Solutions to Exercises 7

1. The number of ways of drawing 6 balls from 48 balls is

$$
\begin{aligned}
{ }^{48} \mathbf{C}_{6} & =\frac{48!}{6!\times(48-6)!} \\
& =\frac{48!}{6!\times 42!} \\
& =\frac{48 \times 47 \times 46 \times 45 \times 44 \times 43}{6 \times 5 \times 4 \times 3 \times 2 \times 1} \\
& =12,271,512 .
\end{aligned}
$$

As there is only one selection that matches the 6 balls drawn, the probability of winning the jackpot in this lottery is

$$
\frac{1}{12,271,512}=0.00000008149
$$

2. This is a question about permutations as the ordering is important. The number of permutations of 4 features from 10 features is

$$
{ }^{10} \mathrm{P}_{4}=\frac{10!}{(10-4)!}=\frac{10!}{6!}=\frac{10 \times 9 \times 8 \times 7 \times 6!}{6!}=5040
$$

As there is only one ordering that matches my preferred ordering, the probability of choosing my preferred ordering is

$$
\frac{1}{5040}=0.0001984
$$

3. There are 10 choices for the 1 st digit, and 10 choices for the second digit, and so on. Therefore the number of possible 7 digit phone numbers is

$$
10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10=10,000,000
$$

and so the probability of randomly selecting my unique telephone number is

$$
\frac{1}{10,000,000}=0.0000001
$$

4. (a) i.

$$
{ }^{4} \mathrm{C}_{0}=1
$$

(SSSS)
ii.

$$
{ }^{4} \mathrm{C}_{1}=4
$$

(USSS, SUSS, SSUS, SSSU)
iii.

$$
{ }^{4} \mathrm{C}_{2}=\frac{4 \times 3}{2 \times 1}=6
$$

iv.

$$
{ }^{4} \mathrm{C}_{3}=\frac{4 \times 3 \times 2}{3 \times 2 \times 1}=4
$$

v.

$$
{ }^{4} \mathrm{C}_{4}=1
$$

(b) i. $0.8 \times 0.8 \times 0.8 \times 0.8=0.8^{4}=0.4096$
ii. $0.2 \times 0.8 \times 0.8 \times 0.8=0.2 \times 0.8^{3}=0.1024$
iii. $0.2 \times 0.2 \times 0.8 \times 0.8=0.2^{2} \times 0.8^{2}=0.0256$
iv. $0.2 \times 0.2 \times 0.2 \times 0.8=0.2^{3} \times 0.8=0.0064$
v. $0.2 \times 0.2 \times 0.2 \times 0.2=0.2^{4}=0.0016$
(c) We need to multiply the probability of a particular sequence by the number of such sequences.
i. $1 \times 0.4096=0.4096$
ii. $4 \times 0.1024=0.4096$
iii. $6 \times 0.0256=0.1536$
iv. $4 \times 0.0064=0.0256$
v. $1 \times 0.0016=0.0016$

Note that these probabilities sum to 1.
(d) Let the number of unsatisfactory items be X. Then

$$
\mathrm{E}(X)=0 \times 0.4096+1 \times 0.4096+2 \times 0.1536+3 \times 0.0256+4 \times 0.0016=0.8
$$

(e) First we calculate $\mathrm{E}\left(X^{2}\right)$.

$$
\begin{aligned}
\mathrm{E}\left(X^{2}\right) & =0^{2} \times 0.4096+1^{2} \times 0.4096+2^{2} \times 0.1536+3^{2} \times 0.0256+4^{2} \times 0.0016 \\
& =0 \times 0.4096+1 \times 0.4096+4 \times 0.1536+9 \times 0.0256+16 \times 0.0016 \\
& =1.28
\end{aligned}
$$

The variance is then

$$
\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-[\mathrm{E}(X)]^{2}=1.28-0.8^{2}=0.64
$$

The standard deviation is therefore

$$
\sqrt{0.64}=0.8
$$

