
10 Normal Distribution Means: Student’s t Distribution

10.1 Student’s t distribution

10.1.1 Introduction

In this section we will look at tests and confidence intervals for means of normal distributions. It
is usual in practice for both the means and variances to be unknown. In this case the tests and
confidence intervals are based on “Student’s t Distribution.”

10.1.2 Example 1

Fifty-four PM10 measurements (a measure of pollution from motor vehicle exhausts) are made on
the vehicle deck of a ferry. It has been claimed that the mean PM10 value at this location is 10.
The values observed were as follows.

14 11 13 13 13 15 11 16 10
13 14 11 13 12 10 14 10 14
16 14 14 11 11 11 13 12 13
11 11 15 14 16 12 17 9 16
11 19 14 12 12 10 11 12 13
13 14 11 11 15 12 16 15 11

Is there any evidence that the mean PM10 value is greater than 10?

10.2 One-sample t-test

10.2.1 Introduction

Let us suppose that we can make the following assumptions about the data in the example:

• They are independent observations.

• They are taken from a normal distribution.

Suppose we call the mean of this normal distribution µ. We can then test the null hypothesis that
µ = 10 against the alternative hypothesis µ > 10. (This is a one-sided alternative. The two-sided
alternative would be µ 6= 10). We call this a one-sample test because we are comparing the sample
mean, ȳ, from one sample with a theoretical population mean, µ0 = 10.

To find the significance of the difference we must standardise it by dividing by the standard
deviation (called the standard error) of ȳ. The actual standard error of ȳ is

√
σ2/n (where n is the

number of observations in the sample, in this case 54, and σ2 is the variance of the distribution from
which the observations were taken) but the value of σ2 is unknown so we use instead an estimate√

s2/n. Because of this the distribution of our test statistic, t, is not normal but Student’s t on
n − 1 degrees of freedom or tn−1 for short. We compare our value for t with figures given in a
t-table for the appropriate number of degrees of freedom.

10.2.2 Example 1 continued

We calculate ∑
y = 695∑

y2 = 9177
ȳ = 12.87

s2 = 4.3791

To test the null hypothesis H0 : µ = 10 against the alternative HA : µ > 10 we calculate the test
statistic

t53 =
12.87− 10√
4.3791/54

= 10.08.
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The upper 0.1 % point of the t53 distribution is 3.252 so the result is significant at the 0.1 % level.
We therefore reject H0 and conclude that µ > 10.

We can calculate a 95 % lower confidence bound for µ as

µ > ȳ − 1.674
√

4.3791/54.

That is µ > 12.7.
Note that for a two-sided test the 0.1 % critical value is 3.485 so the result would still be

significant at the 0.1 % level. A two-sided 95 % confidence interval would be ȳ ± 2.006
√

s2/54.
That is 12.3 < µ < 13.4.

10.3 Notes

1. The central limit theorem tells us that as the sample size increases the distribution of the
mean of a sample from a distribution, which need not be normal itself (but subject to certain
conditions), tends to a normal distribution. In fact, for many distributions, convergence to
normality is quite rapid. Therefore t tests are often used even if the distribution from which
the observations are taken is not exactly normal and even if the sample is not very large.
This is not necessarily always a good idea though. Other tests are available which do not
require the assumption of a normal distribution. If no particular distribution is assumed the
tests are called distribution-free or nonparametric.

2. As ν, the number of degrees of freedom, increases, the tν distribution tends to a standard
normal distribution, so when ν is large the critical points of tν are approximately the same
as those of N(0, 1).

10.4 The Two-sample t Test

10.4.1 Introduction

We have already looked at making inferences about the mean of a normal distribution. Now we
turn our attention to the difference between the means of two normal distributions. For example, in
an experiment to examine whether the breaking strengths of ropes supplied by two manufacturers
are different, we might wish to compare the mean strenghts in samples from the two.

Suppose we have two samples of observations. The n1 observations, Y11, . . . , Yn11, in the first
sample are independent and identically distributed from a N(µ1, σ

2) distribution. The n2 obser-
vations, Y12, . . . , Yn22, in the second sample are independent and identically distributed from a
N(µ2, σ

2) distribution. The observations in the two sample are independent of each other. The
three parameters, µ1, µ2 and σ2, are all unknown. Notice that we are assuming:

• Independence,

• Normality,

• The two distributions have the same variance.

We can use the t distribution to test, for example, the hypothesis that µ1 = µ2.
There is also a test to use when we can not assume that the variances are equal.
We can test the null hypothesis H0 : µ1 = µ2 by comparing ȳ1 − ȳ2 with zero. Here ȳ1 and ȳ2

are the sample means for the two samples. Provided that we can assume that the two population
variances are equal, the test statistic has a t-distribution on n1 + n2− 2 degrees of freedom, where
n1 and n2 are the two sample sizes. If we do not assume that the two population variances are
equal then the number of degrees of freedom is reduced.

Similarly we can construct confidence intervals.
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10.4.2 Example 1

Suppose a change is made to the ventilation system on the ferry in Example 1 (Section 10.1.2).
Then a further sample of 64 PM10 measurements is taken. The data are as follows.

13 9 13 9 9 13 9 9
10 8 13 7 7 9 9 13
14 7 10 8 10 8 8 9
12 11 8 10 11 12 12 7
11 9 8 11 12 8 9 10
8 6 11 8 6 11 14 9

10 9 6 9 9 11 9 11
11 7 12 8 10 9 9 8

Is there any evidence of a change in the mean PM10 value?
For the new data ∑

y = 616∑
y2 = 6180
ȳ2 = 9.625

The value of
∑

(y − ȳ)2 for this new sample is thus

6180− (616)2/64 = 251.

The corresponding value for Sample 1 is 232.0926. We calculate the pooled variance estimate

s2 =
232.0926 + 251.0000

116
= 4.1646.

Our test statistic for the test against the two-sided alternative HA : µ1 6= µ2 is

t116 =

∣∣∣∣∣ 12.87− 9.625√
4.1646(1/54 + 1/64)

∣∣∣∣∣ = 8.605.

For a 0.1 % two-sided test the critical value of t116 is 3.379 so the result is very highly significant.
We reject H0. There is strong evidence of a difference. The mean value is lower after the change.

A 95 % confidence interval for µ1−µ2 is given by 12.87−9.625±1.981
√

s2(1/54 + 1/64). That
is 2.50 < µ1 − µ2 < 3.99.

(We can also have one-sided tests and confidence intervals).

10.5 Problems

1. A boat builder would like to use Norwegian pine for part of a boat. He arranges for mea-
surements of the failure stress of twenty standard samples. The data, in Nmm−2, are as
follows.

17.2 39.3 21.1 29.5 28.8 21.7 20.7 39.2 30.7 27.0
19.4 26.8 29.6 28.0 20.3 32.4 19.1 28.6 18.0 25.1

Assuming that the observations are independent and normally distributed, test the null
hypothesis that the mean failure stress is 23 Nmm−2 against the alternative that it is greater
than this and give a 95% one-sided confidence interval, of the form µ > x, for the true mean.

2. Measurements are made of the hull surface roughness of the wetted sides two vessels treated
with different paints. Each measurement consists of the height (microns) from the lowest
trough to the highest peak in a length of 50mm. The data are as follows.
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Paint A
89 87 105 110 95 83 78 102 96 89
99 94 88 85 91 101 97 90 116 71

Paint B
86 92 82 100 78 80 93 85 83 97
96 77 84 76 82 88 80 72 74 89

Assuming that the observations are independent and normally distributed and that the two
population variances are equal, test the hypothesis that the population mean roughnesses are
equal against the alternative that they are not and give a symmetric 95% confidence interval
for the difference in the population means.

Do you think that the assumptions are likely to be valid in this case?
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