ACE2046 Quantitative Techniques Statistical Computing

M. Farrow
School of Mathematics and Statistics
Newcastle University

Semester 1, 2012-13

3 Inference for Normal Populations: Analysis of Variance
 3.1 Analysis of Variance (ANOVA)

We can use t-tests and confidence intervals with one or two normal samples. Sometimes we have more than two and sometimes more complicated structures. In such cases we use the analysis of variance (ANOVA).

Suppose that we have k groups. Here, we test the null hypothesis

$$
H_{0}: \mu_{1}=\mu_{2}=\cdots=\mu_{k}
$$

using the F-distribution. The key assumptions in an ANOVA are

- Independence;
- Normality;
- Constant variance.

Again, Minitab can be used to check these assumptions. The most common types that you are likely to encounter are:

- Unstructured treatments - one-way ANOVA;
- Treatments and blocks - two-way ANOVA;

3.1.1 Example: One-way ANOVA

This is the simplest type of ANOVA, and it will be demonstrated using the Cholesterol and diet data.

Problem: We wish to test for differences between eating 0,3 , and 6 portions of grain. To do this we use a 1-way ANOVA table

Analysis

1. Before doing anything, we examine the data using standard graphical methods. Eg box-plots.
2. We now set up our Null hypothesis:

- $H_{0}: \mu_{0}=\mu_{3}=\mu_{6}$, i.e. eating grain does not affect your cholesterol

3. Now our alternative hypothesis

- H_{A} : eating grain does affect your cholesterol

As with the two-sample t-test, there are two ways to do this in Minitab. We can either

1. have the samples in different columns:
```
Stat -> ANOVA -> One-way (Unstacked)
```

2. or have all of the cholesterol values in one column and have a separate factor column.
```
Stat -> ANOVA -> One-way
```

Method 2 was used here. I also selected Graphs -> Four in one to produce some residual plots as a check of the model assumptions.

Source	DF	SS	MS	F	P
C1	2	0.1884	0.0942	3.92	0.028
Error	37	0.8883	0.0240		
Total	39	1.0768			

Next look at the residual graphs generated to check our assumptions

Figure 14: Checking our assumptions

- The Normal plot: points should lie roughly in a straight line
- Versus fit: points should be evenly distributed across treatments
- The Histogram: points should look like a Normal distribution
- Versus Order: points should be a random scatter

Since $p=0.028<0.05$ we reject H_{0} and accept H_{A}, i.e. grain does affect your cholesterol level.
To determine where the differences actually lie, we need to do a multiple comparison test. On the ANOVA menu, click Comparisons $->$ Tukey's $->$ OK. Now when you run the ANOVA command you should get additional output.

- Tukey's test looks for differences between treatments.
- So the row: $3-0.2392-0.0827 \quad 0.0738$ suggests that the difference in mean cholesterol between 0 and 3 grains per day is in the range ($-0.2392,0.0738$).
- We look for intervals that do not contain zero.
- So we can see that there are differences between 0 and 6 grains per day.

3.1.2 What are residuals?

The technical definition of residuals is:

> Observed values - fitted values

What this means, is you compare what you think the value will be according to your model, against what actually happens.

3.2 Two-way ANOVA (randomised blocks design)

What is a Block? A block is usually an unwanted design aspect that you should not ignore. For example, different laboratories, different fields, different person who conducted the experiment.

Problem: The data below are the results of a randomised block design and give the yields (in lbs) of ten strains of carrots grown in four fields. Each field is a "block."

		Block				
		1	2	3	4	Treatment
means						
	A	30.0	28.0	28.3	31.7	29.5
	B	33.5	29.6	31.9	29.8	31.2
Treatment	C	32.8	29.0	31.2	25.8	29.7
(strain	D	22.2	25.2	24.7	22.3	23.6
of	E	30.2	33.1	30.1	27.8	30.3
carrot)	G	30.5	30.0	28.5	31.8	30.2
	H	32.6	31.7	30.1	30.8	31.3
	I	36.7	29.7	27.6	29.5	29.2
	J	28.5	35.0	35.6	32.0	28.1
	Block	30.7	30.7	30.0	29.0	35.1
	means					30.9

In this analysis, not only have we got different treatments, but each treatment is carried out in different fields. We are trying to determine:

- Are the carrot strains different
- Do the fields affect the carrot yields

Analysis

1. We begin by plotting the data to get an overview of what is happening.
2. We form our hypotheses.

- Our Null hypothesis is:
H_{0} : There are no differences between the means for different strains of carrot.
- Our alternative hypothesis is:
H_{A} : There are differences between the means for different carrot strains.

3. Using Stat -> ANOVA -> Two-way. The response is the yield. The column factor is a column indicating the treatment. The row factor is the column indicting the field. This gives

Two-way ANOVA: Yield (lbs) versus
Analysis of
Aariance for Yield\}

Source	DF	SS	MS	F	P
Carrot str	9	287.68	31.96	8.34	0.000
block	3	19.40	6.47	1.69	0.193
Error	27	103.54	3.83		
Total	39	410.62			

4. Next we check the residuals graph, and make sure our data are normal.

3.3 Two-way ANOVA with two factors of interest

Problem: In some cases we are interested in both factors rather than one factor being a nuisance factor such as blocks.

Solution: We proceed exactly the same as above. The term Block just highlights the fact that we are not really interested in that effect.

3.4 Factorial experiments

It is possible to design and analyse much more complicated experiments with many factors and where we allow for the effect of interactions between factors. Experiments involving a number of factors are known as factorial experiments.

Practical 3

Instructions

1. You have an individual reference number. See the list on the last page of this handout.

The reference numbers have changed since last week.
You should use the data assigned to your reference number. Please write your reference number on your report as well as your name.
2. Please also mark on your report my name (Dr Malcolm Farrow) and "School of Mathematics \& Statistics".
3. Answer both questions.
4. This assignment is to be submitted via NESS, no later than 12.00 noon on Wednesday 24th October.
5. Write each solution in the form of a (brief) report. This should have an introduction to the problem, a description of the analysis and a clear statement of conclusions, illustrated, where appropriate, with graphs and tables.
6. Graphs should be properly labelled with appropriate axis labels etc.
7. In your report explain (briefly) how you obtained your results using Minitab so that, if anything has gone wrong, I might be able to see where it is.

Questions

1. Data are provided on butterfat percentages in milk from random samples of mature (≥ 5 years) and 2-year-old cows of five breeds.
The data file butterdat.txt can be downloaded from the module Web page (via Blackboard or otherwise) or it can be read directly into Minitab using
```
File -> Other files -> Import special text
```

entering c9-c40 in the box marked Store data in column(s) and entering
http://www.mas.ncl.ac.uk/~nmf16/teaching/ace2046/butterdat.txt
for the file name.
The breeds are in column c10. Name this column Breed or some other suitable name. The breeds are coded as follows.

1	Ayrshire
2	Canadian
3	Guernsey
4	Holstein-Fresian
5	Jersey

Column c9 contains 1 for a mature cow and 2 for a 2 -year-old cow. Name this column Age or some other suitable name.
Your butterfat percentages are in the column corresponding to your reference number. For example, if your reference number is 20 then your data are in column c20. Name your column Butterfat (or some other suitable name).
(a) Check that it is reasonable to assume equal variances. Try using a boxplot. Use

```
Graph -> Boxplot -> One Y With groups
```

Use your Butterfat column for the Graph variable and put both Breed and Age in the categorical variable for grouping box.
Do you think the spreads look reasonably equal?
(b) We have 10 groups (one for each combination of age and breed). This makes it a bit difficult to use a normal probability plot to check for normality. However we can apply the check to the residuals later.
(c) Use a two-way analysis of variance to test the null hypotheses that the mean butterfat percentage does not depend on the breed, for a given age, and that it does not depend on the age for a given breed.
Use
Stat -> ANOVA -> Two-way

- The Response is your Butterfat column.
- The Row Factor is Age .
- The Column Factor is Breed.
- In both cases tick Display means.
- Tick Fit additive model.
- Select
Graphs -> Four in one
to produce residual plots to check the assumptions.
Your ANOVA table will give two tests, one for the null hypothesis of equality between breeds and one for the null hypothesis of equality between ages.
(d) Comment on the residual plots. Is there any suggestion that the assumptions were not valid?
(e) Report your conclusions clearly.

2. Data are provided on weight gains in rats fed on four different diets distinguished by amount of protein (low or high) and by source of protein (beef or cereal).
The data file weightdat.txt can be downloaded from the module Web page (via Blackboard or otherwise) or it can be read directly into Minitab using
```
File -> Other files -> Import special text
```

entering c9-c40 in the box marked Store data in column(s) and entering
http://www.mas.ncl.ac.uk/~nmf16/teaching/ace2046/weightdat.txt
for the file name.
The sources are in column c9 and the amounts are in column c10. However, to improve the presentation of the results we will recode these as follows.
Select

Data -> Code -> Numeric to text

- In the box Code data from columns enter c9.
- In the box Store data in columns enter c7.
- Under Original values enter 1 in the first row and 2 in the second row.
- Under New enter Beef in the first row and Cereal in the second row.
- Click OK .

This recodes the 1 s and 2 s for Source to Beef and Cereal respectively. Give column c7 the name Source .

Use a similar procedure to recode the amounts.
Select

Data -> Code -> Numeric to text

- In the box Code data from columns enter c10.
- In the box Store data in columns enter c8 .
- Under Original values enter 1 in the first row and 2 in the second row.
- Under New enter Low in the first row and High in the second row.
- Click OK .

This recodes the 1 s and 2 s for Amount to Low and High respectively. Give column c8 the name Amount.
Your weight gains are in the column corresponding to your reference number. For example, if your reference number is 20 then your data are in column c20. Name your column Weight gain (or some other suitable name).
(a) Check that it is reasonable to assume equal variances. Try using a boxplot. Use

```
Graph -> Boxplot -> One Y With groups
```

Use your Weight gain column for the Graph variable and putboth Source and Amount in the categorical variable for grouping box.
Do you think the spreads look reasonably equal?
(b) Use normal probability plots to check for normality.

- Select

Graph -> Probability Plot -> Multiple

- In the Graph variables box enter Weight gain.
- Select

Multiple graphs -> By variables

- Put both Source and Amount in the box named

By variables with groups in separate panels .
(c) Use a two-way analysis of variance to test the null hypotheses that the mean weight gain does not depend on the amount of protein, for a given source, and that it does not depend on the source of protein for a given amount.
Use

```
Stat -> ANOVA -> Two-way
```

- The Response is your Weight gain column.
- The Row Factor is Source.
- The Column Factor is Amount.
- In both cases tick Display means.
- Tick Fit additive model.
- Select

> Graphs -> Four in one
to produce residual plots to check the assumptions.
Your ANOVA table will give two tests, one for the null hypothesis of equality between sources and one for the null hypothesis of equality between amounts.
(d) Comment on the residual plots. Is there any suggestion that the assumptions were not valid?
(e) Report your conclusions clearly.
(f) Try repeating the analysis but this time do not tick Fit additive model . This allows the fitting of an "Interaction" term. This means that the effect of moving from "Low" to "High" amount might depend on which source is used. You need not include all of the results of this in your report but comment on any differences which you notice compared with the previous "additive" analysis.

Student Reference Numbers

In the practicals for this week and later weeks, in at least some of the exercises, each student will have different data. In order to identify which data each student should have, each student is given a reference number according to the table below. Please make a note of your reference number because we will use the same numbers in later weeks. Please note that the numbers have changed since last week.

Agapiou	Kristy Marie	11
Au	Hoi Ching	12
Begin	Abigail Ruth	13
Breininger	Stella Panagio	14
Cepelis	Aivaras	15
Choo	Siew Li	16
Clarke	Timothy Oliver	17
Crawley	Michael	18
Darwin	Darwin	19
Drayton	Chloe Roseanne	20
Faleti	Hannah Ifedolapo	21
Golding	Carolina De Arouca	22
Grant	Georgia Kate	23
Hui	Angeline Kosim	24
Jenkins	Grace Evangeline	25
Linn	Sophia Campbell	26
Lo	Kin Wa	27
MacKinlay	Brittney Lauren	28
Obertelli	Georgia May	29
Rathod	Neel Harish	30
Rowland	Maisie Katharine	31
Saberioon	Ghazaleh	32
Song	Anqi	33
Tam	Wai Tsun Rachel	34
Trikerioti Chatziioannou	Danai	35
Wright	Jessica Laura Kate	36
Zawarska	Santana Anna	37

