Solutions to Exercises 6

1. The probability tree is

Therefore
(a) $P(S S S)=0.9 \times 0.9 \times 0.9=0.729$.
(b) $P(F S S)=0.1 \times 0.5 \times 0.5=0.025$.
(c)

$$
\begin{aligned}
P(\text { only one } S) & =P(S F F \text { or } F S F \text { or } F F S) \\
& =0.9 \times 0.1 \times 0.5+0.1 \times 0.5 \times 0.5+0.1 \times 0.5 \times 0.5 \\
& =0.045+0.025+0.025 \\
& =0.095
\end{aligned}
$$

(d) $P(F F F)=0.1 \times 0.5 \times 0.5=0.025$.
2. (a) The probability tree is as follows.

i. $P($ positive $)=0.3+0.2=0.5$.
ii. $P($ negative $)=0.1+0.4=1-P($ positive $)=0.5$.
iii.

$$
\begin{aligned}
P(\text { success } \mid \text { positive }) & =\frac{P(\text { success and positive })}{P(\text { positive })} \\
& =\frac{0.3}{0.5}=0.6
\end{aligned}
$$

iv.

$$
\begin{aligned}
P(\text { failure } \mid \text { positive }) & =1-P(\text { success } \mid \text { positive }) \\
& =1-0.6=0.4
\end{aligned}
$$

v.

$$
\begin{aligned}
P(\text { success } \mid \text { negative }) & =\frac{P(\text { success and negative })}{P(\text { negative })} \\
& =\frac{0.1}{0.5}=0.2
\end{aligned}
$$

vi.

$$
\begin{aligned}
P(\text { failure } \mid \text { negative }) & =1-P(\text { success |negative }) \\
& =1-0.2=0.8
\end{aligned}
$$

(b) The tree diagram is as follows.

(c) Market research done, at a cost of $£ 5000$. Result positive.

- Sell: $£ 35,000-£ 5,000=£ 30,000$.
- Go ahead: Value of success is $£ 90,000-£ 5,000=£ 85,000$. Value of failure is $-£ 30,000-£ 5,000=-£ 35,000$. The expected value is then

$$
0.6 \times £ 85,000-0.4 \times £ 35,000=£ 37,000 .
$$

- Do nothing more: Value is $-£ 5,000$.

In these circumstances she should go ahead because this gives the greatest expected value.
(d) Market research done, at a cost of $£ 5000$. Result negative.

- Sell: $£ 3,000-£ 5,000=-£ 2,000$.
- Go ahead: Value of success is $£ 90,000-£ 5,000=£ 85,000$. Value of failure is $-£ 30,000-£ 5,000=-£ 35,000$. The expected value is then

$$
0.2 \times £ 85,000-0.8 \times £ 35,000=-£ 11,000 .
$$

- Do nothing more: Value is $-£ 5,000$.

In these circumstances she should sell because this gives the greatest expected value (in this case, the smallest expected loss).
(e) The expected value for the option "Market Research" is therefore

$$
\begin{aligned}
& P(\text { positive }) \times \text { Expected value given positive } \quad+ \\
& P(\text { negative }) \times \text { Expected value given negative } \\
&= 0.5 \times £ 37,000-0.5 \times £ 2,000=£ 17,500 .
\end{aligned}
$$

(f) The expected values for the other three options are as follows.

- Do nothing: $£ 0$.
- Go ahead without market research:

$$
0.4 \times £ 90,000-0.6 \times £ 30,000=£ 18,000
$$

- Sell: $£ 10,000$
(g) The owner's best strategy is therefore to go ahead without market research. This gives an expected monetary value of $£ 18,000$.

