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Chapter 9

Continuous Probability Models

9.1 Introduction

We have seen how discrete random variables can be modelled by discrete probability distribu-
tions such as the binomial and Poisson distributions. We now consider how to model continuous
random variables. A variable is discrete if it takesauntablenumber of values, for example,
r=20,1,2,...,norr=20,1,2,...orr =0,0.1,0.2,...,0.9, 1.0. In contrast, the values which a
continuous variable can take form a continuous scale. One simple example of a continuous vari-
able is height. Although in practice we might only record height to the nearest cm, if we could
measure height exactly (to billions of decimal places) we would find that everyone had a different
height. This is the essential difference between discrete and continuous variables. Therefore, if we
could measure the exact height of every one ofitleople on the planet, we would find that, for

any heightz, the proportion of people of heightis eitherl /n or 0. And if we imagine the number

of people on the planet growing over time (~ o), this proportion tends to zero. This feature
poses a problem for modelling continuous random variables as we can no longer use the methods
we have seen work for discrete random variables.

The solution can be found by considering a (relative frequency) histogram of a sample of values
taken by the continuous random variable, and thinking about what happens to the histogram as
the sample size increases. For example, consider the following graphs which show histograms for
samples of 100, 10000 and 1000000 observations made on a continuous random variable which
can take values between 0 and 20. The final graph shows what happens when the sample size
becomes infinitely big. This final graph is called the probability density function.
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As the population sizes gets larger, the histogram intervals get smaller and the jagged profile of the
histogram smooths out to become a curve. We call this curvprtmbility density function (pdf)
and it is usually written ag'(z). Note that probabilities such &@(X < z) can be determined

using the pdf as they equate to areas under the curve.

The key features of pdfs are

1. pdfs never take negative values
2. the area under a pdfis onB{—oco < X < o0) =1
3. areas under the curve correspond to probabilities

4. P(X <z)=P(X <z)sinceP(X =x) =0.
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We now consider some particular probability distributions that are often used to describe continu-
ous random variables.

9.2 The Uniform Distribution

The uniform distributionis the most simple continuous distribution. As the name suggests, it
describes a variable for which all possible outcomes are equally likely. For example, suppose you
manage a group of Environmental Health Officers and need to decide at what time they should
inspect a local hotel. You decide that any time during the working day (9.00 to 18.00) is okay but
you want to decide the time “randomly”. Here randomly is a short-hand for “a random time, where
all times in the working day are equally likely to be chosen”. Bebe the time to their arrival

at the hotel measured in terms of minutes from the start of the day. Xhsra uniform random
variable between and540:

The total area (base height) under the pdf must equal one. Therefore, as the bdg,ishe
height must bel /540. Hence the probability density function (pdf) for the continuous random

variableX is .
— for0 <2 <540
f(z) = {540 =T

0 otherwise

In general, we say that a random variallewhich is equally likely to take any value between
andb has a uniform distribution on the intervato b. The random variable has probability density

function (pdf)
! fora<z<b
flz) = { b—a

0 otherwise

and probabilities can be calculated using the formula

0 forz < a
T —a

P(X <z)= — fora <z <b
1 forz > b.
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Therefore, for example, the probability that the inspectors visit the hotel in the morning (within

180 minutes after 9am) is
180-0 1

540 -0 3
The probability of a visit during the lunch hour (12.30 to 13.30) is

P(X < 180) =

P(210 < X < 270) = P(X < 270) — P(X < 210)
2700 2100

540 —0 540 — 0

270 — 210
540
60
540

1

9

9.2.1 Mean and Variance

The mean and variance of a continuous random variable can be calculated in a similar manner to
that used for a discrete random variable. However the specific techniques required to do this are
outside the scope of this course and so we will simply state the results.

If X is a uniform random variable on the intervalo b then its mean and variance are

__a+b B 2_(b—a)2
E(X)=p= 5 Var(X) =0" = THE
In the above example, we have
4
E(X):a;rb:0+250:270,

so that the mean arrival of the inspector8asn-+ 270 minutes= 13.30. Also

(540 — 0)°

Var(X) = B

= 24300

and therefor&§ D(X) = \/Var(X) = v/24300 = 155.9 minutes.

9.3 The Exponential Distribution

The exponential distributions another common distribution that is used to describe continuous
random variables. It is often used to model lifetimes of products and times between “random”
events such as arrivals of customers in a queueing system or arrivals of orders. The distribution
has one parametey, Its probability density function is

e ™ forz >0,
fl@) = {O otherwise
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and probabilities can be calculated using

0 forz <0
- 1—e ™ forz>0.
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The main features of this distribution are:

1. an exponentially distributed random variable can only take positive values

2. larger values are increasingly unlikely — exponential decay

3. the value of\ fixes the rate of decay — larger values correspond to more rapid decay.
Consider an example in which the time (in minutes) between successive users of a pay phone can

be modelled by an exponential distribution with= 0.3. The probability of the gap between
phone users being less than 5 minutes is

P(X <5)=1—¢e%%% =1-0.223 =0.777.

Also the probability that the gap is more than 10 minutes is

P(X>10)=1-P(X <10)=1— (1 — e %) = 0310 = 0.050
and the probability that the gap is between 5 and 10 minutes is

Pb< X <10)=P(X <10)— P(X <5)=0.950—0.777 = 0.173.
One of the main uses of the exponential distribution is as a model for the times between events
occurring randomly in time. We have previously considered events which occur at random points
in time in connection with the Poisson distribution. The Poisson distribution describes probabilities
for the number of events taking place in a given time period. The exponential distribution describes

probabilities for the times between events. Both of these concern events occurring randomly in
time (at a constant average rate, 3yThis is known as &oisson process

Consider a series of randomly occurring events such as calls at a credit card call centre. The times
of calls might look like

v
I -~ I A

i} L 2 3 4 5

There are two ways of viewing these data. One is as the number of calls in each minute (here 2, 0,
2, 1 and 1) and the other as the times between successive calls. For the Poisson process,

e the number of calls has a Poisson distribution with parametand

¢ the time between successive calls has an exponential distribution with parameter

9.3.1 Mean and Variance

The mean and variance of the exponential distribution can be shown to be
1 1

E(X):pzx, VCLT(X):O'QZE.
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9.4 Exercises 9

1. Anexpress coach is due to arrive in Newcastle from London at 23.00. However in practice it
is equally likely to arrive anywhere between 15 minutes early to 45 minutes late, depending
on traffic conditions. Let the random variablfedenote the amount of time (in minutes) that
the coach is delayed.

(a) Sketch the pdf.

(b) Calculate the mean and standard deviation of the delay time.

(c) What is the probability that the coach is less than 5 minutes late?

(d) What is the probability that the coach is more than 20 minutes late?

(e) What is the probability that the coach arrives between 22.55 and 23.20?
() What is the probability that the coach arrives at 23.007?

(g) What is the probability that the coach arrives at 0.007?

(h) Do you think that this is a good model for the coach’s arrival time?

2. A network server receives incoming requests according to a Poisson process with=rate

2.5 per minute.
(&) What is the expectation of the time between arrivals of requests?
(b) What is the probability that the time between requests is less than 2 minutes?
(c) What is the probability that the time between requests is greater than 1 minute?
(d) What is the probability that the time between requests is between 30 seconds and 50
seconds?

3. As Production Manager, you are responsible for buying a new piece of equipment for your
company’s production process. A salesman from one company has told you that he can
supply you with equuipment for which the time to first breakdown (in months) follows an
exponential distribution withh = 0.11. Another salesman (from another company) has told
you that the time to first breakdown of their machines is also exponentially distributed but
with A = 0.01. Itis very important that the equipment you purchase does not break down for
at least six months. Calculate the probability of this outcome for both suppliers and make a
recommendation to the company board about which machine should be bought.

How might you take into account a difference between the prices for the machines?
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