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Chapter 7

Discrete Probability Models

7.1 Introduction

The link between probability and statistics arises because, in order to see, for example, how strong
the evidence is in some data, we need to consider the probabilities concerned with how we came
to observe the data. In this chapter, we describe some standard probability models which are often
used used with data from various sources such as market research. However, before we describe
these in detail, we need to establish some ground rules for counting.

7.2 Permutations and Combinations

7.2.1 Numbers of sequences

Imagine that your cash point card has just been stolen. What is the probability of the thief guessing
your 4 digit PIN in one go? To answer this question, we need to know how many different 4 digit
PINs there are. We are also assuming that the thief chooses in such a way that all possibilities are
equally likely. With this assumption the probability of a correct guess (in one go) is

P (Guess correctly) = number of correct PINs
number of possible 4 digit PINs

= 1
number of possible 4 digit PINs.

There is, of course, only one correct PIN. The number of possible 4 digit PINs is calculated as
follows. There are 10 choices for the first digit, another 10 choices for the second digit, and so on.
Therefore the number of possible choices is

10× 10× 10× 10 = 10, 000.
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So the probability of a correct guess is

P (Guess correctly) = 1
10×10×10×10

= 1
10,000

= 0.00001.

7.2.2 Permutations

The calculation of the card-thief’s correct guess of a PIN changes if the thief knows that your PIN
uses 4 different digits. Now the number of possible PINs is smaller. To find this number we need
to work out how many ways there are to arrange 4 digits out of a lsit of 10.

In more general terms, we need to know how many different ways there are of arrangingr objects
from a list ofn objects. The best way of thinking about this to consider the choice of each item
as a different experiment. The first experiment hasn possible outcomes. The second experiment
only hasn − 1 possible outcomes, as one object has already been selected. The third experiment
hasn − 2 outcomes and so on until therth experiment, which hasn − r + 1 possible outcomes.
Therefore the number of possible selections is

n× (n−1)× (n−2)×· · ·× (n−r+1) =
n× (n− 1)× (n− 2)× · · · × 3× 2× 1

(n− r)× (n− r − 1)× · · · × 3× 2× 1
=

n!

(n− r)!
.

Here
n! = n(n− 1)(n− 2)(n− 3)× · · · × 3× 2× 1

and is calledn factorial - it can be found on many calculators. The formula

n!

(n− r)!

is a commonly encountered expression in counting calculations (combinatorics) and has its own
notation. The number of ordered ways of selectingr objects fromn is denotednPr, where

nPr =
n!

(n− r)!
.

We refer tonPr as the number ofpermutationsof r out ofn objects.

If we are interested solely in the number of ways of arrangingn objects, then this is clearly just

nPn = n!

Returning to the example in which the thief is trying to guess your 4-digit PIN, if the thief knows
that the PIN contains no repreated digits then the number of possible PINS is

10P4 = 5040

so, assuming that each is equally likely to be guessed, the probability of a correct guess is

P (Guess correctly) =
1

5040
= 0.0001984.
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This illustrates how important it is to keep secret all information about your PIN. These probability
calculations show that even knowing whether or not you repeat digits in your PIN is informative
for a thief – it reduces the number of possible PINs by a factor of around 2.

We now consider a more complicated problem. In a tutorial group there are 40 students. What is
the probability that at least two students share a birthday?

First, let’s make some simplifying assumptions. We will assume that there are 365 days in a year
and that each day is equally likely to be a birthday.

Call the event we are interested inMatch. We will first calculate the probability ofNo Match,
the probability thatno twopeople have the same birthday, and calculate the probability we want
usingP (Match) = 1 − P (No Match). The number of ways 40 birthdays could occur is36540

since there are 365 choices for the first person and 365 choices for the second person and so on.
The number of ways we can have 40distinctbirthdays is the same as the number of permutations
of 40 objects from 365 objects, that is,365P40. So, the probability of all birthdays being distinct is

P (No Match) =
365P40

36540
=

365!

325!36540
' 0.1

and so

P (Match) = 1− P (No Match) ' 0.9.

That is, there is a probability of 0.9 that we have a match. In fact, the fact that birthdays are
not distributed uniformly over the year makes the probability of a match even higher! This is
a somewhat counter-intuitive result, and the reason is that people think more intuitively about the
probability that someone has the same birthday asthemselves. This is an entirely different problem.

An alternative way of thinking about the probability ofNo Match is to consider the sequences of
choices as individuals are picked from the tutorial group:

P (No Match) = P (Pick person1)× P (Pick person2 with different birthday to person1)

× P (Pick person3 with different birthday to persons1 and2)× . . .

=
365

365
× 364

365
× . . .× 326

365
' 0.1.

7.2.3 Combinations

We now have a way of counting permutations, but often when selecting objects, all that matters is
which objects were selected, not the order in which they were selected. Suppose that we have a
collection ofn objects and that we wish to maker selections from this list of objects, where the
order does not matter. An unordered selection such as this is referred to as acombination. How
many ways can this be done? Notice that this is equivalent to asking how many different ways are
there of choosingr objects fromn objects.

For example, a company has 20 retail outlets. It is decided to try a sales promotion at 4 of these
outlets. How many selections of 4 can be chosen? It may be important to know this when we come
to look at the results of the trial.
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This calculation is very similar to that of permutations except that the ordering of objects no longer
matters. For example, if we select two objects from three objectsA, B andC, there are3P2 = 6
ways of doing this:

A, B A, C B, A B, C C, A C, B.

However, if we are not interested in the ordering, just in whetherA, B or C are chosen thenA, B
is the same asB, A etc. and so the number of selections is just 3:

A, B A, C B, C.

The effect of ignoring the ordering reduces the number of permutations by a factor of2P2 = 2. In
general, the number of combinations ofr objects fromn objects is

number of ordered samples of sizer

number of orderings of samples of sizer
=

nPr

rPr

=
nPr

r!

=
n!

r!(n− r)!
.

Again, this is a very commonly found expression in combinatorics, so it has its own notation:

nCr =
n!

r!(n− r)!
.

There are other commonly used notations for this quantity: Cn
r and

(
n

r

)
. These numbers are

known as thebinomial coefficients.

Now we can see that the number of ways to select 4 retail outlets out of 20 is

20C4 =
20!

4!16!
= 4845.

An easy way to calculate binomial coefficients (at least small ones) is to use the fact that

nCr =
n

r
× n− 1

r − 1
× n− 2

r − 2
× · · · × n− r + 1

1
.

For example,

20C4 =
20

4
× 19

3
× 18

2

17

1
.

To see how combinations can be used to calculate probabilities, we will look at the UK National
Lottery. In this lottery, there are 49 numbered balls, and six of these are selected at random. A
seventh ball is also selected, but this is only relevant if you get exactly five numbers correct. The
player selects six numbers before the draw is made, and after the draw, counts how many numbers
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are in common with those drawn. Players win a prize if they select at least three of the balls drawn.
The order in which the balls are drawn in is irrelevant.

To begin with, let’s calculate the probability that exactly 3 of the 6 numbers we select are drawn.
First we need to count the number of possible draws (the number of different sets of 6 numbers),
and then how many of those draws correspond to getting exactly three numbers correct. The
number of possible draws is the number of ways of choosing 6 objects from 49. This is

49C6 = 13, 983, 816.

The number of drawings corresponding to getting exactly three right is calculated as follows. Of the
49 balls from which the draw is made, 6 correspond to your selected numbers, and 43 correspond
to other numbers. We want to know how many ways there are of choosing 3 of your selected
numbers and 3 other numbers. This is the number of ways of choosing 3 from 6, multiplied by the
number of ways of choosing 3 from 43. That is, there are

6C3
43C3 = 246, 820

ways of choosing exactly 3 of your selected numbers. So, the probability of matching exactly 3
numbers is

6C3
43C3

49C6

=
246, 820

13, 983, 816
' 0.0177.

Similarly, we can calculate the probability of getting other prize-winning outcomes:

P (match exactly 6 correct numbers) =
6C6

49C6

=
1

13, 983, 816
' 7× 10−8

P (match exactly 5 correct numbers plus bonus ball) =
6C5

1C1

49C6

=
6

13, 983, 816
' 4× 10−7

P (match exactly 5 correct numbers) =
6C5

43C1

49C6

=
258

13, 983, 816
' 2× 10−5

P (match exactly 4 correct numbers) =
6C4

43C2

49C6

=
13545

13, 983, 816
' 1× 10−4.

These outcomes are not very likely and so the prizes are chosen to reflect how likely you are to
win. For example, in a recent lottery draw, the prizes were

Number of balls matched Prize
6 £2.4M

5 plus bonus £240K
5 £3K
4 £100
3 £10

< 3 £0

This information allows us to calculate a fair price for such a bet. The expected monetary value of
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the bet is

EMV = P (match 6 balls)× Prize(match 6 balls)

+ P (match 5 balls plus bonus)× Prize(match 5 balls plus bonus)

+ . . .

+ P (match 3 balls)× Prize(match 3 balls)

= 2.4M × 1

13, 983, 816
+ 240K × 6

13, 983, 816
+ . . . + 10× 246, 820

13, 983, 816

= 0.6176.

Therefore, a fair price for a ticket in this particular lottery is around62p. This difference between
this and the standard£1 charge for a ticket goes to “good causes” and, of course, Camelot’s profits.

7.3 Probability Distributions

7.3.1 Introduction

In Chapter 1 we saw how surveys can be used to get information on population quantities. For
example, we might want to know voting intentions within the UK just before a General Election.
Why does this involverandomvariables? In most cases, it is not possible to measure the variables
on every member of the population and so some sampling scheme is used. This means that there
is uncertainty in our conclusions. For example, if the true proportion of Labour voters were 40%,
in a survey of 1,000 voters, it would be possible to get 400 Labour voters, but it would also be
possible to get 350 Labour voters or 430 Labour voters. The fact that we have only a sample
of voters introduces uncertainty into our conclusions about voting intentions in the population
as a whole. Sometimes experiments themselves have inherent variability, for example, the toss
of a coin. If the coin were tossed 1000 times and heads occurred only 400 times, would it be
fair to conclude that the coin was a biased coin? The subject of Statistics has been developed to
understand such variability and, in particular, how to draw correct conclusions from data which are
subject to experimental and sampling variability.

Before we can make inferences about populations, we need a language to describe the uncertainty
we find when taking samples from populations. First, we represent a random variable byX (capital
X) and the probability that it takes a certain valuex (small x) asP (X = x).

The probability distributionof a discrete random variableX is the list of all possible valuesX
can take and the probabilities associated with them. For example, if the random variableX is the
outcome of a roll of a die then the probability distribution forX is
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x P (X = x)
1 1/6
2 1/6
3 1/6
4 1/6
5 1/6
6 1/6

sum 1

Just as with sample data, it is useful to have some summary information about probability distri-
butions. For example, what is the average value of the random variable? How much variation is
there in this distribution?

7.3.2 Expectation and the population mean

The mean of a quantitative random variable is a weighted sum of its possible values, where each
weight is the probability of the value occurring. This is known as the expected value of the ran-
dom variable or the population mean of the random variable and is usually written asE(X) or µ.
Therefore, for a discrete random variable,

E(X) = µ =
∑

x P (X = x).

Previously we have seen a similar calculation when determining the expected monetary value

EMV =
∑

P (Event)×Monetary value of Event.

The expected value is the average value which we would get in an infinitely long sequence of
identical experiments.

For example, suppose that the population of interest is this class and that it containsN students.
Suppose that we are interested in the number of times that students have bought a particular product
(e.g. a cinema ticket) in the last month. Clearly the population mean is just the average of this
variable in the class:

µ =
1

n

n∑
i=1

xi

wherexi is the number of times studenti has bought the product. We can also write this as

µ =
1

n

∞∑
j=0

jfj =
∞∑

j=0

j
fj

n

wherefj is the frequency ofx = j in the population andfj/n is the relative frequency. If we
choose a student at random from the class then the probability that we choose a student withx = j
is

P (X = j) =
fj

n
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the relative frequency and so

µ =
∞∑

j=0

jP (X = j).

It is also clear that this is the average which we would get if we kept on sampling, with replacement,
for a very long time.

For the die-rolling experiment, the average number of spots we would get if we repeated the ex-
periment an “infinite” number of times is

E(X) =
∑

x P (X = x) = 1× 1

6
+ 2× 1

6
+ . . . + 6× 1

6
= 3.5.

This concept can be generalised to calculate the expected value of any function ofX. For instance,
in the lottery example discussed previously, the prize was determined by the number of matches.
In the die-rolling experiment, we could consider a prize worth the square of the number showing:
£1 for a 1,£4 for a 2,£9 for a 3, and so on. In this case the expected prize money is

E
(
X2

)
=

∑
x2 P (X = x)

= 1× 1

6
+ 4× 1

6
+ . . . + 36× 1

6

=
91

6
' £15.17.

7.3.3 Population variance and standard deviation

In addition to having the population mean as a measure of location, it is also useful to know about
the spread of the random variable about this value. The variance of a random variable is denoted
Var(X) or sometimesσ2 and is determined by

Var(X) = σ2 = E
[
(X − µ)2

]
.

It is simply the average squared deviation from the mean. Note that this is the same sort of calcu-
lation as with sample variances. The larger the value for the variance, the larger the spread.

Referring again back to the die-rolling experiment, ifX is the number of spots, we can calculate
the variance (usingµ = 3.5):

x P (X = x) (x− µ)2 (x− µ)2P (X = x)
1 1/6 6.25 1.0417
2 1/6 2.25 0.3750
3 1/6 0.25 0.0417
4 1/6 0.25 0.0417
5 1/6 2.25 0.3750
6 1/6 6.25 1.0417

sum 1 2.9167

Hence
Var(X) = 2.9167.
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As with sample variances, there is an alternative way of calculating population variances, using

Var(X) = E(X2)− µ2.

Using this formula with the above example gives

x P (X = x) x2 x2P (X = x)
1 1/6 1 0.1667
2 1/6 4 0.6667
3 1/6 9 1.5000
4 1/6 16 2.6667
5 1/6 25 4.1667
6 1/6 36 6.0000

sum 1 15.1667

and so
Var(X) =

∑
x2P (X = x)− µ2 = 15.1667− 3.52 = 2.9167.

The standard deviation of a random variable is

SD(X) =
√

Var(X).

In this example,SD(X) =
√

2.9167 = 1.7078.
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7.4 Exercises 7

1. Consider a lottery that is slightly different to the National Lottery in that there are 48 balls
instead of 49. What is the probability of winning the jackpot in this lottery? (That is, you
choose six balls and exactly these six are drawn).

2. A market survey has identified 10 desirable features for a new product. However, due to cost
constraints, only four of these features can be included. If the features are selected randomly,
what is the probability that your four favourites are chosen in your preferred ordering?

3. If you dial 7 digits at random on a (non-mobile) telephone in Newcastle, what is the proba-
bility you dial Dr. Farrow’s office number (which has 7 digits)?

4. A sample of four mass-produced items is examined for quality control purposes. Each item
can be either satisfactory (S) or unsatisfactory (U). Each item has a probability of 0.2 of
being unsatisfactory and each item is independent of every other item

(a) Consider the sequence of 4 items. In how many different sequences can we get

i. no unsatisfactory items?

ii. exactly 1 unsatisfactory item?

iii. exactly 2 unsatisfactory items?

iv. exactly 3 unsatisfactory items?

v. four unsatisfactory items.

(b) Find the probability of a particular sequence containing

i. no unsatisfactory items.

ii. exactly 1 unsatisfactory item.

iii. exactly 2 unsatisfactory items.

iv. exactly 3 unsatisfactory items.

v. four unsatisfactory items.

(c) Hence find the probability that we get

i. no unsatisfactory items.

ii. exactly 1 unsatisfactory item.

iii. exactly 2 unsatisfactory items.

iv. exactly 3 unsatisfactory items.

v. four unsatisfactory items.

(d) Find the mean number of unsatisfactory items.

(e) Find the variance and standard deviation of the number of unsatisfactory items.
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