each bar has segments representing each music type. This is
done inMINITAB as follows:
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1. Enter the data into the worksheet, the types of music in columns and the days as rows.

2. Graph > Bar Chart...

3. Select the appropriate data format and theStack graph format.

4. Click OK

5. Enter the column containing theSales data underGraph variables and theDay and
Music Type in the grouping dialogue box

6. Click OK.
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The MINITAB worksheet and chart this procedure produces are

These types of charts are particular good for presenting such financial information or illustrating
any breakdown of data over time, for example, the number of new cars sold by month and model.

2.5 Histograms

Bar charts have their limitations. They can not be used to present data on continuous variables.
When dealing with continuous variables a different kind of graph is required. This is called a
histogram. At first sight these look similar to bar charts. There are however two critical differences:

• the horizontal (x-axis) is a continuous scale. As a result of this there are no gaps between
the bars (unless there are no observations within a class interval);

• the height of the rectangle is only proportional to the frequency if the class intervals are all
equal. With histograms it is the area of the rectangle that is proportional to their frequency.

Initially we will only consider histograms with equal class intervals. Those with uneven class
intervals require more careful thought.

Producing a histogram, is much like producing a bar chart and in many respects can be considered
to be the next stage after producing a grouped frequency table. In reality it is often best to produce
a frequency table first which collects all the data together in an ordered format. Once we have the
frequency table, the process is very similar to drawing a bar chart.
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1. Find the maximum frequency and draw the vertical (y-axis) from zero to this value, including
a sensible numeric scale.

2. The range of the horizontal (x-axis) needs to include not only the full range of observations
but also the full range of the class intervals from the frequency table.

3. Draw a bar for each group in your frequency table. These should be the same width and
touch each other (unless there are no data in one particular class).

The frequency table for the data on service times for a telephone call centre was

Service time Frequency
175 ≤ time < 180 1
180 ≤ time < 185 3
185 ≤ time < 190 3
190 ≤ time < 195 6
195 ≤ time < 200 10
200 ≤ time < 205 12
205 ≤ time < 210 8
210 ≤ time < 215 3
215 ≤ time < 220 3
220 ≤ time < 225 1

Total 50

The histogram for these data is
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Normally, as with stem and leaf plots and bar charts we would getMINITAB to do this for us.

1. Enter the data in column C1 of the worksheet. For illustrative purposes I have randomly
generated 500 observations in this column.

2. Graph > Histogram...

3. Select theSimple graph format

4. Select C1 underGraph variables .

Note: various advanced options are available e.g. a title can be added by clickingLabels

5. When happy with your choices clickOK.
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These instructions produce the following histogram:

The histogram produced can be amended byright-clicking on the graph. For example, the
intervals used in the histogram can be changed or, more simply, the number of intervals using

Edit bars > Binning

We can double the number of intervals (from 18 to 36 intervals) using theBinning dialogue box
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This changes the histogram to

Histograms are useful tools in data analysis. They are easy to produce inMINITAB for large data
sets and provide a clear visual representation of the data. Using histograms, it is easy to spot the
modalor most popular class in the data, the one with the highest peak. It is also easy to spot simple
patterns in the data. Is the frequency distribution symmetric, as the histograms produced above, or
is it skewed to one side like the left-hand histogram in the following graphic.

Histograms also allow us to make early judgements as to whether all our data come from the
same population. Consider the right-hand histogram in the graphic below. It clearly contains
two separate modes (peaks), each of which has its own symmetric pattern of data. This clearly
suggests that the data come from two separate populations, one centred around 85 with a narrow
spread and one centred around 100 with a wider spread. In real situations it is unlikely that the
difference would be as dramatic, unless you had a poor sampling method. However the drawing of
histograms is often the first stage of more complex analysis.
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Finally, be careful when drawing histograms of observations on variables which have boundaries
on their ranges. For example heights, weights, times to complete tasks etc. can not take negative
values so there is a lower limit at zero. Computer programs do not automatically know this. You
should make sure that the lower limit of the first class interval is not negative in such cases.
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2.6 Exercises 2

1. The following table shows the weight in kilograms of 50 sacks of potatoes leaving a farm
shop.

10.41 10.06 9.38 11.36 9.65
11.24 10.58 8.55 10.47 8.22
9.36 9.63 10.33 10.05 11.57

11.36 10.82 8.93 10.08 9.53
10.05 11.30 11.01 9.72 10.67
9.91 10.26 10.67 10.21 8.18
8.70 9.49 10.98 10.01 9.92
9.27 11.69 9.66 9.52 10.40

10.61 8.83 10.11 10.37 9.73
10.72 10.63 12.86 10.62 10.26

Display these data in a stem and leaf plot. Note the number of decimal places and adjust
accordingly. State clearly both the stem and leaf units.

2. A market researcher asked 650 students what their favourite daily newspaper was. The
results are summarised in the frequency table below. Represent these data in an appropriate
graphical manner.

The Times 140
The Sun 200
The Sport 50
The Guardian 120
The Financial Times 20
The Mirror 80
The Daily Mail 10
The Independent 30

3. Produce a histogram for the data on length of mobile phone calls in Exercises 1 (listed again
below) and comment on it.

281.4837 293.4027 306.5106 286.6464 298.4445
312.7291 327.7353 311.5926 314.8501 303.3484
270.7399 293.9364 310.9137 346.4497 304.6044
304.1124 320.7182 283.6594 337.5806 259.6408
305.4378 317.9180 289.5667 286.9626 300.5140
278.3108 300.1725 292.6725 312.9645 302.5770
293.2735 267.5344 326.9056 257.7226 285.9805
299.6535 293.9145 303.9191 323.7993 263.5242
281.1613 306.9344 310.2583 301.6963 313.9611
314.8500 292.0031 302.4314 267.9781 292.0917

30



Chapter 3

More graphical methods for presenting data

3.1 Introduction

We have seen some basic ways in which we might present data graphically. These methods will
often provide the mainstay of business presentations. There are, however, other techniques which
are useful and offer advantages in some applications over histograms and bar charts.

3.2 Percentage Relative Frequency Histograms

When we produced frequency tables in Chapter 2, we included a column for percentage relative
frequency. This contained values for the frequency of each group, relative to the overall sample
size, expressed as a percentage. Recall the data on service time (in seconds) for calls to a credit
card service centre:

214.8412 220.6484 216.7294 195.1217 211.4795
195.8980 201.1724 185.8529 183.4600 178.8625
196.3321 199.7596 206.7053 203.8093 203.1321
200.8080 201.3215 205.6930 181.6718 201.7461
180.2062 193.3125 188.2127 199.9597 204.7813
198.3838 193.1742 204.0352 197.2206 193.5201
205.5048 217.5945 208.8684 197.7658 212.3491
209.9000 197.6215 204.9101 203.1654 192.9706
208.9901 202.0090 195.0241 192.7098 219.8277
208.8920 200.7965 191.9784 188.8587 206.8912

A percentage relative frequency table for these data is
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Service time Frequency Relative Frequency (%)
175 ≤ time < 180 1 2
180 ≤ time < 185 3 6
185 ≤ time < 190 3 6
190 ≤ time < 195 6 12
195 ≤ time < 200 10 20
200 ≤ time < 205 12 24
205 ≤ time < 210 8 16
210 ≤ time < 215 3 6
215 ≤ time < 220 3 6
220 ≤ time < 225 1 2

Totals 50 100

You can easily plot these data like an ordinary histogram, except, instead of using frequency on the
vertical axis (y-axis), you use the percentage relative frequency.

This can be done in MINITAB as follows.

1. Place the data to be graphed in a column of the worksheet. For illustrative purposes 500
observations have been generated in column C1.

2. Graph > Histogram

3. As with ordinary histograms, select theSimple graph format, click onOK , select column
C1 underGraph variables .

4. SelectScale... thenY-Scale Type and check thePercent button
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5. Click onOK and again onOK .

This produces the following histogram:

Note that they-axis now contains the relative percentages rather than the frequencies.

You might well ask why we would want to do this? These percentage relative frequency histograms
are useful when comparing two samples that have different numbers of observations. If one sample
were larger than the other then a frequency histogram would show a difference simply because of
the larger number of observations. Looking at percentages removes this difference and enables us
to look at relative differences. It is really just a matter of making the vertical scales comparable.

In the following graph there are data from two groups and four times as many data points for
one group as the other. The left-hand plot shows an ordinary histogram and it is clear that the
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comparison between groups is masked by the quite different sample sizes. The right-hand plot
shows a histogram based on (percentage) relative frequencies and this enables a much more direct
comparison of the distributions in the two groups.

Overlaying histograms on the same graph can sometimes not produce such a clear picture, partic-
ularly if the values in both groups are close or overlap one another significantly.

3.3 Relative Frequency Polygons

These are a natural extension of the relative frequency histogram. They differ in that, rather than
drawing bars, each class is represented by one point and these are joined together by straight lines.
The method is similar to that for producing a histogram.

1. Produce a percentage relative frequency table.

2. Draw the axes

• Thex-axis needs to contain the full range of the classes used.

• They-axis needs to range from0 to the maximum percentage relative frequency.

3. Plot points, pick the mid point of the class interval on thex-axis and go up until you reach
the appropriate percentage value on they-axis and mark the point. Do this for each class.

4. Join the points together with straight lines.
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Consider the following simple example.

Class Interval Mid Point % Relative Frequency
0 ≤ x < 10 5 10
10 ≤ x < 20 15 20
20 ≤ x < 30 25 35
30 ≤ x < 40 35 25
40 ≤ x < 50 45 10

We can draw this easily by hand.

Alternatively you can useMINITAB .

1. Place the data in the worksheet using column C1 for the mid-points and column C2 for the
percentage relative frequencies.

2. Graph > Scatterplot...

3. Select theWith Connect Line option and click onOK .

4. Enter the column with the percentage frequencies (C2) underY variables and the col-
umn with the midpoints (C1) underX variables
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5. Add a title by clicking onLabels...etc.

6. Click onOK .

These instructions produce the graph

These percentage relative frequency polygons are of most use however for comparison between
two samples. Consider the following data on gross weekly income collected from two sites in
Newcastle. Let us suppose that many more responses were collected in Jesmond so that a di-
rect comparison of the frequencies using a standard histogram is not appropriate. Instead we use
relative frequencies.

Weekly Income(£) West Road(%) Jesmond Road(%)
0 ≤ income < 100 9.3 0.0

100 ≤ income < 200 26.2 0.0
200 ≤ income < 300 21.3 4.5
300 ≤ income < 400 17.3 16.0
400 ≤ income < 500 11.3 29.7
500 ≤ income < 600 6.0 22.9
600 ≤ income < 700 4.0 17.7
700 ≤ income < 800 3.3 4.6
800 ≤ income < 900 1.3 2.3
900 ≤ income < 1000 0.0 2.3

We can produce a graph containing polygons for both locations using MINITAB instructions very
similar to those above:
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1. Place the data in the worksheet using column C1 for the mid-points, column C2 for the
percentage relative frequencies and column C3 for the site where the data were taken.

2. Graph > Scatterplot...

3. Select theWith Connect and Groups option and click onOK

4. Enter the column with the percentage frequencies (C2) underY variables and the col-
umn with the midpoints (C1) underX variables . Also enter theSite column (C3) in
the box forCategorical variables for grouping

5. Add a title by clicking onLabels...etc.

6. Click onOK .

The polygon produced looks like
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We can clearly see the differences between the two samples. The line connecting the circles repre-
sents the data from the West Road and the line connecting the boxes represents those for Jesmond
Road. The distribution of incomes on the West Road is skewed towards lower values, whilst those
on Jesmond Road are more symmetric. The graph clearly shows that income in the Jesmond Road
area is higher than that on the West Road.

3.4 Cumulative Frequency Polygons (Ogive)

Cumulative percentage relative frequency is also a useful tool. The cumulative percentage relative
frequency is simply the sum of the percentage relative frequencies at the end of each class interval.
Consider the example from the previous section.

Class Interval % Relative Frequency Cumulative % Relative Frequency
0 ≤ x < 10 10 10
10 ≤ x < 20 20 30
20 ≤ x < 30 35 65
30 ≤ x < 40 25 90
40 ≤ x < 50 10 100

At the upper limit of the first class the cumulative % relative frequency is simply the % relative
frequency in the first class10. However at the end of the second class, at20, the cumulative %
relative frequency is10+20 = 30. The cumulative % relative frequency at the end of the last class
must be100.

The corresponding graph, orogive, is simple to produce by hand.

1. Draw the axis.

2. Label thex-axis with the full range of the data and they-axis from0 to 100%.

3. Plot the cumulative % realtive frequency at the end point of each class.

4. Join the points, starting at0% at the lowest class boundary.

This graph can be produced using the followingMINITAB instructions:
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1. In columnC1, enter the end points of the class intervals, as well the starting point of the
smallest class.

2. In columnC2, enter0 against the starting point and the cumulative percentage relative fre-
quencies against the relevant end point.

3. Graph > Scatterplot...

4. Select theWith Connect Line option and click onOK

5. Enter the column with the percentage frequencies (C2) underY variables and the col-
umn with the midpoints (C1) underX variables

6. Add a title by clicking onLabels...etc.

7. Click onOK .

This produces the following graph:
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Applying this procedure to the income data from the West Road survey gives the ogive:

This graph instantly tells you many things. To see what percentage of respondents earn less than
£x per week.

1. Findx on thex-axis and draw a line up from this value until you reach the ogive.
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2. From this point trace across to they-axis.

3. Read the percentage from they-axis.

If we wanted to know what percentage of respondents in the survey on the West Road earn less
than£250 per week, we simply find£250 on thex-axis, trace up to the ogive and then trace across
to they-axis and we can read a figure of about47%. The process obviously works in reverse. If
we wanted to know what level of income50% of respondents earned, we would trace across from
50% to the ogive and then down to thex-axis and read a value of about£300.

Ogives can also be used for comparison purposes. The following plot contains the ogives for the
income data at both the West Road and Jesmond Road sites.

It clearly shows the ogive for Jesmond shifted to the left of that for the West Road. This tells us
that the surveyed incomes are higher on Jesmond Road. We can compare the percentages of people
earning different income levels between the two sites quickly and easily.

This technique can also be used to great effect for examining the changes between before and after
the introduction of a marketing strategy. For example, daily sales figures of a product for a period
before and after an advertising campaign might be plotted. Here a comparison of the two ogives
can be used to help assess whether or not the campaign has been successful.

3.5 Pie Charts

Pie charts are simple diagrams for displaying categorical or grouped data. These charts are com-
monly used within industry to communicate simple ideas, for example market share. They are
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used to show hte proportions of a whole. They are best used where there are only a handful of
categories to display.

A pie chart consists of a circle divided into segments, one segment for each category. The size
of each segment is determined by the frequency of the category and measured by the angle of the
segment. As the total number of degrees in a circle is 360, the angle given to a segment is360◦

times the fraction of the data in the category, that is

angle =
Number in category

Total number in sample(n)
× 360.

Consider again the data on newspaper sales to 650 students.

Paper Frequency Degrees
The Times 140 77.5
The Sun 200 110.8
The Sport 50 27.7
The Guardian 120 66.5
The Financial Times 20 11.1
The Mirror 80 44.3
The Daily Mail 10 5.5
The Independent 30 16.6
Totals 650 360.0

The pie chart is constructed by first drawing a circle and then dividing it up with segments with
angles calculated using this formula.

In MINITAB , a pie chart for these data would be obtained as follows:

1. Enter data into worksheet, with category name in column C1 and frequencies in column C2.

2. Graph > Pie Chart...

3. Check the button forChart values from a table

4. Enter theCategory column underCategorical variable: and theFrequency
column underSummary variables:

42



5. Add a title and clickOK

This produces the following pie chart

It shows that The Sun, The Times and The Guardian are the most popular papers.

Note that the pie chart is a simple circle. Some computer software will draw “perspective” pie
charts, pie charts with slices detached etc. It is best to avoid such gimmicks which merely obscure
the information contained in the chart.

3.6 Time Series Plots

So far we have only considered data where we can (at least for some purposes) ignore the order in
which the data come. Not all data are like this. One exception is the case of time series data, that
is, data collected over time. Examples include monthly sales of a product, the price of a share at
the end of each day or the air temperature at midday each day. Such data can be plotted simply
using time as thex-axis.

Consider the following data on the number of computers sold (in thousands) by quarter (January-
March, April-June, July-September, October-December) at a large warehouse outlet.
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Quarter Units Sold
Q1 2000 86.7
Q2 2000 94.9
Q3 2000 94.2
Q4 2000 106.5
Q1 2001 105.9
Q2 2001 102.4
Q3 2001 103.1
Q4 2001 115.2
Q1 2002 113.7
Q2 2002 108.0
Q3 2002 113.5
Q4 2002 132.9
Q1 2003 126.3
Q2 2003 119.4
Q3 2003 128.9
Q4 2003 142.3
Q1 2004 136.4
Q2 2004 124.6
Q3 2004 127.9

By hand, a time series plot is constructed as follows:

1. Draw thex-axis and label over the time scale.

2. Draw they-axis and label with an appropriate scale.

3. Plot each point according to time and value.

4. Draw lines connecting all points.

In MINITAB the plot can be obtained using

1. Enter the data into a worksheet, with theQuarter, Year andSales in columns C1, C2
and C3.
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2. Click onGraph and selectTime Series Plot...

3. Select theSimple graph format and click onOK.

4. Enter theSales column in theSeries: box.

5. Now click onTime/Scale... , check theStamp button and enter theQuarter and
Year columns underStamp columns

6. Click OK .

7. Add a title etc.

8. Click OK .

The time series plot is
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The plot clearly shows us two things: firstly that there is an upwards trend to the data and secondly
that there is some regular variation around this trend. We will come back to more sophisticated
techniques for analysing time series data later in the course.

3.7 Scatter Plots

The final type of graph we are going to look at isscatter plots. These are used to plot two variables
which you believe might be related, for example, height and weight, advertising expenditure and
sales or age of machinery and maintenance costs.

Consider the following data for monthly output and total costs at a factory.

Total costs (£) Monthly Output
10300 2400
12000 3900
12000 3100
13500 4500
12200 4100
14200 5400
10800 1100
18200 7800
16200 7200
19500 9500
17100 6400
19200 8300

If you were interested in the relationship between the cost of production and the number of units
produced you could easily plot this by hand.

1. The “response” variable is placed on they-axis. Here we are trying to understand how total
costs relate to monthly output and so the response variable is “total costs”.

2. The variable that is used to try to explain the response variable (here, monthly output) is
placed on thex-axis.

3. Plot the pairs of points on the graph.

This graph can be produced usingMINITAB . (SelectGraph thenScatter PlotthenSimpleand
insert the required variables).
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The plot highlights a clear relationship between the two variables: the more units made, the more
it costs in total. This relationship is shown on the graph by the upwards trend within the data
as monthly output increases so does total cost. A downwards sloping trend would imply that as
output increased total costs declined, an unlikely scenario. This type of plot is the first stage of
more sophisticated techniques which we will develop later in the course.
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3.8 Exercises 3

1. Consider the following data for daily sales at a small record shop, before and after a local
radio advertising campaign.

Daily Sales Before After
1000 ≤ sales < 2000 10 7
2000 ≤ sales < 3000 30 10
3000 ≤ sales < 4000 40 25
4000 ≤ sales < 5000 20 35
5000 ≤ sales < 6000 15 37
6000 ≤ sales < 7000 12 40
7000 ≤ sales < 8000 10 20
8000 ≤ sales < 9000 8 10
9000 ≤ sales < 10000 0 5

Totals 145 189

(a) Calculate the percentage relative frequency for before and after.

(b) Calculate the cumulative percentage relative frequency for before and after.

(c) Plot the relative frequency polygons for both on one graph andcomment.

(d) Plot the ogives for both on one graph.

(e) Find the level of sales before and after that are reached on 25%, 50% and 75% of days.

2. The following table shows data for the monthly sales of a small department store and their
monthly advertising expenditure.

Advertising Expenditure Monthly Sales
52000 1200000
20500 650000
35000 870000
76000 1600000
65000 1200000
27000 850000
55000 1100000
39000 1000000
45000 1110000
27000 700000
38000 900000
52000 1150000

Plot these data on an appropriate graph and comment on the relationship between advertising
expenditure and monthly sales.

3. The data in table 3.1 give the amounts, in£, spent by 200 customers at a “Farmer’s Market”
stall who bought at least one item. Use a histogram to display the data. The data are also
available from the module Web page.
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19.32 5.74 12.52 8.57 9.97 5.43 5.76 12.63 0.67 10.92
9.59 0.39 19.92 11.25 7.71 10.91 4.77 23.88 18.13 8.25
3.84 5.17 21.78 11.06 8.29 12.43 16.68 12.03 4.29 11.06
5.73 6.95 10.92 5.67 19.66 12.69 19.84 5.78 7.33 3.42
9.13 2.80 5.11 4.35 12.58 15.71 24.78 13.88 5.38 14.59

11.98 14.48 15.18 13.37 7.64 5.10 1.54 6.46 4.85 7.54
14.45 11.26 6.48 3.50 6.59 3.30 8.35 2.53 8.19 6.39
13.41 4.96 13.18 46.59 26.42 14.81 4.21 12.89 14.92 18.02
7.82 6.45 3.92 2.28 3.97 14.35 6.72 8.84 4.88 1.88
7.34 2.75 9.71 4.29 11.37 10.00 5.04 5.76 8.74 2.14

15.11 1.37 3.68 10.99 2.75 20.77 7.39 5.92 12.57 6.57
11.56 10.86 7.37 4.44 9.24 18.48 3.71 9.19 10.61 7.85
12.57 6.65 10.54 14.54 14.00 9.73 14.37 2.56 2.01 0.85
8.39 11.66 4.65 17.29 6.12 18.36 4.89 5.89 10.44 5.35

12.10 8.43 26.18 8.92 9.79 10.93 5.92 18.00 6.01 2.68
10.40 0.91 11.46 16.73 19.16 12.06 15.22 10.53 6.78 6.33
7.67 4.76 7.38 21.10 10.86 14.88 6.35 8.02 5.29 1.16

19.93 3.38 4.08 5.88 5.32 9.41 29.92 17.19 11.72 10.10
8.01 3.98 4.95 2.13 1.57 10.08 17.81 5.78 4.77 17.80
4.31 20.42 2.28 2.40 26.99 9.17 2.86 14.58 36.25 20.96

Table 3.1: Amounts spent at a farmer’s market stall

Industry UK Ireland
Agriculture 2.7 23.2
Mining 1.4 1.0
Manufacturing 30.2 20.7
Power supplies 1.4 1.3
Construction 6.9 7.5
Service Industries 16.9 16.8
Finance 5.7 2.8
Social and personal services 28.3 20.8
Transport and communications 6.4 6.1

Table 3.2: Percentages employed in different industries
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Month 1980 1981 1982 1983 1984 1985
January 1998 1924 1969 2149 2319 2137
February 1968 1959 2044 2200 2352 2130
March 1937 1889 2100 2294 2476 2154
April 1827 1819 2103 2146 2296 1831
May 2027 1824 2110 2241 2400 1899
June 2286 1979 2375 2369 3126 2117
July 2484 1919 2030 2251 2304 2266
August 2266 1845 1744 2126 2190 2176
September 2107 1801 1699 2000 2121 2089
October 1690 1799 1591 1759 2032 1817
November 1808 1952 1770 1947 2161 2162
December 1927 1956 1950 2135 2289 2267

Table 3.3: Jeans sales in the UK

4. Table 3.2 shows the percentages employed in different industries in the UK and Ireland in
the late 1970s. Use pie charts to compare the two countries’ proportions.

5. Table 3.3 shows the estimated monthly sales of pairs of jeans, in 1000s, in the UK over six
years. Use these data to make a time series plot. The data are also available from the module
Web page.
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Chapter 4

Numerical summaries for data

4.1 Introduction

So far we have only considered graphical methods for presenting data. These are always useful
starting points. For many purposes, though, we might also require numerical methods for sum-
marising data.

4.2 Mathematical notation

Before we can talk more about numerical techniques we first need to define some basic notation.
This is to allow us the generalise all situations with a simple shorthand.

Very often in statistics we replace actual numbers with letters in order to be able to write general
formulae. We generally use a single letter to represent sample data and use subscripts to distinguish
individual observations in the sample. Amongst the most common letters to use isx, althoughy
andz are frequently used as well. For example, suppose we ask a random sample of three people
how many mobile phone calls they made yesterday. We might get data 1, 5, 7. If we take another
sample we will most likely get different data, say 2, 0, 3. Using algebra we can represent the
general case asx1, x2, x3:

1st sample 1 5 7
2nd sample 2 0 3
typical sample x1 x2 x3

This can be generalised further by referring to the data as a whole asx and theith observation in
the sample asxi. Hence, in the first sample above, the second observation isx2 = 5 whilst in the
second sample it isx2 = 0. The lettersi andj are most commonly used as the index numbers for
the subscripts.

The total number of observations in a sample is usually referred to by the lettern. Hence in our
simple example aboven = 3.
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The next important piece of notation to introduce is the symbol
∑

. This is the upper case of the
Greek lettersigma. It is used to represent the phrase “sum the values”. This symbol is used as
follows:

n∑
i=1

xi = x1 + x2 + · · ·+ xn.

This notation is used to represent the sum of all the values in our data (from the firsti = 1 to the
lasti = n), and is often abbreviated to

∑
x when we sum over all the data in our sample.

Two other mathematical basics need to be reintroduced. First, the use of powers is important in
many statistical formulae. We all know that, for example, the square of three means raising3 to
the power2, i.e. 32 = 3 × 3 = 9. This can be generalised toxk, which means multiplyingx by
itself k times.

The other important idea is the use of brackets. Brackets are used to impose an ordering on the way
operations are carried out. The operation inside the bracket is carried out before the one outside.
Consider the following three cases:

3 + 42 = 19

32 + 42 = 25

(3 + 4)2 = 49.

In the first case, we simply square4 and then add this to3. In the second case, we square both
numbers and then add them together, while in the third case, because of the brackets, we add the
numbers together and then square the result. Each one of these seemingly similar formulae gives a
very different result. If we consider the last two formulae in general terms we could represent the
second as

∑
x2, that is, we raise all thexs to the power2 and then add then together. The third

equation can be represented as(
∑

x)2, that is, all thexs are summed together and then this sum
raised to the power2. This is an important distinction which we will use later.

4.3 Measures of Location

These are also referred to as measures of centrality or averages. In general terms, they tell us the
value of a “typical” observation. There are three measures which are commonly used: themean,
themedianand themode. We will consider these in turn.

4.3.1 The Arithmetic Mean

The arithmetic mean is perhaps the most commonly used measure of location. We often refer to it
as the average or just the mean. The arithmetic mean is calculated by simply adding all our data
together and dividing by the number of data we have. So if our data were 10, 12, and 14, then our
mean would be

10 + 12 + 14

3
=

36

3
= 12.
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We denote the mean of our sample, or sample mean, using the notationx̄. In general, the mean is
calculated using the formula

x̄ =
1

n

n∑
i=1

xi

or equivalently as

x̄ =

∑
x

n
.

For small data sets this is easy to calculate by hand, though this is simplified by using the statistics
(SD) mode on a university approved calculator.

Sometimes we might not have the raw data but data are available in the form of a table. It is still
possible to calculate the mean from such data. Let us first consider the case where we have some
ungrouped discrete data. Previously we have seen the data

Date Cars Sold Date Cars Sold
01/07/04 9 08/07/04 10
02/07/04 8 09/07/04 5
03/07/04 6 10/07/04 8
04/07/04 7 11/07/04 4
05/07/04 7 12/07/04 6
06/07/04 10 13/07/04 8
07/07/04 11 14/07/04 9

The mean number of cars sold per day is

x̄ =
9 + 8 + . . . + 8 + 9

14
= 7.71.

These data can be presented as the frequency table

Cars Sold(x(j) Frequency(fj)
4 1
5 1
6 2
7 2
8 3
9 2
10 2
11 1

Total (n) 14

The sample mean can be calculated from these data as

x̄ =
4× 1 + 5× 1 + 6× 2 + . . . + 11× 1

14
= 7.71.

We can express this calculation of the sample mean from discrete tabulated data as

x̄ =
1

n

k∑
j=1

x(j)fj.
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Here the different values ofX which occur in the data arex(1), x(2), . . . , x(k). In the example
x(1) = 4, x(2) = 5, . . . , x(k) = 11 andk = 8.

If we only have grouped frequency data, it is still possible toapproximatethe value of the sample
mean. Consider the following (ordered) data:

8.4 8.7 9.0 9.0 9.2 9.3 9.3 9.5 9.6 9.6
9.6 9.7 9.7 9.9 10.3 10.4 10.5 10.7 10.8 11.4

The sample mean of these data is 9.73. Grouping these data into a frequency table gives

Class Interval Mid-point (mj) Frequency(fj)
8.0 ≤ x < 8.5 8.25 1
8.5 ≤ x < 9.0 8.75 1
9.0 ≤ x < 9.5 9.25 5
9.5 ≤ x < 10.0 9.75 7
10.0 ≤ x < 10.5 10.25 2
10.5 ≤ x < 11.0 10.75 3
11.0 ≤ x < 11.5 11.25 1

Total (n) 20

When the raw data are not available, we don’t know where each observation lies in each interval.
The best we can do is to assume that all the values in each interval lie at the central value of the
interval, that is, at its mid-point. Therefore, the (approximate) sample mean is calculated using the
the frequencies (fj) and the mid-points (mj) as

x̄ =
1

n

k∑
j=1

fjmj.

For the grouped data above, we obtain

x̄ =
1

20
(1× 8.25 + 1× 8.75 + · · ·+ 3× 10.75 + 1× 11.25) = 9.775.

This value is fairly close to the correct sample mean and is a reasonable approximation given the
partial information we have in the table.

For large samples with narrow intervals, this approximate value will be very close to the correct
sample mean (calculated using the raw data).

4.3.2 The Median

The median is occasionally used instead of the mean, particularly when the data have an asymmet-
ric profile (as indicated by a histogram). The median is the middle value of the observations when
they are listed in ascending order. It is straightforward to determine the median for small data sets,
particularly via a stem and leaf plot. For larger data sets, the calculation is more easily done using
MINITAB .
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The median is that value that has half the observations above it and half below. If the sample size
(n) is an odd number, the median is

median=

(
n + 1

2

)th

largest observation.

For example, if our data were 2,3,3,5,6,7,9 then the sample size (n = 7) is an odd number and
therefore the median is the

7 + 1

2
= 4th largest observation,

that is, the median is the fourth largest (or smallest) ranked observation: for these data median= 5.

If the sample size (n) is an even number the process is slightly more complicated:

median= average of the
(n

2

)th

and the
(n

2
+ 1

)th

largest observations.

For example, if our data were 2,3,3,5,6,7,9,10 then the sample size (n = 8) and is an even number
and therefore

median= average of the

(
8

2

)th

and the

(
8

2
+ 1

)th

largest observations

=
5 + 6

2
= 5.5.

It is possible to estimate the median value from an ogive as it is half way through the ordered
data and hence is at the 50% level of the cumulative frequency. The accuracy of this estimate will
depend on the accuracy of the ogive drawn.

4.3.3 The Mode

This is the final measure of location we will look at. It is the value of the random variable in the
sample which occurs with the highest frequency. It is usually found by inspection. For discrete
data this is easy. The mode is simply the most common value. So, on a bar chart, it would be
the category with the highest bar. For example, consider the following data, 2,2,2,3,3,4,5. Quite
obviously the mode is 2 as it occurs most often. We often talk about modes in terms of categorical
data. Recalling the newspaper example, the mode was The Sun, as it was the most popular paper.

It is possible to refer to modal classes with grouped data. This is simply the class with the greatest
frequency of observations. For example, the model class of

Class Frequency
10 ≤ x < 20 10
20 ≤ x < 30 15
30 ≤ x < 40 30

is obviously30 ≤ x < 40. It is not possible to put a single value on the mode with such continuous
data. However, the modal class might tell you much about the data. Modal classes are also obvious
from histograms, being the highest peaked bar. Of course, if we change the class boundaries, the
position of the modal class may change.
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4.4 Measures of Spread

A measure of location is insufficient in itself to summarise data as it only describes the value of
a typical outcome and not how much variation there is in the data. For example, the two datasets
6,22,38 and 21,22,23 both have the same mean (22) and the same median (22). However the first
set of data ranges considerably from this value while the second stays very close. They are quite
clearly very different data sets. The mean or the median does not fully represent the data. There
are three basic measures of spread which we will consider, therange, theinter-quartile rangeand
thesample variance.

4.4.1 The Range

This is the simplest measure of spread. It is simply the difference between the largest and smallest
observations. In our simple example above the range for the first set of numbers is38 − 6 = 32
and for the second set it is23 − 21 = 2. These clearly describe very different data sets. The first
set has a much wider range than the second.

There are two problems with the range as a measure of spread. When calculating the range you are
looking at the two most extreme points in the data, and hence the value of the range can be unduly
influenced by one particularly large or small value, known as anoutlier. The second problem is
that the range is only really suitable for comparing (roughly) equally sized samples as it is more
likely that large samples contain the extreme values of a population.

4.4.2 The Inter-Quartile Range

The inter-quartile range describes the range of the middle half of the data and so is less prone to
the influence of the extreme values.

To calculate the inter-quartile range (IQR) we simply divide the the ordered data into four quarters.
The three values that split the data into these quarters are called thequartiles. The first quartile
(lower quartile, Q1) has 25% of the data below it; the second quartile (median, Q2) has 50% of the
data below it; and the third quartile (upper quartile, Q3) has 75% of the data below it. We already
know how to find the median and the other quartiles are calculated as follows:

Q1 =
(n + 1)

4
th smallest observation

Q3 =
3(n + 1)

4
th smallest observation.

Just as with the median, these quartiles might not correspond to actual observations. For example,
in a dataset withn = 20 values, the lower quartile is the5 1

4
th largest observation, that is, a quarter

of the way between the 5th and 6th largest observations. This calculation is essentially the same
process we used when calculating the median. Consider again the data

8.4 8.7 9.0 9.0 9.2 9.3 9.3 9.5 9.6 9.6
9.6 9.7 9.7 9.9 10.3 10.4 10.5 10.7 10.8 11.4
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Here the 5th and 6th smallest observations are 9.2 and 9.3 respectively. Therefore, the lower
quartile isQ1 = 9.225. Similarly the upper quartile is the15 3

4
smallest observation, that is, three

quarters of the way between 10.3 and 10.4; soQ3 = 10.375.

The inter-quartile range is simply the difference between the upper and lower quartiles, that is

IQR = Q3−Q1

which for these data isIQR = 10.375− 9.225 = 1.15.

The interquartile range can also beestimatedfrom the ogives in a similar manner to the median.
Simply draw the ogive and then read off the values for 75% and 25% and calculate the difference
between them. This is especially useful if you only have grouped data. Again the accuracy depends
on the quality of your graph.

The inter-quartile range is useful as it allows us to start to make comparisons between the ranges
of two data sets, without the problems caused by outliers or uneven sample sizes.

4.4.3 The Sample Variance and Standard Deviation

Thesample varianceis the standard measure of spread used in statistics. It is usually denoted by
s2 and is simply the “average” of the squared distances of the observations from the sample mean.
Strickly speaking, the sample variance measures deviation about a value calculated from the data
(the sample mean) and so we use ann− 1 divisor rather thann. That is, we use the formula

s2 =
(x1 − x̄)2 + (x2 − x̄)2 + . . . + (xn − x̄)2

n− 1
.

We can rewrite this using more condensed mathematical notation as simplified to

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 ,

or equivalently as

s2 =
1

n− 1

{
n∑

i=1

x2
i − n (x̄)2

}
.

Note that the notationx2
i represents the squared value of the observationxi. That is,x2

i = (xi)
2.

Thesample standard deviations is the positive square root of the sample variance. This quantity
is often used in preference to the sample variance as it has the same units as the original data and
so is perhaps easier to understand.

If this appears complicated, don’t worry as most basic calculators will give the sample standard
deviation when inSD mode. Note that the correct standard deviation is given by thes or σn−1

button on the calculator andnot theσ or σn buttons.

A different calculation is needed when the data are given in the form of a grouped frequency table
with frequencies (fi) in intervals with mid-points (mi). First the sample mean̄x is approximated
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(as described earlier) and then the sample variance is approximated as

s2 =
1

n− 1

{
k∑

i=1

fim
2
i − n (x̄)2

}
.

Consider again the data

8.4 8.7 9.0 9.0 9.2 9.3 9.3 9.5 9.6 9.6
9.6 9.7 9.7 9.9 10.3 10.4 10.5 10.7 10.8 11.4

We have already calculated the sample mean asx̄ = 9.73. Now∑
x2 = 8.42 + 8.72 + · · ·+ 11.42 = 1904.38

n(x̄)2 = 1893.458

and so the sample variance is

s2 =
1

19
(1904.38− 1893.458) = 0.57484

and the sample standard deviation is

s =
√

s2 =
√

0.57484 = 0.75818.

To ensure you understand the formulae and notation it would be a good idea for you to work
through the following example:

xi (xi − x̄) (xi − x̄)2 x2
i

1
1
2
3
5
6
6
6
7
8

Totals
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n =

∑
x =

x =

∑
x

n
=

∑
(x− x̄)2 =

s2 =
1

n− 1

∑
(x− x̄)2 =

∑
x2 =

s2 =
1

n− 1

{∑
x2 − n (x̄)2

}
=

s =
√

s2 =

4.5 Summary statistics in MINITAB

MINITAB can be used to calculate many of the basic numerical summary statistics described so
far. These summaries for data in a selected column can be obtained using the commands

Stats > Basic Statistics > Display Descriptive Statistics

The results are output in the session window as follows:
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4.6 Box and Whisker Plots

Box and whisker plots are another graphical method for displaying data and are particularly use-
ful in highlighting differences between groups, for example, different spending patterns between
males and females or comparing pricing within designated market segments. These plots use some
of the key summary statistics we have looked at earlier, the quartiles and also the maximum and
minimum observations.

The plot is constructed as follows. After laying out anx-axis for the full range of the data, a
rectangle is drawn with ends at the the upper and lower quartiles. The rectangle is split into two at
the median. This is the “box”. Finally, lines are drawn from the box to the minimum and maximum
values – these are the “whiskers”. A box and whisker plot for data with summary statistics

Minimum min = 10
Lower quartile Q1 = 40
Median Q2 = 43
Upper quartile Q3 = 45
Maximum max = 50

60



would look like

MINITAB will produce box and whisker plots using the following commands.

1. Enter the data into the worksheet, say column C1

2. Graph > Boxplot... and select theSimple graph format

3. Next enter the column containing the data underGraph variables:

4. Add a title usingLabels...

5. Click onOK .

If the data have subgroups, such as results from three different surveys, then box and whisker
plots of the sample data can be plotted by group by first entering the group variable into the
worksheet, say as column C2, and then selecting theWith Groups graph format. The group
variable is then entered into the subsequent dialogue box underCategorical variables
for grouping . Displaying group structure is one of the main uses of box and whisker plots.
For example
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clearly shows that although there is overlap between the three sets of data, the first and second
datasets contain roughly similar responses and that these are quite different from those in the third
set. Note that the asterisks (*) at the ends of the whiskers is the way MINITAB highlights outlying
values.
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4.7 Exercises 4

Recall the data from Exercise 2 on the weight (inkg) of 50 sacks of potatoes leaving a farm shop.

10.4 10.0 9.3 11.3 9.6
11.2 10.5 8.5 10.4 8.2
9.3 9.6 10.3 10.0 11.5

11.3 10.8 8.9 10.0 9.5
10.0 11.3 11.0 9.7 10.6
9.9 10.2 10.6 10.2 8.1
8.7 9.4 10.9 10.0 9.9
9.2 11.6 9.6 9.5 10.4

10.6 8.8 10.1 10.3 9.7
10.7 10.6 12.8 10.6 10.2

1. Calculate the mean of the data.

2. Put the data in a grouped frequency table.

3. Estimate the sample mean from the grouped frequency table.

4. Calculate the median of the data.

5. Find the modal class.

6. Calculate the range of the data.

7. Calculate the inter-quartile range.

8. Calculate the sample standard deviation.

9. Draw a box and whisker plot for these data and comment on it.
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Chapter 5

Introduction to Probability

5.1 Introduction

Probability is the language we use to model uncertainty. We all intuitively understand that few
things in life are certain. There is usually an element of uncertainty or randomness around out-
comes of our choices. In business this uncertainty can make all the difference between a good
investment and a poor one. Hence an understanding of probability and how we might incorporate
this into our decision making processes is important. In this chapter, we look at the logical basis
for how we might express a probability and some basic rules that probabilities should follow. In
the next chapter, we look at how we can use probabilities to aid decision making.

5.1.1 Definitions

We often use the letterP to represent a probability. For example,P (Rain) would be the probability
of the event of it raining.

Experiment An experiment is an activity where we do not know for certain what will happen but
we will observe what happens. For example:

• We will ask someone whether or not they have used our product.

• We will observe the temperature at mid day tomorrow.

• We will toss a coin and observe whether it shows “heads” or “tails”.

Outcome An outcome, orelementary event, is one of the possible things that can happen. For
example, suppose that we are interested in the (UK) shoe size of the next customer to come
into a shoe shop. Possible outcomes include “eight”, “twelve”, “nine and a half” and so on.
In any experiment, one and only one outcome occurs.

Sample spaceThe sample space is the set of all possible outcomes. For example it could be the
set of all shoe sizes.
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Event An even is a set of outcomes. For example “the shoe size of the next customer is less than
9” is an event. It is made of of all of the outcomes where the shoe size is less than 9. Of
course an event might contain just one outcome.

Probabilities are usually expressed in terms of fractions or decimal numbers or percentages. There-
fore we could express the probability of it raining today as

P (Rain) =
1

20
= 0.05 = 5%.

All probabilities are measured on a scale ranging from zero to one. The probabilities of most events
lie strictly between zero and one as an event with probability zero is an impossible event and one
with probability one is a certain event.

The collection of all possible outcomes, that is the sample sapce, has a probability of 1. For
example, if an event consists of only two outcomessuccessor failure then the probability of either
asuccessor afailure is 1. That isP (success or failure) = 1.

Two events are said to bemutually exclusiveif both can not occur simultaneously. In the example
above, the outcomessuccessand afailure are mutually exclusive.

Two events are said to beindependentif the occurence of one does not affect the probability of
the second occurring. For example, if you toss a coin and look out of the window, it would be
reasonable to suppose that the events “get heads” and “it is raining” would be independent. How-
ever, not all events are independent. For example, if you go into the Students’ Union Building and
pick a student at random, then the events “the student is female” and “the student is studying en-
gineering” are not independent since there is a greater proportion of male students on engineering
courses than on other courses at the University (and this probably applies to those students found
in the Union).

5.2 How do we measure Probability?

There are three main ways in which we can measure probability. All three obey the basic rules
described above. Different people argue in favour of the different views of probability and some
will argue that each kind has its uses depending on the circumstances.

5.2.1 Classical

If all possible outcomes are “equally likely” then we can adopt theclassicalapproach to measuring
probability. For example if we tossed a fair coin, there are only two possible outcomes, a head or
a tail both of which are equally likely and hence

P (Head) =
1

2
and P (Tail) =

1

2
.

The underlying idea behind this view of probability issymmetry. In this example, there is no
reason to think that the outcomeHead and the outcomeTail have different probabilities and so
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they should have the same probability. Since there are two outcomes and one of them must occur,
both outcomes must have probability 1/2.

Another commonly used example is rolling dice. There are six possible outcomes (1,2,3,4,5,6)
when a die is rolled and each of them should have an equal chance of occuring. Hence theP (1) =
1
6
, P (2) = 1

6
, . . . .

Other calculations can be made such asP (Even Number) = 3
6

= 1
2
. This follows from the formula

P (Event) =
Total number of outcomes in which event occurs

Total number of possible outcomes
.

Note that this formula only works when all possible events are equally likely – not a practical
assumption for most real life situations.

5.2.2 Frequentist

When the outcomes of an experiment are not equally likely, we can conduct experiments to give
us some idea of how likely the different outcomes are. For example, suppose we were interested
in measuring the probability of producing a defective item in a manufacturing process. This prob-
ability could be measured by monitoring the process over a reasonably long period of time and
calculating the proportion of defective items. What constitutes a reasonably long period of time is,
of course, a difficult question to answer. In a more simple case, if we did not believe that a coin
was fair, we could toss the coin a large number of times and see how often we obtained a head.
In both cases we perform the same experiment a large number of times and observe the outcome.
This is the basis of the frequentist view. By conducting experiments the probability of an event can
easily be estimated using the following formula:

P (Event) =
Number of times an event occurs

Total number of times experiment done
.

The larger the experiment, the closer this probability is to the “true” probability. The frequentist
view of probability regards probability as the long run relative frequency (or proportion). So, in
the defects example, the “true” probability of getting a defective item is the proportion obtained in
a very large experiment (strictly aninfinitely long sequence of trials).

In the frequentist view, probability is a property of nature and, since, in practice, we can not conduct
infinite sequences of trials, in many cases we never really know the “true” values of probabilities.
We also have to be able to imagine a long sequence of “identical” trials. This does not seem to
be appropriate for “one-off” experiments like the launch of a new product. For these reasons (and
others) some people prefer thesubjectiveor Bayesianview of probability.

5.2.3 Subjective/Bayesian

We are probably all intuitively familiar with this method of assigning probabilities. When we board
an aeroplane, we judge the probability of it crashing to be sufficiently small that we are happy to
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undertake the journey. Similarly, the odds given by bookmakers on a horse race reflect people’s
beliefs about which horse will win. This probability does not fit within the frequentist definition
as the race cannot be run a large number of times.

One potential difficulty with using subjective probabilities is that itis subjective. So the probabil-
ities which two people assign to the same event can be different. This becomes important if these
probabilities are to be used in decision making. For example, if you were deciding whether to
launch a new product and two people had very different ideas about how likely success or failure
of this product was, then the decision to go ahead could be controversial. If both individuals as-
sessed the probability of success to be 0.8 then the decision to go ahead could easily be based on
this belief. However, if one said 0.8 and the other 0.3, then the decision is not straightforward. We
would need a way to reconcile these different positions.

Subjective probability is still subject to the same rules as the other forms of probability, namely
that all probabilities should be positive and that the probability of all outcomes should sum to one.
Therefore, if you assessP (Success) = 0.8 then you should also assessP (Failure) = 0.2.

5.3 Laws of Probability

5.3.1 Multiplication Law

The probability of twoindependenteventsE1 andE2 both occurring can be written as

P (E1 andE2) = P (E1)× P (E2).

For example, if the probability of throwing a six followed by another six on two rolls of a die is
calculated as follows. The outcomes of the two rolls of the die are independent. LetE1 denote a
six on the first roll andE2 a six on the second roll. Then

P (two sixes) = P (E1 andE2) = P (E1)× P (E2) =
1

6
× 1

6
=

1

36
.

This method of calculating probabilities extends to when there are manyindependentevents

P (E1 andE2 and · · · andEn) = P (E1)× P (E2)× · · · × P (En).

(There is a more complicated rule for multiplying probabilities when the events are not indepen-
dent).

5.3.2 Addition Law

The multiplication law is concerned with the probability of two or more independent events oc-
curring. Theaddition lawdescribes the probability of any of two or more events occurring. The
addition law for two eventsE1 andE2 is

P (E1 or E2) = P (E1) + P (E2)− P (E1 andE2).

67



This describes the probability ofeithereventE1 or eventE2 happening.

Consider the following information: 50 percent of families in a certain city subscribe to the morn-
ing newspaper, 65 percent subscribe to the afternoon newspaper, and 30 percent of the families
subscribe to both newspapers. What proportion of families subscribe to at least one newspaper?

We are toldP (Morning) = 0.5, P (Afternoon) = 0.65 andP (Morning and Afternoon) = 0.3.
Therefore

P (at least one paper) = P (Morning or Afternoon)

= P (Morning) + P (Afternoon)− P (Morning and Afternoon)

= 0.5 + 0.65− 0.3

= 0.85.

So 85% of of the city subscribe to at least one of the newspapers.

A more basic version of the rule works where events are mutually exclusive: if eventsE1 andE2

are mutually exclusive then
P (E1 or E2) = P (E1) + P (E2).

This simplification occurs because when two events are mutually exclusive they cannot happen
together and soP (E1 andE2) = 0.

These two laws are the basis of more complicated problem solving we will see later.

5.3.3 Example

A building has three rooms. Each room has two separate electric lights. There are thus six electric
lights altogether. After a certain time there is a probability of 0.1 that a given light will have failed
and all light are independent of all other lights. Find the probability that, after this time, there is at
least one room in which both lights have failed.

Solution

For a given light, the probability that it has failed is 0.1.

For a given room, the probability thatboth lights have failed is

0.1× 0.1 = 0.01.

For a given room, the probability that it is not true that both lights have failed, that is the probability
that at least one of the two lights is working, is

1− 0.01 = 0.99.

The probability that at least one light is working in every one of the three rooms (that is, in Room
A and in Room Band in Room C) is
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0.99× 0.99× 0.99 = 0.993 = 0.970299.

The probability that there is at least one room in which both lights have failed (that is the probability
that it is not true that there is at least one light working in every room) is

1− 0.970299 = 0.029701

or just under 3%.

N.B. We also can obtain this answer by extending the addition law to cover three events. Let
A, B, C be the events “both lights have failed in Room A,” “ both lights have failed in Room B,”
“both lights have failed in Room C.” We can show that

P (A or B or C) = P (A) + P (B) + P (C)− P (A and B)− P (A and B)− P (B and C)

+P (A and B and C)

where “A or Bor C” means “at least one ofA, B, C” and “A and Band C” means “all three of
A, B, C”. So, the required probability is

P (A or Bor C) = 0.01 + 0.01 + 0.01− (0.01× 0.01)− (0.01× 0.01)− (0.01× 0.01)

+(0.01× 0.01× 0.01)

= 3× 0.01− 3× 0.0001 + 0.000001

= 0.03− 0.0003 + 0.000001 = 0.029701.

5.4 Exercises 5

1. A company manufactures a device which contains three componentsA, B and C. The
device fails if any of these components fail and the company offers to its customers a full
money-back warranty if the product fails within one year. The company has assessed the
probabilities of each of the components lasting at least a year as 0.98, 0.99 and 0.95 forA,
B andC respectively. The three components within a single device are considered to be
independent. Consider a single device chosen at random. Calculate the probability that

(a) all three components will last for at least a year;

(b) the device will be returned for a refund.

2. The following data refer to a class of 18 students. Suppose that we will choose one student
at random from this class.
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Student Height Weight Shoe Student Height Weight Shoe
Number Sex (m) (kg) Size Number Sex (m) (kg) Size

1 M 1.91 70 11.0 10 M 1.78 76 8.5
2 F 1.73 89 6.5 11 M 1.88 64 9.0
3 M 1.73 73 7.0 12 M 1.88 83 9.0
4 M 1.63 54 8.0 13 M 1.70 55 8.0
5 F 1.73 58 6.5 14 M 1.76 57 8.0
6 M 1.70 60 8.0 15 M 1.78 60 8.0
7 M 1.82 76 10.0 16 F 1.52 45 3.5
8 M 1.67 54 7.5 17 M 1.80 67 7.5
9 F 1.55 47 4.0 18 M 1.92 83 12.0

Find the probabilities for the following events.

(a) The student is female.

(b) The student’s weight is greater than 70kg.,

(c) The student’s weight is greater than 70kg. and the student’s shoe-size is greater than 8,

(d) The student’s weight is greater than 70kg. or the student’s shoe-size is greater than 8.
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Chapter 6

Decision Making using Probability

In this chapter, we look at more complicated notions of probability and how we can use probability
in order to aid in management decision making.

6.1 Conditional Probability

So far we have only considered probabilities of single events or of several independent events, like
two rolls of a die. However in reality many events are related. For example the probability of it
raining in 5 minutes time is dependent on whether or not it is raining now.

We need a mathematical notation to capture how the probability of one event depends on other
events taking place. We do this as follows. Consider two eventsA andB. We write

P (A|B)

for the probability ofA givenB has already happened. We describeP (A|B) as the conditional
probability ofA givenB. For example, the probability of it raining in 5 minutes time given that it
is raining now would be

P (Rain in 5 minutes|Raining now).

Utility companies need to be able to forecast periods of high demand. They describe their forecasts
in terms of probabilities. Gas and electricity suppliers might relate them to air temperature. For
example,

P (High demand|air temperature is below normal) = 0.6

P (High demand|air temperature is normal) = 0.2

P (High demand|air temperature is above normal) = 0.05.

We can calculate these conditional probabilities using the formula

P (A|B) =
P (A andB)

P (B)
,
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that is, in terms of the probability of both events occurring,P (A andB), and the probability of the
event that has already taken place,P (B).

To see how this formula works, let’s consider a simple example based on the class of students in
Exercises 5.

Student Height Weight Shoe Student Height Weight Shoe
Number Sex (m) (kg) Size Number Sex (m) (kg) Size

1 M 1.91 70 11.0 10 M 1.78 76 8.5
2 F 1.73 89 6.5 11 M 1.88 64 9.0
3 M 1.73 73 7.0 12 M 1.88 83 9.0
4 M 1.63 54 8.0 13 M 1.70 55 8.0
5 F 1.73 58 6.5 14 M 1.76 57 8.0
6 M 1.70 60 8.0 15 M 1.78 60 8.0
7 M 1.82 76 10.0 16 F 1.52 45 3.5
8 M 1.67 54 7.5 17 M 1.80 67 7.5
9 F 1.55 47 4.0 18 M 1.92 83 12.0

Suppose we want the probability that a student chosen at random from this class will be female
given that the student’s shoe size is less than 8. We could simply find the proportion of students
with shoe sizes less than 8 who are female. There are 7 students with shoe sizes less than 8 and 4
of these are female. So

P (Female|Shoe size less than 8) =
4

7
.

This probability can also be calculated using the above formula as follows:

P (Shoe size less than 8) =
7

18

P (Shoe size less than 8 and female) =
4

18

and so

P (Female|Shoe size less than 8) =
P (Shoe size less than 8 and female)

P (Shoe size less than 8)
=

4/18

7/18
=

4

7
.

6.2 Multiplication of probabilities

We saw in Chapter 5 that, if two eventsA andB are independent, thenP (A andB) = P (A)P (B).
Now we know that

P (A|B) =
P (A andB)

P (B)
,

we can easily see that
P (A and B) = P (B)P (A|B).

Of course it is also true thatP (A and B) = P (A)P (B|A).
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For example, consider a student chosen at random from the example class. LetF be the event “the
student is female” andS be the event “the student’s weight is less than 60kg.” Then the probability
that the student is female and has a weight less than 60kg is

P (FandS) = P (S)P (F |S) =
7

18
× 3

7
=

3

18

= P (F )P (S|F ) =
4

18
× 3

4
=

3

18

Notice that, ifM is the event “the student is male,” thenP (S|M) = 4/14 = 0.286 and this is not
equal toP (S|F ) = 3/4 = 0.75. So the probability of the student having a weight less than 60kg
depends on the student’s sex, that is whether the student is female or male. The eventsS andF
are not independent. SimilarlyP (F |S) = 3/7 = 0.429 while P (F |L) = 1/11 = 0.091, whereL
is the event “the students’s weight is not less than 60kg.” So, knowing whether or not a student’s
weight is less than 60kg gives us information about whether the student is likely to be male or
female.

Let B̄ be the event “notB.” So, for exampleF̄ = M. Then we say that tow eventsA andB
are independent ifP (A|B) = P (A|B̄) = P (A). It is easy to show that this is equivalent to
P (B|A) = P (B|Ā) = P (B). If A andB are independent thenP (AandB) = P (A)P (B).

For example, consider the following probabilities for customers at a cafe who can choose eiether
icecream or treacle sponge and custard.

Icecream Treacle sponge
Male 0.250 0.150
Female 0.375 0.225

We see thatP (male) = 0.250+0.150 = 0.4 andP (female) = 0.375+0.225 = 0.6 = 1−P (male).
Now

P (Icecream|Male) =
0.250

0.4
= 0.625

and

P (Icecream|Female) =
0.375

0.6
= 0.625

so Icecream and Male are independent events. In fact the variables Sex and Dessert-choice are
independent in this example. So the probability that a customer is male and chooses icecream is just
P (Male)P (Icecream) = 0.4× 0.625 = 0.25. (The probability of icecream is just0.250+0.375 =
0.625).

Another example relates to the age and sex distribution of purchasers of CD singles at an outlet:

< 30 30− 50 50+
Male 0.275 0.125 0.025
Female 0.325 0.175 0.075

From this table, we can calculate

P (Male) = P (Male and < 30) + P (Male and30− 50) + P (Male and50+)

= 0.275 + 0.125 + 0.025 = 0.425
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and

P (Female) = P (Female and< 30) + P (Female and30− 50) + P (Female and50+)

= 0.325 + 0.175 + 0.075 = 0.575.

Also, the age distribution of the customers is

P (< 30) = P (Male and < 30) + P (Female and< 30) = 0.275 + 0.325 = 0.6

P (30− 50) = P (Male and30− 50) + P (Female and30− 50) = 0.125 + 0.175 = 0.3

P (50+) = P (Male and50+) + P (Female and50+) = 0.025 + 0.075 = 0.1.

Using this information we can calculate various probabilities such as:

P (Male|30− 50) =
P (Male and30− 50)

P (30− 50)
=

0.125

0.3
= 0.4167

P (Female|30− 50) = 1− P (Male|30− 50) = 1− 0.4167 = 0.5833

and

P (< 30|Male) =
P (Male and < 30)

P (Male)
=

0.275

0.425
= 0.6471

P (30− 50|Male) =
P (Male and30− 50)

P (Male)
=

0.125

0.425
= 0.2941

P (50 + |Male) = 1− P (< 30|Male)− P (30− 50|Male) = 1− 0.6471− 0.2941 = 0.0588.

6.3 Tree Diagrams

Tree diagrams or probability trees are simple clear ways of presenting probabilistic information.
Let us first consider a simple example in which a die is rolled twice. Suppose we are interested in
the probability that we score a six on both rolls. This probability can be calculated as

P (Six and Six) = P (Six on 1st throw)× P (Six on 2nd throw|Six on 1st throw)

=
1

6
× 1

6

=
1

36
.

This example can be represented as a tree diagram in which experiments are represented by circles
(callednodes) and the outcomes of the experiments asbranches. The branches are annotated by
the probability of the particular outcome.
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Here the probability of a six followed by a six is found by tracing the branch corresponding to
this outcome through the tree. Note that the ends of the branches of the tree are usually known as
terminal nodes.

Consider a more complicated example. A machine is used to produce components. Each time it
produces a component there is a chance that the component will be defective. When the machine
is working correctly the probability that a component is defective is 0.05. Sometimes, though,
the machine requires adjustment and, when this is the case, the probability that a component is
defective is 0.2. At the time in question there is a probability of 0.1 that the machine requires
adjustment. Components produced by the machine are tested and either accepted or rejected. A
component which is not defective is accepted with probability 0.97 and (falsely) rejected with
probability 0.03. A defective component is (falsely) accepted with probability 0.15 and rejected
with probability 0.85.

We can calculate various probabilities. For example:

P (accepted) = 0.82935 + 0.00675 + 0.07760 + 0.00300 = 0.9167

P (defective) = (0.9× 0.05) + (0.1× 0.2) = 0.045 + 0.02 = 0.065

P (defective and accepted) = 0.00675 + 0.00300 = 0.00975

P (accepted | defective) =
0.00975

0.065
= 0.15

P (defective | accepted) =
0.00975

0.9167
= 0.010636

P (machine OK and accepted) = 0.82935 + 0.00675 = 0.8361

P (machine OK | accepted) =
0.8361

0.9167
= 0.9121

P (machine OK and rejected) = 0.02565 + 0.03825 = 0.0639

P (rejected) = 1− P (accepted) = 0.0833

P (machine OK | rejected) =
0.0639

0.0833
= 0.7671
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6.4 Expected Monetary Value and Probability Trees

Probability trees can be used to see the effect of making particular decisions in the face of uncer-
tainty. This is achieved by weighting the probability of different outcomes by their value. Often
this value is financial. TheExpected Monetary Value (EMV)of a single event is simply the proba-
bility of that event multiplied by the monetary value of that outcome. For example, if you would
win £5 if you pulled an ace from a pack of cards, the EMV would be

EMV (Ace) =
1

13
× 5 = 0.38.

In other words, if you repeated this bet a large number of times, overall you would come out an
average of 38 pence better off per bet. Therefore you would want to pay no more than38p for such
a bet.

Consider another bet. When rolling a die, if it’s a six you have to pay£5 but if it’s any other number
you receive£2.50. Would you take on this bet?

Probability Financial outcome

P (6) = 1/6 -£5

P (Not a6) = 5/6 £2.50

Therefore

EMV (Six) =
1

6
×−5.00 = −0.833

EMV (Not a Six) =
5

6
× 2.50 = 2.0833

and hence the expected monetary value of the bet is

EMV (Bet) = −0.833 + 2.083 = 1.25.

Therefore, in the long run, this would be a bet to take on as it has a positive expected monetary
value.

In general, the expected monetary value of a project or bet is given by the formula

EMV =
∑

P (Event)× Monetary value of Event

where the sum is over all possible events. TheEMV of a project can be used as a decision criterion
for choosing between different projects and has applications in a large number of situations. This
is illustrated by the following example.

A small company is trying to decide how to launch a new and innovative product. It could go for a
direct approach, launching onto the whole of the domestic market through traditional distribution
channels, or it could launch only on the internet. A third option exists where the product is licensed
to a larger company through the payment of a licence fee irrespective of the success of the product.
How should the company launch the product? The company has done some initial market research
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and the managing director believes the probability of the product being successful can be classed
into three categories: high, medium or low. She thinks that these categories will occur with prob-
abilities 0.2, 0.35 and 0.45 respectively and her thoughts on the likely profits (in£K) to be earned
in each plan are

High Medium Low
Direct 100 55 -25
Internet 46 25 15
Licence 20 20 20

The EMV of each plan can be calculated as follows:

EMV (Direct) = 0.2× 100 + 0.35× 55 + 0.45× (−25) = £28K

EMV (Internet) = 0.2× 46 + 0.35× 25 + 0.45× 15 = £24.7K

EMV (Licence) = 0.2× 20 + 0.35× 20 + 0.45× 20 = £20K.

On the basis of expected monetary value, the best choice is the Direct approach.

In this example we have to make a decision. When we include a decision in a probability tree
we use a rectangular node, called adecision nodeto represent the decision. The diagram is then
called adecision tree. There are no probabilities at a decision node but we evaluate the expected
monetary values of the options. In a decision tree the first node is always a decision node. There
may also be other decision nodes. If there is another decision node then we evaluate the options
there and choose the best and the expected value of this option becomes the expected value of the
branch leading to the decision node.
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6.5 Exercises 6

1. A company has installed a new computer system and some employees are having difficulty
logging on to the system. They have been given training and the problems which arose
during training were recorded and their probabilities calculated as follows:

• An employee has a probability of 0.9 of logging on successfully on the first attempt.

• If the employee logs in successfully then the employee will also be successful on each
later attempt with probability 0.9.

• If the employee tries to log in and is not successful then the employee loses confidence
and the probability of a successful log-in on later occasions drops to 0.5.

Use a tree diagram to find the following probabilities:

(a) An employee successfully logs on in each of the first three attempts.

(b) An employee fails in the first attempt but is successful in the next two attempts.

(c) An employee logs on successfully only once in three attempts.

(d) An employee does not manage to log on successfully in three attempts.

2. The owner of a small business has the right to have a retail stall at a large festival to be
held during the summer. She judges that this would either be a success or a failure and that
the probability that it is a success is 0.4. If the stall was a success, the net income from it
would be£90,000. If the stall was a failure, there would be a net loss of£30,000 from it.
To help to make the decision, the owner could pay for market research. This would cost
£5,000. The market research will either give a positive indication or a negative indication.
The conditional probability that it gives a positive indication, given that the stall will actually
be a success, is 0.75. The conditional probability that it gives a positive indication, given that
the stall will actually be a failure, is1/3.

The owner has various options:

• Do nothing.

• Go ahead without market research.

• Pay for the market research.

• Sell her right to a stall for£10,000.

If she pays for the market reserach then, depending on the outcome, she can:

• Do nothing more.

• Go ahead.

• Sell her right to a stall. If the market research gave a positive indication the price would
be£35,000. If the market research gave a negative indication the price would be only
£3,000.

What should she do?

This is a fairly complicated question so it is best to tackle it in stages.
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(a) using a probability tree for the success or failure of the stall and the market research
outcome, find the following probabilities.

i. The probability of a positive market research outcome.

ii. The probability of a negative market research outcome.

iii. The conditional probability of a successful stall given a positive market research
outcome.

iv. The conditional probability of a failure given a positive market research outcome.

v. The conditional probability of a successful stall given a negative market research
outcome.

vi. The conditional probability of a failure given a negative market research outcome.

(b) Represent the owner’s decision problem using a tree diagram.

(c) Suppose that the owner has the market research done and that the outcome is positive.
Evaluate the expected monetary values, under these circumstances, of the three options:

• Sell.

• Go ahead.

• Do nothing more.

and hence find what she should do if these circumstances arise.

(d) Suppose that the owner has the market research done and that the outcome is negative.
Evaluate the expected monetary values, under these circumstances, of the three options:

• Sell.

• Go ahead.

• Do nothing more.

and hence find what she should do if these circumstances arise.

(e) Hence find the expected monetary value of the initial option of “Pay for the market
research.”

(f) Find the expected monetary values of the three other inital options:

• Do nothing.

• Go ahead without market research.

• Sell her right to a stall for£10,000.

(g) Determine the owner’s best strategy.
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Chapter 7

Discrete Probability Models

7.1 Introduction

The link between probability and statistics arises because, in order to see, for example, how strong
the evidence is in some data, we need to consider the probabilities concerned with how we came
to observe the data. In this chapter, we describe some standard probability models which are often
used used with data from various sources such as market research. However, before we describe
these in detail, we need to establish some ground rules for counting.

7.2 Permutations and Combinations

7.2.1 Numbers of sequences

Imagine that your cash point card has just been stolen. What is the probability of the thief guessing
your 4 digit PIN in one go? To answer this question, we need to know how many different 4 digit
PINs there are. We are also assuming that the thief chooses in such a way that all possibilities are
equally likely. With this assumption the probability of a correct guess (in one go) is

P (Guess correctly) = number of correct PINs
number of possible 4 digit PINs

= 1
number of possible 4 digit PINs.

There is, of course, only one correct PIN. The number of possible 4 digit PINs is calculated as
follows. There are 10 choices for the first digit, another 10 choices for the second digit, and so on.
Therefore the number of possible choices is

10× 10× 10× 10 = 10, 000.
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So the probability of a correct guess is

P (Guess correctly) = 1
10×10×10×10

= 1
10,000

= 0.00001.

7.2.2 Permutations

The calculation of the card-thief’s correct guess of a PIN changes if the thief knows that your PIN
uses 4 different digits. Now the number of possible PINs is smaller. To find this number we need
to work out how many ways there are to arrange 4 digits out of a lsit of 10.

In more general terms, we need to know how many different ways there are of arrangingr objects
from a list ofn objects. The best way of thinking about this to consider the choice of each item
as a different experiment. The first experiment hasn possible outcomes. The second experiment
only hasn − 1 possible outcomes, as one object has already been selected. The third experiment
hasn − 2 outcomes and so on until therth experiment, which hasn − r + 1 possible outcomes.
Therefore the number of possible selections is

n× (n−1)× (n−2)×· · ·× (n−r+1) =
n× (n− 1)× (n− 2)× · · · × 3× 2× 1

(n− r)× (n− r − 1)× · · · × 3× 2× 1
=

n!

(n− r)!
.

Here
n! = n(n− 1)(n− 2)(n− 3)× · · · × 3× 2× 1

and is calledn factorial - it can be found on many calculators. The formula

n!

(n− r)!

is a commonly encountered expression in counting calculations (combinatorics) and has its own
notation. The number of ordered ways of selectingr objects fromn is denotednPr, where

nPr =
n!

(n− r)!
.

We refer tonPr as the number ofpermutationsof r out ofn objects.

If we are interested solely in the number of ways of arrangingn objects, then this is clearly just

nPn = n!

Returning to the example in which the thief is trying to guess your 4-digit PIN, if the thief knows
that the PIN contains no repreated digits then the number of possible PINS is

10P4 = 5040

so, assuming that each is equally likely to be guessed, the probability of a correct guess is

P (Guess correctly) =
1

5040
= 0.0001984.

81



This illustrates how important it is to keep secret all information about your PIN. These probability
calculations show that even knowing whether or not you repeat digits in your PIN is informative
for a thief – it reduces the number of possible PINs by a factor of around 2.

We now consider a more complicated problem. In a tutorial group there are 40 students. What is
the probability that at least two students share a birthday?

First, let’s make some simplifying assumptions. We will assume that there are 365 days in a year
and that each day is equally likely to be a birthday.

Call the event we are interested inMatch. We will first calculate the probability ofNo Match,
the probability thatno twopeople have the same birthday, and calculate the probability we want
usingP (Match) = 1 − P (No Match). The number of ways 40 birthdays could occur is36540

since there are 365 choices for the first person and 365 choices for the second person and so on.
The number of ways we can have 40distinctbirthdays is the same as the number of permutations
of 40 objects from 365 objects, that is,365P40. So, the probability of all birthdays being distinct is

P (No Match) =
365P40

36540
=

365!

325!36540
' 0.1

and so

P (Match) = 1− P (No Match) ' 0.9.

That is, there is a probability of 0.9 that we have a match. In fact, the fact that birthdays are
not distributed uniformly over the year makes the probability of a match even higher! This is
a somewhat counter-intuitive result, and the reason is that people think more intuitively about the
probability that someone has the same birthday asthemselves. This is an entirely different problem.

An alternative way of thinking about the probability ofNo Match is to consider the sequences of
choices as individuals are picked from the tutorial group:

P (No Match) = P (Pick person1)× P (Pick person2 with different birthday to person1)

× P (Pick person3 with different birthday to persons1 and2)× . . .

=
365

365
× 364

365
× . . .× 326

365
' 0.1.

7.2.3 Combinations

We now have a way of counting permutations, but often when selecting objects, all that matters is
which objects were selected, not the order in which they were selected. Suppose that we have a
collection ofn objects and that we wish to maker selections from this list of objects, where the
order does not matter. An unordered selection such as this is referred to as acombination. How
many ways can this be done? Notice that this is equivalent to asking how many different ways are
there of choosingr objects fromn objects.

For example, a company has 20 retail outlets. It is decided to try a sales promotion at 4 of these
outlets. How many selections of 4 can be chosen? It may be important to know this when we come
to look at the results of the trial.
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This calculation is very similar to that of permutations except that the ordering of objects no longer
matters. For example, if we select two objects from three objectsA, B andC, there are3P2 = 6
ways of doing this:

A, B A, C B, A B, C C, A C, B.

However, if we are not interested in the ordering, just in whetherA, B or C are chosen thenA, B
is the same asB, A etc. and so the number of selections is just 3:

A, B A, C B, C.

The effect of ignoring the ordering reduces the number of permutations by a factor of2P2 = 2. In
general, the number of combinations ofr objects fromn objects is

number of ordered samples of sizer

number of orderings of samples of sizer
=

nPr

rPr

=
nPr

r!

=
n!

r!(n− r)!
.

Again, this is a very commonly found expression in combinatorics, so it has its own notation:

nCr =
n!

r!(n− r)!
.

There are other commonly used notations for this quantity: Cn
r and

(
n

r

)
. These numbers are

known as thebinomial coefficients.

Now we can see that the number of ways to select 4 retail outlets out of 20 is

20C4 =
20!

4!16!
= 4845.

An easy way to calculate binomial coefficients (at least small ones) is to use the fact that

nCr =
n

r
× n− 1

r − 1
× n− 2

r − 2
× · · · × n− r + 1

1
.

For example,

20C4 =
20

4
× 19

3
× 18

2

17

1
.

To see how combinations can be used to calculate probabilities, we will look at the UK National
Lottery. In this lottery, there are 49 numbered balls, and six of these are selected at random. A
seventh ball is also selected, but this is only relevant if you get exactly five numbers correct. The
player selects six numbers before the draw is made, and after the draw, counts how many numbers
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are in common with those drawn. Players win a prize if they select at least three of the balls drawn.
The order in which the balls are drawn in is irrelevant.

To begin with, let’s calculate the probability that exactly 3 of the 6 numbers we select are drawn.
First we need to count the number of possible draws (the number of different sets of 6 numbers),
and then how many of those draws correspond to getting exactly three numbers correct. The
number of possible draws is the number of ways of choosing 6 objects from 49. This is

49C6 = 13, 983, 816.

The number of drawings corresponding to getting exactly three right is calculated as follows. Of the
49 balls from which the draw is made, 6 correspond to your selected numbers, and 43 correspond
to other numbers. We want to know how many ways there are of choosing 3 of your selected
numbers and 3 other numbers. This is the number of ways of choosing 3 from 6, multiplied by the
number of ways of choosing 3 from 43. That is, there are

6C3
43C3 = 246, 820

ways of choosing exactly 3 of your selected numbers. So, the probability of matching exactly 3
numbers is

6C3
43C3

49C6

=
246, 820

13, 983, 816
' 0.0177.

Similarly, we can calculate the probability of getting other prize-winning outcomes:

P (match exactly 6 correct numbers) =
6C6

49C6

=
1

13, 983, 816
' 7× 10−8

P (match exactly 5 correct numbers plus bonus ball) =
6C5

1C1

49C6

=
6

13, 983, 816
' 4× 10−7

P (match exactly 5 correct numbers) =
6C5

43C1

49C6

=
258

13, 983, 816
' 2× 10−5

P (match exactly 4 correct numbers) =
6C4

43C2

49C6

=
13545

13, 983, 816
' 1× 10−4.

These outcomes are not very likely and so the prizes are chosen to reflect how likely you are to
win. For example, in a recent lottery draw, the prizes were

Number of balls matched Prize
6 £2.4M

5 plus bonus £240K
5 £3K
4 £100
3 £10

< 3 £0

This information allows us to calculate a fair price for such a bet. The expected monetary value of
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the bet is

EMV = P (match 6 balls)× Prize(match 6 balls)

+ P (match 5 balls plus bonus)× Prize(match 5 balls plus bonus)

+ . . .

+ P (match 3 balls)× Prize(match 3 balls)

= 2.4M × 1

13, 983, 816
+ 240K × 6

13, 983, 816
+ . . . + 10× 246, 820

13, 983, 816

= 0.6176.

Therefore, a fair price for a ticket in this particular lottery is around62p. This difference between
this and the standard£1 charge for a ticket goes to “good causes” and, of course, Camelot’s profits.

7.3 Probability Distributions

7.3.1 Introduction

In Chapter 1 we saw how surveys can be used to get information on population quantities. For
example, we might want to know voting intentions within the UK just before a General Election.
Why does this involverandomvariables? In most cases, it is not possible to measure the variables
on every member of the population and so some sampling scheme is used. This means that there
is uncertainty in our conclusions. For example, if the true proportion of Labour voters were 40%,
in a survey of 1,000 voters, it would be possible to get 400 Labour voters, but it would also be
possible to get 350 Labour voters or 430 Labour voters. The fact that we have only a sample
of voters introduces uncertainty into our conclusions about voting intentions in the population
as a whole. Sometimes experiments themselves have inherent variability, for example, the toss
of a coin. If the coin were tossed 1000 times and heads occurred only 400 times, would it be
fair to conclude that the coin was a biased coin? The subject of Statistics has been developed to
understand such variability and, in particular, how to draw correct conclusions from data which are
subject to experimental and sampling variability.

Before we can make inferences about populations, we need a language to describe the uncertainty
we find when taking samples from populations. First, we represent a random variable byX (capital
X) and the probability that it takes a certain valuex (small x) asP (X = x).

The probability distributionof a discrete random variableX is the list of all possible valuesX
can take and the probabilities associated with them. For example, if the random variableX is the
outcome of a roll of a die then the probability distribution forX is
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x P (X = x)
1 1/6
2 1/6
3 1/6
4 1/6
5 1/6
6 1/6

sum 1

Just as with sample data, it is useful to have some summary information about probability distri-
butions. For example, what is the average value of the random variable? How much variation is
there in this distribution?

7.3.2 Expectation and the population mean

The mean of a quantitative random variable is a weighted sum of its possible values, where each
weight is the probability of the value occurring. This is known as the expected value of the ran-
dom variable or the population mean of the random variable and is usually written asE(X) or µ.
Therefore, for a discrete random variable,

E(X) = µ =
∑

x P (X = x).

Previously we have seen a similar calculation when determining the expected monetary value

EMV =
∑

P (Event)×Monetary value of Event.

The expected value is the average value which we would get in an infinitely long sequence of
identical experiments.

For example, suppose that the population of interest is this class and that it containsN students.
Suppose that we are interested in the number of times that students have bought a particular product
(e.g. a cinema ticket) in the last month. Clearly the population mean is just the average of this
variable in the class:

µ =
1

n

n∑
i=1

xi

wherexi is the number of times studenti has bought the product. We can also write this as

µ =
1

n

∞∑
j=0

jfj =
∞∑

j=0

j
fj

n

wherefj is the frequency ofx = j in the population andfj/n is the relative frequency. If we
choose a student at random from the class then the probability that we choose a student withx = j
is

P (X = j) =
fj

n
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the relative frequency and so

µ =
∞∑

j=0

jP (X = j).

It is also clear that this is the average which we would get if we kept on sampling, with replacement,
for a very long time.

For the die-rolling experiment, the average number of spots we would get if we repeated the ex-
periment an “infinite” number of times is

E(X) =
∑

x P (X = x) = 1× 1

6
+ 2× 1

6
+ . . . + 6× 1

6
= 3.5.

This concept can be generalised to calculate the expected value of any function ofX. For instance,
in the lottery example discussed previously, the prize was determined by the number of matches.
In the die-rolling experiment, we could consider a prize worth the square of the number showing:
£1 for a 1,£4 for a 2,£9 for a 3, and so on. In this case the expected prize money is

E
(
X2

)
=

∑
x2 P (X = x)

= 1× 1

6
+ 4× 1

6
+ . . . + 36× 1

6

=
91

6
' £15.17.

7.3.3 Population variance and standard deviation

In addition to having the population mean as a measure of location, it is also useful to know about
the spread of the random variable about this value. The variance of a random variable is denoted
Var(X) or sometimesσ2 and is determined by

Var(X) = σ2 = E
[
(X − µ)2

]
.

It is simply the average squared deviation from the mean. Note that this is the same sort of calcu-
lation as with sample variances. The larger the value for the variance, the larger the spread.

Referring again back to the die-rolling experiment, ifX is the number of spots, we can calculate
the variance (usingµ = 3.5):

x P (X = x) (x− µ)2 (x− µ)2P (X = x)
1 1/6 6.25 1.0417
2 1/6 2.25 0.3750
3 1/6 0.25 0.0417
4 1/6 0.25 0.0417
5 1/6 2.25 0.3750
6 1/6 6.25 1.0417

sum 1 2.9167

Hence
Var(X) = 2.9167.
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As with sample variances, there is an alternative way of calculating population variances, using

Var(X) = E(X2)− µ2.

Using this formula with the above example gives

x P (X = x) x2 x2P (X = x)
1 1/6 1 0.1667
2 1/6 4 0.6667
3 1/6 9 1.5000
4 1/6 16 2.6667
5 1/6 25 4.1667
6 1/6 36 6.0000

sum 1 15.1667

and so
Var(X) =

∑
x2P (X = x)− µ2 = 15.1667− 3.52 = 2.9167.

The standard deviation of a random variable is

SD(X) =
√

Var(X).

In this example,SD(X) =
√

2.9167 = 1.7078.
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7.4 Exercises 7

1. Consider a lottery that is slightly different to the National Lottery in that there are 48 balls
instead of 49. What is the probability of winning the jackpot in this lottery? (That is, you
choose six balls and exactly these six are drawn).

2. A market survey has identified 10 desirable features for a new product. However, due to cost
constraints, only four of these features can be included. If the features are selected randomly,
what is the probability that your four favourites are chosen in your preferred ordering?

3. If you dial 7 digits at random on a (non-mobile) telephone in Newcastle, what is the proba-
bility you dial Dr. Farrow’s office number (which has 7 digits)?

4. A sample of four mass-produced items is examined for quality control purposes. Each item
can be either satisfactory (S) or unsatisfactory (U). Each item has a probability of 0.2 of
being unsatisfactory and each item is independent of every other item

(a) Consider the sequence of 4 items. In how many different sequences can we get

i. no unsatisfactory items?

ii. exactly 1 unsatisfactory item?

iii. exactly 2 unsatisfactory items?

iv. exactly 3 unsatisfactory items?

v. four unsatisfactory items.

(b) Find the probability of a particular sequence containing

i. no unsatisfactory items.

ii. exactly 1 unsatisfactory item.

iii. exactly 2 unsatisfactory items.

iv. exactly 3 unsatisfactory items.

v. four unsatisfactory items.

(c) Hence find the probability that we get

i. no unsatisfactory items.

ii. exactly 1 unsatisfactory item.

iii. exactly 2 unsatisfactory items.

iv. exactly 3 unsatisfactory items.

v. four unsatisfactory items.

(d) Find the mean number of unsatisfactory items.

(e) Find the variance and standard deviation of the number of unsatisfactory items.
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Chapter 8

The Binomial and Poisson Distributions

8.1 The Binomial Distribution

8.1.1 Introduction

In many surveys and experiments we collect data in the form of counts. For example, the number
of people in the survey who bought a CD in the past month, the number of people who said they
would vote Labour at the next election, the number of defective items in a sample taken from a
production line, and so on. All these variables have common features:

1. Each person/item has only two possible (exclusive) responses (Yes/No, Defective/Not defec-
tive etc)
– this is referred to as atrial which results in asuccessor failure

2. The survey/experiment takes the form of a random sample
– the responses are independent.

Further suppose that the true probability of a success in the population isp (in which case the
probability of a failure is1 − p). We are interested in the random variableX, the total number
of successes out ofn trials. This random variable has a probability distribution in which the
probability thatX = r, that is we getr successes in ourn trials, is

P (X = r) = nCr pr(1− p)n−r, r = 0, 1, . . . , n.

These probabilities describe how likely we are to getr out ofn successes from independent trials,
each with success probabilityp. Note that any number raised to the power zero is one, for example,
0.30 = 1 and0.6540 = 1.

This distribution is known as thebinomial distributionwith indexn and probabilityp. We write
this asX ∼ Bin(n, p).
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8.1.2 Calculating probabilities

For example, we can calculate the probability of gettingr threes from 4 rolls of a die as follows.
Each roll of the die is a trial which gives a three (success) or “not a three” (failure). The probability
of a success isp = P (three) = 1/6. We haven = 4 independent trials (rolls of the die). IfX is
the number of threes obtained thenX ∼ Bin(4, 1/6) and so

P (X = 0) = 4C0

(
1

6

)0 (
1− 1

6

)4

=

(
5

6

)4

= 0.4823

P (X = 1) = 4C1

(
1

6

)1 (
1− 1

6

)3

= 4× 1

6
×

(
5

6

)3

= 0.3858

P (X = 2) = 4C2

(
1

6

)2 (
1− 1

6

)2

= 6×
(

1

6

)2

×
(

5

6

)2

= 0.1157

P (X = 3) = 4C3

(
1

6

)3 (
1− 1

6

)1

= 4×
(

1

6

)3

× 5

6
= 0.0154

P (X = 4) = 4C4

(
1

6

)4 (
1− 1

6

)0

=

(
1

6

)4

= 0.0008.

This probability distribution shows that most of the time we would get either 0 or 1 successes but,
for example, 4 successes would be quite rare.

Consider another example. A salesperson has a 50% chance of making a sale on a customer
visit and she arranges 6 visits in a day. What are the probabilities of her making 0,1,2,3,4,5 and
6 sales? LetX denote the number of sales. Assuming the visits result in sales independently,
X ∼ Bin(6, 0.5) and

No. of sales Probability Cumulative Probability
r P (X = r) P (X ≤ r)
0 0.015625 0.015625
1 0.093750 0.109375
2 0.234375 0.343750
3 0.312500 0.656250
4 0.234375 0.890625
5 0.093750 0.984375
6 0.015625 1.000000

sum 1.000000

The formula for binomial probabilities enables us to calculate values forP (X = r). From these, it
is straightforward to calculate cumulative probabilities such as the probability of making no more
than 2 sales:

P (X ≤ 2) = P (X = 0) + P (X = 1) + P (X = 2)

= 0.015625 + 0.09375 + 0.234375 = 0.34375.

These cumulative probabilities are also useful in calculating probabilities such as that of making
more than 1 sale:

P (X > 1) = 1− P (X ≤ 1) = 1− 0.109375 = 0.890625.

91



Fortunately, binomial probabilities can be found in sets of Statistical Tables or calculated using
MINITAB.

Probabilities of binomial events can be calculated in MINITAB as follows. IfX ∼ Bin(n, p)
then probabilitiesP (X = r) and cumulative probabilitiesP (X ≤ r) can be obtained using the
following commands:

Calc > Probability Distributions > Binomial

This opens the following dialogue box

1. Select Probability forP (X = r) or Cumulative Probability forP (X ≤ r).

2. Enter the Number of trials (n).

3. Enter the Probability of success (p).

4. Check theInput constant: button

5. Enter the Input constant (r)

6. Click OK.

8.1.3 Mean and variance

If X is a random variable with a binomialBin(n, p) distribution then its mean and variance are

E(X) = np, V ar(X) = np(1− p).

For example, ifX ∼ Bin(4, 1/6) then

E(X) = np = 4× 1

6
=

2

3
= 0.6667
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and

V ar(X) = np(1− p) = 4× 1

6
× 5

6
=

5

9
' 0.5556.

Also

SD(X) =
√

V ar(X) =

√
5

9
= 0.7454.

8.2 The Poisson Distribution

8.2.1 Introduction

ThePoisson distributionis a very important discrete probability distribution which arises in many
different contexts. We can think of a Poisson distribution as what becomes of a binomial distribu-
tion if we keep the mean fixed but letn become very large andp become very small, i.e. a large
number of trials with a small probability of success in each. In general, it is used to model data
which are counts of (random) events in a certain area or time interval, without a known fixed upper
limit.

For example, consider the number of calls made in a 1 minute interval to an Internet service
provider (ISP). The ISP has thousands of subscribers, but each one will call with a very small
probability. If the ISP knows that on average 5 calls will be made in the interval, the actual number
of calls will be a Poisson random variable, with mean 5.

If X is a random variable with a Poisson distribution with parameterλ (Greek lower caselambda)
then the probability thatX = r is

P (X = r) =
λr e−λ

r!
, r = 0, 1, 2, . . . .

We writeX ∼ Po(λ). The parameterλ has a very simple interpretation as the rate at which events
occur. The distribution has mean and variance

E(X) = λ, V ar(X) = λ.

8.2.2 Calculating probabilities

Returning to the ISP example, suppose we want to know the probabilities of different numbers of
calls made to the ISP. LetX be the number of calls made in a minute. ThenX ∼ P (5) and, for
example, the probability of receiving 4 calls is

P (X = 4) =
54e−5

4!
= 0.1755.

We can use the formula for Poisson probabilities to calculate the probability of all possible out-
comes:
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Probability Cumulative Probability
r P (X = r) P (X ≤ r)
0 0.0067 0.0067
1 0.0337 0.0404
2 0.0843 0.1247
3 0.1403 0.2650
4 0.1755 0.4405
5 0.1755 0.6160
6 0.1462 0.7622
7 0.1044 0.8666
8 0.0653 0.9319
9 0.0363 0.9682
10 0.0181 0.9863
...

...
...

sum 1.000000

Therefore the probability of receiving between 2 and 8 calls is

P (2 ≤ X ≤ 8) = P (X ≤ 8)− P (X ≤ 1) = 0.9319− 0.0404 = 0.8915

and so this event is very likely. Probability calculations such as this enable ISPs to assess the likely
demand for their service and hence the resources they need to provide the service.

Probabilities of Poisson events can be calculated in MINITAB as follows. IfX ∼ Po(λ) then prob-
abilitiesP (X = r) and cumulative probabilitiesP (X ≤ r) can be obtained using the following
commands:

Calc > Probability Distributions > Poisson

This opens the following dialogue box

1. Select Probability forP (X = r) or Cumulative Probability forP (X ≤ r).

2. Enter the Mean (λ).
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3. Check theInput constant: button

4. Enter the Input constant (r)

5. Click OK.

8.2.3 The Poisson distribution as an approximation to the binomial distri-
bution

When we want to calculate probabilities in a binomial distribution with largen and smallp it is
often convenient to approximate the binomial probabilities by Poisson probabilities. We match the
means of the distributions:λ = np.

For example, an insurance company has 1,000 customers. In a particular month, each customer
has a probability of 0.003 of making a claim and all customers are independent. The distribution
of the number of claims (assuming no customer will make more than one claim in a month) is then
Bin(1000, 0.003). This distribution has mean1000 × 0.003 = 3. We can calculate approximate
probabilities using the Poisson(3) distribution. For example, the probability that there are no claims
in a month is approximately

P (X = 0) =
30e−3

0!
= e−3 = 0.050.
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8.3 Exercises 8

1. An operator at a call centre has 20 calls to make in an hour. History suggests that they will
be answered 85% of the time. LetX be the number of answered calls in an hour.

(a) What probability distribution doesX have?

(b) What are the mean and standard deviation ofX?

(c) Calculate the probability of getting a response exactly 9 times.

(d) Calculate the probability of getting fewer than 2 responses.

2. Calls are received at a telephone exchange at random times at an average rate of 10 per
minute. LetX be the number of calls received in one minute.

(a) What probability distribution doesX have?

(b) What are the mean and standard deviation ofX?

(c) Calculate the probability that there are 12 calls in one minute.

(d) Calculate the probability there are no more than 2 calls in a minute.

3. If X1 andX2 are independent Poisson random variables with meansλ1 andλ2 respectively,
thenX1 + X2 is a Poisson random variable with meanλ1 + λ2.

The number of sales made by a small business in a day is a Poisson random variable with
mean 2. The number of sales made on one day is independent of the number of sales made
on any other day.

(a) What is the distribution of the total number of sales in a 5-day period?

(b) What is the probability that the business makes more than 12 sales in a 5-day period?

4. A machine is used to produce components. Each time it produces a component there is a
chance that the component will be defective. When the machine is working correctly the
probability that a component is defective is 0.05. Sometimes, though, the machine requires
adjustment and, when this is the case, the probability that a component is defective is 0.2.
Given the state of the machine, components are independent of each other. At the time in
question there is a probability of 0.1 that the machine requires adjustment. Components
produced by the machine are tested and either accepted or rejected. A component which is
not defective is accepted with probability 0.97 and (falsely) rejected with probability 0.03. A
defective component is (falsely) accepted with probability 0.15 and rejected with probability
0.85. Given the state of the machine, the acceptance of one component is independent of the
acceptance of another component.

(a) Find the conditional probability that a component is accepted given that the machine is
working correctly.

(b) Find the conditional probability that a component is rejected given that the machine is
working correctly.

(c) Find the conditional probability that a component is accepted given that the machine
requires adjustment.
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(d) Find the conditional probability that a component is rejected given that the machine
requires adjustment.

(e) Find the conditional probability that, out of a sample of 5 components, 2 are accepted
and 3 are rejected, given that the machine is working correctly.

(f) Find the conditional probability that, out of a sample of 5 components, 2 are accepted
and 3 are rejected, given that the machine requires adjustment.

(g) Find the probability that the machine is working correctly and, out of a sample of 5
components, 2 are accepted and 3 are rejected.

(h) Find the probability that the machine requires adjustment and, out of a sample of 5
components, 2 are accepted and 3 are rejected.

(i) Find the probability that, out of a sample of 5 components, 2 are accepted and 3 are
rejected.

(j) Find the conditional probability that the machine is working correctly given that, out
of a sample of 5 components, 2 are accepted and 3 are rejected.
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Chapter 9

Continuous Probability Models

9.1 Introduction

We have seen how discrete random variables can be modelled by discrete probability distribu-
tions such as the binomial and Poisson distributions. We now consider how to model continuous
random variables. A variable is discrete if it takes acountablenumber of values, for example,
r = 0, 1, 2, . . . , n or r = 0, 1, 2, . . . or r = 0, 0.1, 0.2, . . . , 0.9, 1.0. In contrast, the values which a
continuous variable can take form a continuous scale. One simple example of a continuous vari-
able is height. Although in practice we might only record height to the nearest cm, if we could
measure height exactly (to billions of decimal places) we would find that everyone had a different
height. This is the essential difference between discrete and continuous variables. Therefore, if we
could measure the exact height of every one of then people on the planet, we would find that, for
any heightx, the proportion of people of heightx is either1/n or 0. And if we imagine the number
of people on the planet growing over time (n → ∞), this proportion tends to zero. This feature
poses a problem for modelling continuous random variables as we can no longer use the methods
we have seen work for discrete random variables.

The solution can be found by considering a (relative frequency) histogram of a sample of values
taken by the continuous random variable, and thinking about what happens to the histogram as
the sample size increases. For example, consider the following graphs which show histograms for
samples of 100, 10000 and 1000000 observations made on a continuous random variable which
can take values between 0 and 20. The final graph shows what happens when the sample size
becomes infinitely big. This final graph is called the probability density function.
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Probability Density Function

As the population sizes gets larger, the histogram intervals get smaller and the jagged profile of the
histogram smooths out to become a curve. We call this curve theprobability density function (pdf)
and it is usually written asf(x). Note that probabilities such asP (X < x) can be determined
using the pdf as they equate to areas under the curve.

The key features of pdfs are

1. pdfs never take negative values

2. the area under a pdf is one:P (−∞ < X < ∞) = 1

3. areas under the curve correspond to probabilities

4. P (X ≤ x) = P (X < x) sinceP (X = x) = 0.
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We now consider some particular probability distributions that are often used to describe continu-
ous random variables.

9.2 The Uniform Distribution

The uniform distributionis the most simple continuous distribution. As the name suggests, it
describes a variable for which all possible outcomes are equally likely. For example, suppose you
manage a group of Environmental Health Officers and need to decide at what time they should
inspect a local hotel. You decide that any time during the working day (9.00 to 18.00) is okay but
you want to decide the time “randomly”. Here randomly is a short-hand for “a random time, where
all times in the working day are equally likely to be chosen”. LetX be the time to their arrival
at the hotel measured in terms of minutes from the start of the day. ThenX is a uniform random
variable between0 and540:

The total area (base× height) under the pdf must equal one. Therefore, as the base is540, the
height must be1/540. Hence the probability density function (pdf) for the continuous random
variableX is

f(x) =


1

540
for 0 ≤ x ≤ 540

0 otherwise.

In general, we say that a random variableX which is equally likely to take any value betweena
andb has a uniform distribution on the intervala to b. The random variable has probability density
function (pdf)

f(x) =


1

b− a
for a ≤ x ≤ b

0 otherwise

and probabilities can be calculated using the formula

P (X ≤ x) =


0 for x < a
x− a

b− a
for a ≤ x ≤ b

1 for x > b.
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Therefore, for example, the probability that the inspectors visit the hotel in the morning (within
180 minutes after 9am) is

P (X ≤ 180) =
180− 0

540− 0
=

1

3
.

The probability of a visit during the lunch hour (12.30 to 13.30) is

P (210 ≤ X ≤ 270) = P (X ≤ 270)− P (X < 210)

=
270− 0

540− 0
− 210− 0

540− 0

=
270− 210

540

=
60

540

=
1

9
.

9.2.1 Mean and Variance

The mean and variance of a continuous random variable can be calculated in a similar manner to
that used for a discrete random variable. However the specific techniques required to do this are
outside the scope of this course and so we will simply state the results.

If X is a uniform random variable on the intervala to b then its mean and variance are

E(X) = µ =
a + b

2
, V ar(X) = σ2 =

(b− a)2

12
.

In the above example, we have

E(X) =
a + b

2
=

0 + 540

2
= 270,

so that the mean arrival of the inspectors is9am+ 270 minutes= 13.30. Also

V ar(X) =
(540− 0)2

12
= 24300

and thereforeSD(X) =
√

V ar(X) =
√

24300 = 155.9 minutes.

9.3 The Exponential Distribution

The exponential distributionis another common distribution that is used to describe continuous
random variables. It is often used to model lifetimes of products and times between “random”
events such as arrivals of customers in a queueing system or arrivals of orders. The distribution
has one parameter,λ. Its probability density function is

f(x) =

{
λe−λx for x ≥ 0,

0 otherwise
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and probabilities can be calculated using

P (X ≤ x) =

{
0 for x < 0

1− e−λx for x > 0.

102



The main features of this distribution are:

1. an exponentially distributed random variable can only take positive values

2. larger values are increasingly unlikely – exponential decay

3. the value ofλ fixes the rate of decay – larger values correspond to more rapid decay.

Consider an example in which the time (in minutes) between successive users of a pay phone can
be modelled by an exponential distribution withλ = 0.3. The probability of the gap between
phone users being less than 5 minutes is

P (X < 5) = 1− e−0.3×5 = 1− 0.223 = 0.777.

Also the probability that the gap is more than 10 minutes is

P (X > 10) = 1− P (X ≤ 10) = 1−
(
1− e−0.3×10

)
= e−0.3×10 = 0.050

and the probability that the gap is between 5 and 10 minutes is

P (5 < X < 10) = P (X < 10)− P (X ≤ 5) = 0.950− 0.777 = 0.173.

One of the main uses of the exponential distribution is as a model for the times between events
occurring randomly in time. We have previously considered events which occur at random points
in time in connection with the Poisson distribution. The Poisson distribution describes probabilities
for the number of events taking place in a given time period. The exponential distribution describes
probabilities for the times between events. Both of these concern events occurring randomly in
time (at a constant average rate, sayλ). This is known as aPoisson process.

Consider a series of randomly occurring events such as calls at a credit card call centre. The times
of calls might look like

There are two ways of viewing these data. One is as the number of calls in each minute (here 2, 0,
2, 1 and 1) and the other as the times between successive calls. For the Poisson process,

• the number of calls has a Poisson distribution with parameterλ, and

• the time between successive calls has an exponential distribution with parameterλ.

9.3.1 Mean and Variance

The mean and variance of the exponential distribution can be shown to be

E(X) = µ =
1

λ
, V ar(X) = σ2 =

1

λ2
.
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9.4 Exercises 9

1. An express coach is due to arrive in Newcastle from London at 23.00. However in practice it
is equally likely to arrive anywhere between 15 minutes early to 45 minutes late, depending
on traffic conditions. Let the random variableX denote the amount of time (in minutes) that
the coach is delayed.

(a) Sketch the pdf.

(b) Calculate the mean and standard deviation of the delay time.

(c) What is the probability that the coach is less than 5 minutes late?

(d) What is the probability that the coach is more than 20 minutes late?

(e) What is the probability that the coach arrives between 22.55 and 23.20?

(f) What is the probability that the coach arrives at 23.00?

(g) What is the probability that the coach arrives at 0.00?

(h) Do you think that this is a good model for the coach’s arrival time?

2. A network server receives incoming requests according to a Poisson process with rateλ =
2.5 per minute.

(a) What is the expectation of the time between arrivals of requests?

(b) What is the probability that the time between requests is less than 2 minutes?

(c) What is the probability that the time between requests is greater than 1 minute?

(d) What is the probability that the time between requests is between 30 seconds and 50
seconds?

3. As Production Manager, you are responsible for buying a new piece of equipment for your
company’s production process. A salesman from one company has told you that he can
supply you with equuipment for which the time to first breakdown (in months) follows an
exponential distribution withλ = 0.11. Another salesman (from another company) has told
you that the time to first breakdown of their machines is also exponentially distributed but
with λ = 0.01. It is very important that the equipment you purchase does not break down for
at least six months. Calculate the probability of this outcome for both suppliers and make a
recommendation to the company board about which machine should be bought.

How might you take into account a difference between the prices for the machines?
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Chapter 10

The Normal Distribution

10.1 Introduction

Thenormaldistribution is possibly the best known and most used continuous probability distribu-
tion. It provides a good model for data in very many different applications, for example, the yields
of crops, the heights of people, students’ marks. The outcomes of many production processes also
follow normal distributions and hence it is used widely in industry.

The normal distribution has two parameters: the meanµ and the varianceσ2. The standard devia-
tion σ =

√
σ2 but we usually use the variance to specify the parameters. The probability density

function of a normal distribution is often said to be “bell shaped” :

The formula for the pdf is

f(x) =
1√

2πσ2
exp

{
−(x− µ)2

2σ2

}
.

There is no simple formula for calculating probabilities. However, they can be determined using
tables or statistical packages such as Minitab.

There are four important characteristics of the normal distribution:

1. It is symmetrical about its mean,µ.
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2. The mean, median and mode all coincide.

3. The area under the curve is equal to1.

4. The curve extends for ever in both directions to infinity (i.e. to±∞).

Below is a plot of the pdf of normal distributions for different values ofµ andσ.

Note that the meanµ locates the distribution on thex–axis and the standard deviationσ affects the
spread of the distribution, with larger values giving flatter and wider curves.

10.2 Notation

If a random variableX has a normal distribution with meanµ and varianceσ2, then we write

X ∼ N
(
µ, σ2

)
.

For example, a random variableX which follows a normal distribution with mean 10 and variance
25 is written asX ∼ N (10, 25) or X ∼ N (10, 52). It is important to note that the second
parameter in this notation is the variance and not the standard deviation.

10.3 Some properties of normal variables

An important property concerns addition (or subtraction) of normal random variables. IfX1 and
X2 both have normal distributions andY = X1 + X2 thenY also has a normal distribution. If
Z = X1 − X2 thenZ also has a normal distribution. IfX1 ∼ N(µ1, σ2

1) andX2 ∼ N(µ2, σ2
2)

thenY has meanµy = µ1 + µ2 andZ has meanµz = µ1 − µ2. If X1 andX2 areindependentthen
Y andZ both have varianceσ2

y = σ2
z = σ2

1 + σ2
2.

For example, if wagonloads of material have weights which are normally distributed with mean 3
tonnes and standard deviation 0.5 tonnes then the total weight from two wagonloads is normally
distributed with mean3 + 3 = 6 tonnes and standard deviation

√
0.52 + 0.52 = 0.7071 tonnes.

If X ∼ N(µ, σ2) anda andb are fixed numbers andW = a + bX thenW ∼ N(a + bµ, k2σ2.
For example, if the weight of a load of material has a normal distribution with mean 3 tonnes and
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standard deviation 0.5 tonnes and we take exactly 1 tonne out then the weight of the remainder has
a normal distribution with mean 2 tonnes and standard deviation 0.5 tonnes. If the price we can
expect to get for a certain quantity of our product is£X andX ∼ N(1000, 502) and a pound is
worth 1.6 euros then the price in euros isY ∼ N(1600, 802).

An important consequence of this is that, ifX ∼ N(µ, σ2), and

Z =
X − µ

σ

thenZ ∼ N(0, 1).

10.3.1 Probability calculations and the standard normal distribution

All probabilities for the normal distribution can be expressed in terms of those for a normal distri-
bution with mean0 and variance1. Usually, a random variable with thisstandard normal distribu-
tion is calledZ, that is

Z ∼ N (0, 1) .

Probabilities for a random variableX ∼ N(µ, σ2) can be determined in terms of those forZ ∼
N(0, 1) using the formula

P (X ≤ x) = P

(
Z ≤ x− µ

σ

)
and values forP (Z ≤ z) can be found in tables (see the end of this chapter). Therefore, the
probability P (X ≤ x) can be found by looking up (in standard normal tables) the probability
corresponding to

z =
x− µ

σ
.

We now look at a series of examples to illustrate how to calculate normal probabilities using these
tables.

1. We first look at how to determine probabilities for the standard normal distribution.

(a) The probability that the random variableZ is less than−1.46 is P (Z < −1.46). There-
fore we look for the probability in tables corresponding toz = −1.46: row labelled
−1.4, column headed−0.06. This givesP (Z < −1.46) = 0.0721.

(b) The probability that the random variableZ is less than−0.01 is P (Z < −0.01). There-
fore we look for the probability in tables corresponding toz = −0.01: row labelled0.0,
column headed−0.01. This givesP (Z < −0.01) = 0.4960.

(c) The probability that the random variableZ is less than0.01 is P (Z < 0.01). Therefore
we look for the probability in tables corresponding toz = 0.01: row labelled0.0, column
headed0.01. This givesP (Z < 0.01) = 0.5040.

(d) The probability that the random variableZ is greater than1.5 is P (Z > 1.5). Now
P (Z > 1.5) = 1 − P (Z ≤ 1.5). Therefore we look for the probability in tables
corresponding toz = 1.5: row labelled1.5, column headed0.00. This givesP (Z <
1.5) = 0.9332 and thereforeP (Z > 1.5) = 1− P (Z < 1.5) = 1− 0.9332 = 0.0668.
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(e) The probability that the random variableZ lies between than−1.2 and1.5 is

P (−1.2 < Z < 1.5) = P (Z < 1.5)− P (Z ≤ −1.2)

= 0.9332− 0.1151

= 0.8181.

We now consider how to determine probabilities for general normal distributions.

2. Suppose we are interested in the IQ of 18-20 year olds and that IQs follow a normal dis-
tribution with meanµ = 100 and standard deviationσ = 15. Mathematically we let the
random variableX denote the IQ of a randomly chosen person from this age group and then
X ∼ N(100, 152). Probability statements about IQs can be made as follows.

(a) The probability that an 18-20 year old has an IQ less than 85 isP (X < 85). Using the
formula

P (X ≤ x) = P

(
Z ≤ x− µ

σ

)
we need to calculate

z =
85− µ

σ
=

85− 100

15
= −1

and from tables we obtainP (Z < −1) = 0.1587. Therefore

P (X < 85) = 0.1587.

(b) The probability that an 18-20 year old has an IQ greater than 142 isP (X > 142). Now
P (X > 142) = 1− P (X ≤ 142) and

z =
142− µ

σ
=

142− 100

15
= 2.8.

Using tables, we see thatP (Z ≤ 2.8) = 0.9974 and so

P (X > 142) = 1− 0.9974 = 0.0026.

3. Suppose that the vitamin C content per100g tin of tomato juice is normally distributed with
meanµ = 20mg and standard deviationσ = 4mg. Let X be the vitamin C content of a
randomly chosen tin.

(a) The probability that the tin has less than25mg of vitamin C isP (X < 25). Now

z =
25− µ

σ
=

25− 20

4
= 1.25

and from tables we obtainP (Z < 1.25) = 0.8944. Therefore

P (X < 25) = 0.8944.

(b) The probability that the tin has more than25mg of vitamin C isP (X > 25). Now
P (X > 25) = 1− P (X ≤ 25) and so

P (X > 25) = 1− 0.8944 = 0.1056.
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(c) The probability that the tin has between18mg and25mg of vitamin C is

Pr(18 < X < 25) = P (X < 25)− P (X ≤ 18).

We can determineP (X ≤ 18) from tables using

z =
18− µ

σ
=

18− 20

4
= −0.5,

giving P (X ≤ 18) = P (Z < −0.5) = 0.3085. Therefore

Pr(18 < X < 25) = 0.8944− 0.3085 = 0.5859.

We can also use the tables in reverse. For example, we might want to know below what value
are95% of the population. This is equivalent to determining the value ofz that satisfiesP (Z <
z) = 0.95. From tables, we can see thatP (Z < 1.64) = 0.9495 andP (Z < 1.65) = 0.9505.
Therefore the value we want forz lies between 1.64 and 1.65. If a more accurate value is needed
we can interpolate between these values: 0.95 is half-way between 0.9495 and 0.9505 and so we
takez = 1.645. This is a more accurate answer and sufficient in most cases. However, the exact
value forz can be found from more detailed tables or via a computer package such as Minitab.
Here are some more examples.

1. Below what value does10% of the standard normal population fall? From tables we get

P (Z < −1.28) = 0.1003 and P (Z < −1.29) = 0.0985

and so we take

z = −1.29 +
0.1− 0.0985

0.1003− 0.0985
× {−1.28− (−1.29)}

= −1.29 +
0.0015

0.0018
× 0.01

= −1.2817.

In other wordsP (Z < −1.2817) = 0.1 and so10% of the standard normal population falls
below−1.2817.

2. A similar calculation can be used to calculate the IQ that identifies the 10% of 18-20 year
olds with the smallest IQ. We need the value ofx, whereP (X < x) = 0.1. Now this
population hasµ = 100 andσ = 15. Also

P (X ≤ x) = P

(
Z ≤ x− µ

σ

)
and so we needx so that

P

(
Z ≤ x− 100

15

)
= 0.1.

We know (from earlier) thatP (Z < −1.2817) = 0.1 and therefore we solve

x− 100

15
= −1.2817,
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that is

x = 100− 1.2817× 15

= 100− 19.2255

= 80.7745.

Notice that the calculation that transforms thez–value onto thex–scale is

x = µ + zσ.

3. What is the IQ that identifies the 1% of 18-20 year olds with the greatest IQ? Again, we first
determine the valuez that identifies the top 1% of a standard normal population and then
translate this into an IQ. So we need the valuez that satisfiesP (Z > z) = 0.01. This is the
same value as satisfiesP (Z < z) = 0.99. A quick examination of tables gives the two key
probabilities as

P (Z < 2.32) = 0.9898 and P (Z < 2.33) = 0.9901

and so we take

z = 2.32 +
0.99− 0.9898

0.9901− 0.9898
× {2.33− 2.32}

= 2.32 +
0.0002

0.0003
× 0.01

= 2.3267.

In other wordsP (Z < 2.3267) = 0.99 and so1% of the standard normal population lies
abovez = 2.3267. Moving back to the IQ scale, we need the valuex such thatP (X > x) =
0.01 and so we take

x = µ + zσ

= 100 + 2.3267× 15

= 134.9.
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Minitab is very helpful with calculating normal probabilities. The following commands will cal-
culate probabilitiesP (X < x) and also values ofx that satisfyP (X < x) = p:

1. Calc > Probability Distributions > Normal

opens up dialogue box

2. Select Cumulative probability forP (X < x) or Inverse cumulative probability for the value
of x satisfyingP (X < x) = p

3. Enter the Mean (µ) and the Standard Deviation (σ)

4. Select Input Constant and enter the value forx or p (as appropriate)

5. Click OK

6. The answer is displayed in the Session Window:

10.4 The normal approximation to the binomial distribution

The normal distribution can be used as an approximation to the binomial distribution Bin(n, p) for
largen and mediump. (Say if bothnp andn(1 − p) are greater than about 7). To approximate
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a Bin(n, p) distribution we use a normal distribution with the same mean and variance. That is
µ = np andσ2 = np(1− p).

Example. We plan to do a market research survey in which people will be asked whether or not
they would buy a new product. A random sample of 600 people will be asked. Suppose that the
true proportion of people in the population who would buy the product is 40%, i.e.p = 0.4. Find
the probability that, in our survey, between 220 and 260 (inclusive) answer “Yes.”

In this casen = 600 andp = 0.4 sonp = 240 andn(1 − p) = 360. Therefore we can use the
approximation. We use the normal distribution with meanµ = np = 240 and varianceσ2 =
np(1− p) = 144. That isN(240, 144). The standard deviation isσ =

√
144 = 12.

If X ∼ N(240, 144) then

Pr(X < 220) = Pr

(
X − 240

12
<

220− 240

12

)
= Pr(Z < −1.67)

= 0.0475.

SoPr( fewer than 220 “Yes”) ≈ 0.0475.

We can sometimes obtain a better approximation by using acontinuity correction.SinceB(n, p)
is a discrete distribution,Pr( number of “Yes”= 220) > 0. Using the continuity correction, we
count as “220” everything between 219.5 and 220.5 so, forPr( number of “Yes”< 220) we would
use

Pr(X < 219.5) = Pr

(
Z <

219.5− 240

12

)
= Pr(Z < −1.71) ≈ 0.0436.

Here the continuity correction makes a noticeable difference. Sometimes it does not.

In the same way

Pr(X < 260.5) = Pr

(
Z <

260.5− 240

12

)
= Pr(Z < 1.71) ≈ 0.9564 = 1− 0.0436.

So the probability that, in our survey, between 220 and 260 (inclusive) people say “Yes” is approx-
imately0.9564− 0.0436 = 0.9128 ≈ 0.91.

112



10.5 Exercises 10

1. The weights of bags of animal feed made in a mill follow a normal distribution with mean
µ = 8.1 kg and standard deviationσ = 0.07kg.

(a) What is the probability that the weight of a bag is over8.25kg?

(b) What is the probability that the weight of a bag is between8.0kg and8.25kg?

(c) A customer requires bags which weigh no less than8.0kg. What percentage of the
mill’s output can be used to supply this customer?

(d) The mill is trying to negotiate a new contract with this customer. It is in the mill’s
interests to be able to supply 98% of its output to the customer. What is the largest
weight which achieves this requirement?

2. A drinks machine is regulated by its manufacturer so that it discharges an average of200ml
per cup. However, the machine is not particularly accurate and actually discharges an amount
that has a normal distribution with standard deviation15ml.

(a) What percentage of cups contain below the minimum permissible volume of170ml?

(b) What percentage of cups contain over225ml?

(c) What is the probability that the cup contains between175ml and225ml?

(d) How many cups would you expect to overflow if250ml cups are used for the next
10000 drinks?

3. A company promises delivery within 20 working days of receipt of order. However in re-
ality they deliver according to a normal distribution with a mean of 16 days and a standard
deviation of 2.5 days.

(a) What proportion of customers receive their order late?

(b) What proportion of customers receive their orders between 10 and 15 days of placing
their order?

(c) How many days should the delivery promise be adjusted to if only3% of orders are to
be late?

(d) A new order processing system promises to reduces the standard deviation of delivery
times to 1.5 days. If this system is used, what proportion of customers will receive their
deliveries within 20 days?

4. Bananas of a certain variety have weights, in kg, which are independent and normally dis-
tributed with mean 0.15 and variance 0.0025. Find the probability that

(a) three bananas weigh more than 0.5kg.

(b) four bananas weigh more than 0.5kg.

In a shop bananas are put on the scales one at a time until the total weight becomes more
than 0.5kg. Find the probability that exactly four bananas are needed.

Explain why the first sentence in this question can only be approximately, not exactly, true.
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5. Bags of produce have a nominal weight of 1kg. In fact the weights have a normal distri-
bution with mean 1064g and standard deviation 50g. A bag which weighs less than 1kg is
considered to be underweight.

(a) Find the probability that a bag is underweight.

(b) Assuming that the weights of bags are independent, find an approximate value for the
probability that, in a batch of 100 bags, more than 15 are underweight.
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Probability Tables for the Standard Normal Distribution

The table contains values ofPr(Z < z), whereZ ∼ N(0, 1).

z -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0.00
-2.9 0.0014 0.0014 0.0015 0.0015 0.0016 0.0016 0.0017 0.0018 0.0018 0.0019
-2.8 0.0019 0.0020 0.0021 0.0021 0.0022 0.0023 0.0023 0.0024 0.0025 0.0026
-2.7 0.0026 0.0027 0.0028 0.0029 0.0030 0.0031 0.0032 0.0033 0.0034 0.0035
-2.6 0.0036 0.0037 0.0038 0.0039 0.0040 0.0041 0.0043 0.0044 0.0045 0.0047
-2.5 0.0048 0.0049 0.0051 0.0052 0.0054 0.0055 0.0057 0.0059 0.0060 0.0062
-2.4 0.0064 0.0066 0.0068 0.0069 0.0071 0.0073 0.0075 0.0078 0.0080 0.0082
-2.3 0.0084 0.0087 0.0089 0.0091 0.0094 0.0096 0.0099 0.0102 0.0104 0.0107
-2.2 0.0110 0.0113 0.0116 0.0119 0.0122 0.0125 0.0129 0.0132 0.0136 0.0139
-2.1 0.0143 0.0146 0.0150 0.0154 0.0158 0.0162 0.0166 0.0170 0.0174 0.0179
-2.0 0.0183 0.0188 0.0192 0.0197 0.0202 0.0207 0.0212 0.0217 0.0222 0.0228
-1.9 0.0233 0.0239 0.0244 0.0250 0.0256 0.0262 0.0268 0.0274 0.0281 0.0287
-1.8 0.0294 0.0301 0.0307 0.0314 0.0322 0.0329 0.0336 0.0344 0.0351 0.0359
-1.7 0.0367 0.0375 0.0384 0.0392 0.0401 0.0409 0.0418 0.0427 0.0436 0.0446
-1.6 0.0455 0.0465 0.0475 0.0485 0.0495 0.0505 0.0516 0.0526 0.0537 0.0548
-1.5 0.0559 0.0571 0.0582 0.0594 0.0606 0.0618 0.0630 0.0643 0.0655 0.0668
-1.4 0.0681 0.0694 0.0708 0.0721 0.0735 0.0749 0.0764 0.0778 0.0793 0.0808
-1.3 0.0823 0.0838 0.0853 0.0869 0.0885 0.0901 0.0918 0.0934 0.0951 0.0968
-1.2 0.0985 0.1003 0.1020 0.1038 0.1056 0.1075 0.1093 0.1112 0.1131 0.1151
-1.1 0.1170 0.1190 0.1210 0.1230 0.1251 0.1271 0.1292 0.1314 0.1335 0.1357
-1.0 0.1379 0.1401 0.1423 0.1446 0.1469 0.1492 0.1515 0.1539 0.1562 0.1587
-0.9 0.1611 0.1635 0.1660 0.1685 0.1711 0.1736 0.1762 0.1788 0.1814 0.1841
-0.8 0.1867 0.1894 0.1922 0.1949 0.1977 0.2005 0.2033 0.2061 0.2090 0.2119
-0.7 0.2148 0.2177 0.2206 0.2236 0.2266 0.2296 0.2327 0.2358 0.2389 0.2420
-0.6 0.2451 0.2483 0.2514 0.2546 0.2578 0.2611 0.2643 0.2676 0.2709 0.2743
-0.5 0.2776 0.2810 0.2843 0.2877 0.2912 0.2946 0.2981 0.3015 0.3050 0.3085
-0.4 0.3121 0.3156 0.3192 0.3228 0.3264 0.3300 0.3336 0.3372 0.3409 0.3446
-0.3 0.3483 0.3520 0.3557 0.3594 0.3632 0.3669 0.3707 0.3745 0.3783 0.3821
-0.2 0.3859 0.3897 0.3936 0.3974 0.4013 0.4052 0.4090 0.4129 0.4168 0.4207
-0.1 0.4247 0.4286 0.4325 0.4364 0.4404 0.4443 0.4483 0.4522 0.4562 0.4602
0.0 0.4641 0.4681 0.4721 0.4761 0.4801 0.4840 0.4880 0.4920 0.4960 0.5000

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
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