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Chapter 8

The Binomial and Poisson Distributions

8.1 The Binomial Distribution

8.1.1 Introduction

In many surveys and experiments we collect data in the form of counts. For example, the number
of people in the survey who bought a CD in the past month, the number of people who said they
would vote Labour at the next election, the number of defective items in a sample taken from a
production line, and so on. All these variables have common features:

1. Each person/item has only two possible (exclusive) responses (Yes/No, Defective/Not defec-
tive etc)
—this is referred to astaial which results in succes®r failure

2. The survey/experiment takes the form of a random sample
— the responses are independent.

Further suppose that the true probability of a success in the populatoinswhich case the
probability of a failure isl — p). We are interested in the random variable the total number

of successes out of trials. This random variable has a probability distribution in which the
probability thatX = r, that is we get successes in ourtrials, is

P(X=r)y="C,p"(1—p)" ", r=0,1,...,n.

These probabilities describe how likely we are togetut of n successes from independent trials,
each with success probability Note that any number raised to the power zero is one, for example,
0.3° = 1 and0.654" = 1.

This distribution is known as thieinomial distributionwith indexn» and probabilityp. We write
this asX ~ Bin(n,p).
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8.1.2 Calculating probabilities

For example, we can calculate the probability of gettirthrees from 4 rolls of a die as follows.
Each roll of the die is a trial which gives a three (success) or “not a three” (failure). The probability
of a success is = P(three) = 1/6. We haven = 4 independent trials (rolls of the die). X is

the number of threes obtained th&n~ Bin(4,1/6) and so

s (3 (1-2) (0 0w
= (2 (12 e () o
== e (1) (1) =0 () <) <o
= e (0] 12 wos () i

P(X =4)="Cy <é>4 (1 — é)o <é>4 = 0.0008.

This probability distribution shows that most of the time we would get either 0 or 1 successes but,
for example, 4 successes would be quite rare.

X
N TN O

Consider another example. A salesperson has a 50% chance of making a sale on a customer
visit and she arranges 6 visits in a day. What are the probabilities of her making 0,1,2,3,4,5 and
6 sales? LetX denote the number of sales. Assuming the visits result in sales independently,
X ~ Bin(6,0.5) and

No. of sales Probability Cumulative Probability

r P(X =r) P(X <)

0 0.015625 0.015625
1 0.093750 0.109375
2 0.234375 0.343750
3 0.312500 0.656250
4 0.234375 0.890625
5 0.093750 0.984375
6 0.015625 1.000000

sum 1.000000

The formula for binomial probabilities enables us to calculate valueB féf = r). From these, it
is straightforward to calculate cumulative probabilities such as the probability of making no more
than 2 sales:

P(X <2)=P(X =0)+P(X =1)+ P(X =2)
— 0.015625 + 0.09375 + 0.234375 = 0.34375.

These cumulative probabilities are also useful in calculating probabilities such as that of making
more than 1 sale:

P(X>1)=1-P(X <1)=1-0.109375 = 0.890625.
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Fortunately, binomial probabilities can be found in sets of Statistical Tables or calculated using
MINITAB.

Probabilities of binomial events can be calculated in MINITAB as follows Xlf~ Bin(n,p)
then probabilities?(X = r) and cumulative probabilitie®(X < r) can be obtained using the
following commands:

Calc > Probability Distributions > Binomial

This opens the following dialogue box

Bimomial Distribution B x|
= Probability
ks & Cumulative probability

" Inwerse cumulative probability

Number of trial s: |
Probability of success: |

' Input column: I
Optional storage: |

* Input constant: |
Optional storage: |

select
Help | OK l Cancel |

Select Probability foP(X = r) or Cumulative Probability foP(X < r).
Enter the Number of trials:j.

Enter the Probability of success .(

Check thdnput constant: button

Enter the Input constant)(

2L A

Click OK.

8.1.3 Mean and variance

If X is arandom variable with a binomi&in(n, p) distribution then its mean and variance are
E(X)=mnp,  Var(X)=np(l-p).

For example, itX ~ Bin(4,1/6) then

1 2
E(X)=np=4x ;=5 = 0.6667
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and

Also

8.2 The Poisson Distribution

8.2.1 Introduction

ThePoisson distributions a very important discrete probability distribution which arises in many
different contexts. We can think of a Poisson distribution as what becomes of a binomial distribu-
tion if we keep the mean fixed but letbecome very large andbecome very small, i.e. a large
number of trials with a small probability of success in each. In general, it is used to model data
which are counts of (random) events in a certain area or time interval, without a known fixed upper
limit.

For example, consider the number of calls made in a 1 minute interval to an Internet service
provider (ISP). The ISP has thousands of subscribers, but each one will call with a very small
probability. If the ISP knows that on average 5 calls will be made in the interval, the actual number
of calls will be a Poisson random variable, with mean 5.

If X is arandom variable with a Poisson distribution with paramgi@reek lower caskambdg
then the probability thak’ = r is

A e A

P(X =) .

L, r=0,1,2,....

We write X ~ Po()\). The parametek has a very simple interpretation as the rate at which events
occur. The distribution has mean and variance

E(X) =\, Var(X) = A

8.2.2 Calculating probabilities

Returning to the ISP example, suppose we want to know the probabilities of different numbers of
calls made to the ISP. Let be the number of calls made in a minute. Thén~ P(5) and, for
example, the probability of receiving 4 calls is

We can use the formula for Poisson probabilities to calculate the probability of all possible out-
comes:
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Probability Cumulative Probability

r  PX=r) P(X <r)
0 0.0067 0.0067
1 0.0337 0.0404
2 0.0843 0.1247
3 0.1403 0.2650
4 0.1755 0.4405
5 0.1755 0.6160
6 0.1462 0.7622
7 0.1044 0.8666
8 0.0653 0.9319
9 0.0363 0.9682
10

0.0181 0.9863

sum 1.000000

Therefore the probability of receiving between 2 and 8 calls is
P2< X <8)=P(X <8 —P(X <1)=0.9319 — 0.0404 = 0.8915

and so this event is very likely. Probability calculations such as this enable ISPs to assess the likely
demand for their service and hence the resources they need to provide the service.

Probabilities of Poisson events can be calculated in MINITAB as follows. 4 Po(\) then prob-
abilities P(X = r) and cumulative probabilitie®(X < r) can be obtained using the following
commands:

Calc > Probability Distributions > Poisson

This opens the following dialogue box

Poisson Distribution

 Cumulative probability

© Inverse cumulative probability

Mean: I—.

" Input column: |
Optional storage: |
& Input constant! |
Optional storage: |

Select
Help I 0K | Cancel |

1. Select Probability foPP(X = r) or Cumulative Probability foP(X < r).
2. Enter the Mean)X).
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3. Check thdnput constant: button
4. Enter the Input constant)(
5. Click OK.

8.2.3 The Poisson distribution as an approximation to the binomial distri-
bution

When we want to calculate probabilities in a binomial distribution with largend smallp it is
often convenient to approximate the binomial probabilities by Poisson probabilities. We match the
means of the distributionst = np.

For example, an insurance company has 1,000 customers. In a particular month, each customer
has a probability of 0.003 of making a claim and all customers are independent. The distribution
of the number of claims (assuming no customer will make more than one claim in a month) is then
Bin(1000, 0.003). This distribution has mea00 x 0.003 = 3. We can calculate approximate
probabilities using the Poisson(3) distribution. For example, the probability that there are no claims
in a month is approximately

303

o= e = 0.050.
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8.3 Exercises 8

1. An operator at a call centre has 20 calls to make in an hour. History suggests that they will
be answered 85% of the time. L&tbe the number of answered calls in an hour.
(a) What probability distribution doeX¥ have?
(b) What are the mean and standard deviatioX 8f
(c) Calculate the probability of getting a response exactly 9 times.
(d) Calculate the probability of getting fewer than 2 responses.
2. Calls are received at a telephone exchange at random times at an average rate of 10 per
minute. LetX be the number of calls received in one minute.
(a) What probability distribution doe¥ have?
(b) What are the mean and standard deviatioX &f
(c) Calculate the probability that there are 12 calls in one minute.
(d) Calculate the probability there are no more than 2 calls in a minute.
3. If X; and X, are independent Poisson random variables with maaasd\,; respectively,
thenX;, + X5 is a Poisson random variable with megan+ As.

The number of sales made by a small business in a day is a Poisson random variable with
mean 2. The number of sales made on one day is independent of the number of sales made
on any other day.

(a) What is the distribution of the total number of sales in a 5-day period?
(b) What is the probability that the business makes more than 12 sales in a 5-day period?

4. A machine is used to produce components. Each time it produces a component there is a
chance that the component will be defective. When the machine is working correctly the
probability that a component is defective is 0.05. Sometimes, though, the machine requires
adjustment and, when this is the case, the probability that a component is defective is 0.2.
Given the state of the machine, components are independent of each other. At the time in
guestion there is a probability of 0.1 that the machine requires adjustment. Components
produced by the machine are tested and either accepted or rejected. A component which is
not defective is accepted with probability 0.97 and (falsely) rejected with probability 0.03. A
defective component is (falsely) accepted with probability 0.15 and rejected with probability
0.85. Given the state of the machine, the acceptance of one component is independent of the
acceptance of another component.

() Find the conditional probability that a component is accepted given that the machine is
working correctly.

(b) Find the conditional probability that a component is rejected given that the machine is
working correctly.

(c) Find the conditional probability that a component is accepted given that the machine
requires adjustment.
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(d) Find the conditional probability that a component is rejected given that the machine
requires adjustment.

(e) Find the conditional probability that, out of a sample of 5 components, 2 are accepted
and 3 are rejected, given that the machine is working correctly.

(f) Find the conditional probability that, out of a sample of 5 components, 2 are accepted
and 3 are rejected, given that the machine requires adjustment.

(g) Find the probability that the machine is working correctly and, out of a sample of 5
components, 2 are accepted and 3 are rejected.

(h) Find the probability that the machine requires adjustment and, out of a sample of 5
components, 2 are accepted and 3 are rejected.

(i) Find the probability that, out of a sample of 5 components, 2 are accepted and 3 are
rejected.

() Find the conditional probability that the machine is working correctly given that, out
of a sample of 5 components, 2 are accepted and 3 are rejected.
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