Solutions to Exercises 8

1. (a) Assuming that calls are answered independently, $X \sim \operatorname{Bin}(20,0.85)$.
(b) The mean and variance are

$$
\begin{aligned}
E(X) & =n p=20 \times 0.85=17 \\
\operatorname{Var}(X) & =n p(1-p)=20 \times 0.85 \times 0.15=2.55
\end{aligned}
$$

and so

$$
S D(X)=\sqrt{\operatorname{Var}(X)}=\sqrt{2.55}=1.597 .
$$

(c)

$$
\begin{aligned}
P(X=9) & ={ }^{n} \mathrm{C}_{r} p^{r}(1-p)^{n-r} \\
& ={ }^{20} \mathrm{C}_{9} \times 0.85^{9} \times(1-0.85)^{20-9} \\
& =\frac{20!}{9!\times 11!} \times 0.85^{9} \times 0.15^{11} \\
& =\frac{20 \times 19 \times \cdots \times 12}{9 \times 8 \times \cdots \times 1} \times 0.85^{9} \times 0.15^{11} \\
& =167960 \times 0.85^{9} \times 0.15^{11} \\
& =0.0000336 .
\end{aligned}
$$

(d)

$$
\begin{aligned}
P(X<2) & =P(X=0)+P(X=1) \\
& ={ }^{20} \mathrm{C}_{0} \times 0.85^{0} \times(1-0.85)^{20-0}+{ }^{20} \mathrm{C}_{1} \times 0.85^{1} \times(1-0.85)^{20-1} \\
& =0.15^{20}+20 \times 0.85 \times 0.15^{19} \\
& =3.3255 \times 10^{-17}+3.76862 \times 10^{-15} \\
& =3.802 \times 10^{-15} .
\end{aligned}
$$

2. (a) $X \sim \operatorname{Po}(10)$
(b) The mean and variance are

$$
\begin{aligned}
E(X) & =\lambda=10 \\
\operatorname{Var}(X) & =\lambda=10
\end{aligned}
$$

and so

$$
S D(X)=\sqrt{\operatorname{Var}(X)}=\sqrt{10}=3.16 .
$$

(c)

$$
\begin{aligned}
P(X=12) & =\frac{\lambda^{r} e^{-\lambda}}{r!} \\
& =\frac{10^{12} \times e^{-10}}{12!} \\
& =0.09478 .
\end{aligned}
$$

(d)

$$
\begin{aligned}
P(X \leq 2) & =P(X=0)+P(X=1)+P(X=2) \\
& =\frac{10^{0} \times e^{-10}}{0!}+\frac{10^{1} \times e^{-10}}{1!}+\frac{10^{2} \times e^{-10}}{2!} \\
& =e^{-10}+10 e^{-10}+50 e^{-10} \\
& =0.0000454+0.0004540+0.0022700 \\
& =0.00277 .
\end{aligned}
$$

3. Let Y be the total sales in the 5-day period.
(a) $\mathrm{E}(Y)=5 \times 2=10$. So $Y \sim \operatorname{Po}(10)$.
(b)

$$
\begin{aligned}
P(Y>12) & =1-P(Y \leq 12) \\
& =1-\{P(Y=0)+P(Y=1)+\cdots+P(Y=12)\} \\
& =1-\left\{\frac{e^{-10} 10^{0}}{0!}+\frac{e^{-10} 10^{1}}{1!}+\cdots+\frac{e^{-10} 10^{12}}{12!}\right\} \\
& =1-e^{-10}\left\{\frac{1}{0!}+\frac{10}{1!}+\frac{10^{2}}{2!}+\cdots+\frac{10^{12}}{12!}\right\} \\
& =1-e^{-10}\{1+10+50+\cdots+2087.6757\}
\end{aligned}
$$

(The first term $(Y=0)$ is 1 . The second $(Y=1)$ is $10 / 1$ times the first. The third ($Y=2$) is $10 / 2$ times the second and so on. Alternatively you can use Minitab).

$$
\begin{aligned}
P(Y>12) & =1-e^{-10}\{17435.1965\} \\
& =1-0.7916 \\
& =0.2084
\end{aligned}
$$

4. You might find a probability tree helpful in answering this question.
(a)

$$
\begin{aligned}
P(\text { compt accptd } \mid \text { machine } \mathrm{OK})= & P(\text { compt OK and accptd } \mid \text { machine } \mathrm{OK}) \\
& +P(\text { compt defective and accptd } \mid \text { machine } \mathrm{OK}) \\
= & 0.95 \times 0.97+0.05 \times 0.15 \\
= & 0.929
\end{aligned}
$$

(b)

$$
\begin{aligned}
P(\text { compt rejected } \mid \text { machine } \mathrm{OK}) & =1-P(\text { compt accptd } \mid \text { machine } \mathrm{OK}) \\
& =1-0.929 \\
& =0.071
\end{aligned}
$$

(c)

$$
\begin{aligned}
P(\text { compt accptd } \mid \text { machine not } \mathrm{OK})= & P(\text { compt } \mathrm{OK} \text { and accptd } \mid \text { machine not } \mathrm{OK}) \\
& +P(\text { compt defective and accptd } \mid \text { machine not } \mathrm{OK}) \\
= & 0.8 \times 0.97+0.2 \times 0.15 \\
= & 0.806 .
\end{aligned}
$$

(d)

$$
\begin{aligned}
P(\text { compt rejected } \mid \text { machine not OK }) & =1-P(\text { compt accptd } \mid \text { machine not } \mathrm{OK}) \\
& =1-0.806 \\
& =0.194
\end{aligned}
$$

(e)

$$
\begin{aligned}
P(2 \text { accptd out of } 5 \mid \text { machine } \mathrm{OK}) & ={ }^{5} \mathrm{C}_{2} \times 0.929^{2} \times 0.071^{3} \\
& =\frac{5 \times 4}{2 \times 1} \times 0.929^{2} \times 0.071^{3} \\
& =10 \times 0.00030889 \\
& =0.0030889
\end{aligned}
$$

(f)

$$
\begin{aligned}
P(2 \text { accptd out of } 5 \mid \text { machine not } \mathrm{OK}) & ={ }^{5} \mathrm{C}_{2} \times 0.806^{2} \times 0.194^{3} \\
& =\frac{5 \times 4}{2 \times 1} \times 0.806^{2} \times 0.194^{3} \\
& =10 \times 0.0047432 \\
& =0.047432
\end{aligned}
$$

(g)

$$
\begin{aligned}
P(2 \text { accptd out of } 5 \text { and machine } \mathrm{OK})= & P(\text { machine } \mathrm{OK}) \\
& \times P(2 \text { accptd out of } 5 \mid \text { machine } \mathrm{OK}) \\
= & 0.9 \times 0.0030889 \\
= & 0.0027800
\end{aligned}
$$

(h)

$$
\begin{aligned}
P(2 \text { accptd out of } 5 \text { and machine not } \mathrm{OK})= & P(\text { machine not } \mathrm{OK}) \\
& \times P(2 \text { accptd out of } 5 \mid \text { machine not } \mathrm{OK}) \\
= & 0.1 \times 0.047432 \\
= & 0.0047432
\end{aligned}
$$

(i)

$$
\begin{aligned}
P(2 \text { accptd out of } 5)= & P(2 \text { accptd out of } 5 \text { and machine } \mathrm{OK}) \\
& +P(2 \text { accptd out of } 5 \text { and machine not } \mathrm{OK}) \\
= & 0.0027800+0.0047432 \\
= & 0.0075232
\end{aligned}
$$

(j)

$$
\begin{aligned}
P(\text { machine OK } \mid 2 \text { accptd out of } 5) & =\frac{P(\text { machine OK and } 2 \text { accptd out of } 5)}{P(2 \text { accptd out of } 5)} \\
& =\frac{0.0027800}{0.0075232} \\
& =0.3695
\end{aligned}
$$

Notice that, having seen the evidence of two components accepted out of five, the probability that the machine requires adjustment changes from 0.1 to $1-0.3695=$ 0.6305 .

