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1. Protein identification from a Bayesian viewpoint.
2. Complications and difficulties.

3. Review of some available algorithms.

4. Dealing with the difficulties.

5. The “glass (or golden!) slipper” problem.
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General Principle

e Sample of some unidentified protein k*.

e Database S = {kq,...,k,} of known proteins.

e Prior probability that £ = k; Is p(()).
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Pr(k™ = k;|ly) = pgl) —
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Application to the protein problem

e For the sample we have a set P, of n, observed peaks.
e For each k; we have a set P, of n; theoretical peaks.

o Let n,, = min{n,,n;}. The number of possible
allocations is

nyi

Ny 1!
Nyi= > v .
o m!(n, —m)!(n; —m)!

m=0




e [ he likelihood is

Nyz’
Lyi = Y Pr(aylki = k") Pr(Plk; = k", ay;).  (2)

g=1



Complications and difficulties

e ‘Noise".
e Location shifts of peaks.

e Theoretical peaks might not appear. (Missed cleavage,
obscured by noise, not ionised etc.)

e Unexpected peaks might appear. (E.g. contamination,
modifications).



e Probabilistic

e Other

Some algorithms
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“Probabilistic”

*“MOWSE" (Pappin, Hgjrup and Bleasby, 1993)
“Mascot” (Perkins, Pappin, Creasy and Cottrell, 1999)
*“MSROFIT"” (Berndt, Hobohm and Langen, 1999)

“ProFound” (Zhang and Chait, 2000)
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Other

e "PepSea” (Mann, Hgjrup and Roepstorff, 1993)
e "Peptldent” / “Multildent” (Wilkins et al., 1998, 1999)

e "“Peptldent2” (Gras et al., 1999)

See also, e.g., Fenyo (2000)
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What probabilities?

e (f. forensic DNA database search problem. E.g. Balding
(2002).

e — Posterior Pr(k* = k; | y).
— Probability, given y, that we will find a “match” in
the database “by chance.”
x “significance”
x "false positive probability”
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e Pr(y | k*=k;) or Pr( “match” | y).

e Pr(k* ¢ S). See later.
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Plug-in probabilities

Example: Given 6,

p = Pr(peak appears | ) = 6.

0 ~ beta(a,b)
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One peak:

Two peaks:

/O 021 (0) do
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Sequence of x appearances and n — x non-appearances:

pn(z)

/1996(1 — )" £(0) df

la+b)I'(a+2)['(b+n—x)

['(a)I'(b) I'(a+b+n)

C(a,z)C(b,n — x)
C(a+b,n)
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where
C(a,x)

C(b,n — x)
C'(a+ b,n)

ala+1)---(a+x—1)
bb+1)---(b+n—x—1)
(a+b)a+b+1)---(a+b+n—1)

18



Dealing with the difficulties

e Peak extraction
e Appearance of predicted peaks
e | ocation shifts of observed peaks

e Appearance of extra peaks
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Pr(ayij | ki = k") = Prlb(ay;) | k =k
X Priey(ayij) | ki = K]

b(a,;;): exactly the selection of species from P; required
by the allocation a,;; appears. See (3).

Pr|c,(ay,;) | ki = k*]: the probability density for the
observed peaks appearing in their observed locations,
given the allocation a;;.
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D,
Model 1.

Location shifts

E(D,) = 0
var(D,,) = o> +o0

covar(D,,, D,,,) = o2
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Model 2.

Internal calibration at two masses, ¢y, cs.

Two theoretical masses, m, m/.

/
cCL<m, m < Cy

Adjustments A;, A> made at masses c;, ¢s.
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Adjustment made at m :

Ai(ca —m) + As(m — 1)
Co — C1

but Ay, A5 have error — assume independent here.

D,, is adjustment error plus error specific to m.
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var(D,,) C(m,m)o? + o2

covar(D,,, D,y) = C(m,m/)o?

C(m,m) =

C'(m,m')

(2 —m)*+ (m — 1)

(c2 — 1)’
(ca —m)(co—m')+ (m —c1)(m

/

_ Cl)

(ca —c1)?
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Models 3, 4

(May have to transform masses).

Theoretical mass Observed mass Calibration masses
t; Z; C1 < - < Cg

Also ¢y = 0 (usually).

Theoretical masses may be

C; < t; < Cjt1 Cs < t;



Model 3

Before calibration:

Zq N N(tz, tZO'g 0'2)

QN

2

covar(z;, z;) = o.min(t;,t;)

Similarly obs. values for calibration masses.

Condition on observations of calibration masses.
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Model 4.

z; ~ gamma(t; A\, ) (A > 0)

E(ZZ) — tz'

29 — &1 Y gamma([tz — tl])\, )\)

(tl < tz)
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Joint density of obs. masses (inc. calib. masses).

" ()\’wq; 2 — 2 wi—1o=A(zi—2i—1) )
H< ( 1) > (4)
el | I (w;) )
w; — (ti — ti—l))\ t() = 2) = 0

Condition on calibration masses — divides mass range
Into intervals.

For t; > ¢, use (4).
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For ¢; < thi1,...,then < Cjy1 ¢ Dirichlet

n+1 ~w;—1 n+1
[T 27 T w)
n+1
Hz':+1 ['(w;)

W; = (Ehti — Thgiz1) A zn=c; T =cjy—c;

Z; = (Zh+z' — Zh+i—1)/T Zh4+n+1 = Cj+1

(Does not allow obs. error).

29



“Extras’

Pr(P, | ki = k*, ayij, A\y) = € "\,

Ag ~ gamma(ay, by)

[(ag+ qyij)  bg"™ |
[(a;)  (bg + r)%aT i

PI’(Py ’ kz — k*, ayij) —

(5)
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Results display.

1

2

3 [#]: hypothetical protein MJ0915 - Methanococcus jannaschii

4 P1;FE4349 [#]:hypothetical protein MJ0393 - Methanococcus jannaschii

5 F1,D64456 [#]: protein-export membrane protein - Methanococcus jannaschi

B P1;C64485 [#]: ABC tranzporter probable ATP-binding subunit homolog - Methanococcus jannaschii

T P1; 64358 [7] hypathetical protein MJOT11 - Methanococcus jannaschii

g P1;EB4477 [#]:replication factor C homalog - Methanococcus jannaschii

g9 P1; 464305 [#]: conzerved hypaothetical pratein MJ0041 - Methanococcus jannaschii

10 P1;B64300 [#]:hypothetical protein MJO002 - Methanococcus jannaschii -
4 | ;I_‘
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Results display.

F,Ef’ Peptide Table -

Search Peptide | Databasze Mass | Search MIZ | Databsse MIZ | Length | Maz=z Difference |Charge| Start Position | Mizzed Cleavages
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“Does it work?”

e Bayesian inference.

e Is our belief structure valid?

— "model”
— “prior”
— calibration

Diagnostic checking — prior predictive distribution.

e Are we using all of the available information?
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The “glass slipper”

What if k* ¢ S7
Simple normal example (e.g. slipper sizes).

Collection of “items’ with “true values”
9
N(,LL,O‘X).

Sample from item 2. Observe Y, where

Yi| X, ~ N(X;, 02).

Xi

Y

34



Find a new, unknown, item, with unknown X, then

Y ~ N(,u,q%(—l—a%).

35



Assume, for now, that we know the values of u, 0%,

o2.
Database containing n known X values, x4, ..., x, and
we suppose that there are m other items not in the

database. We observe a sample from an unidentified item
and make the observation y.

Prior probabilities p(lo), . ,pflo) for items in the database

and pg)ll, . ,pﬂm for items not in the database.

36



Flya.h) = ——exp {—Qib@ _ a>2} |

hen posterior probabilities, for 1 <1 < n,

pgl) X k; = pﬁo)f (y, x5, OF ).

and, forn+1<:<n+m,

ptY o ki = BV f(y, p, 0% + 0F).
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Posterior probability that the sample came from an item
not in the database, i.e. any item not in the database, is

ijl kj T Zj:n—H kj

Suppose pgo) ... — p?(l()) — péo) and pfzol1 — ... =

Pt = Qpy)-
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Now np

(0)
0

+ meéO) =1 so

1 — npéo) P(()O)
Q p— p—
m (0) (0)
Po mp
_ Qm zl—npéo)zl—
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The posterior probability that the sample came from an
item not in the database becomes

P(l) _ Pg))f(yv s O-%( - 0-12/)
O - _
POy, x1,. .. %0,02) + PV fy, p, 0% + 02)

where

n

_ 1
f(yaxlw“aajnaa-)%) — —Zf(y,:z:z,a%)

n <
1=1
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Example: Database, size 10

“Database’ values:

-0.61 1.64 -0.38 -0.70 -0.13
0.28 143 127 138 0.55

PY =P =05

41



Example:

Pout

P
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I

0.6

0.5
I

0.4

against log,(0%), o

X =
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PL against log,(02), 0% ~IG(1,0.1), u ~ N(0,10), y = 5.
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Example:

Pout

P

o
Lr)_ —
o
Unknown population parameters
Lo
q: —
o
(@) .
g_ — nown population parameters
Lo
('Y)_ —
o
o
OQ —
e T T T T
-2 =il 0 1
log2Vy

against log,(0%), y = 1.3.
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Application to protein matching

e Mass range, width 7.

e Within range, masses from “unknown” protein: Poisson
process with rate \,.

e Each of these masses has, independently, a probability
7w of appearing as a peak.
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Probability (density) that such an “unknown” protein
would give rise to n, observed peaks in particular locations
IS

e_A“W()\uW)”’a.

46



Additional peaks in P, must be “extras’. Use (5) and
sum over possible allocations. Obtain a “likelihood” for
an “unknown protein”

fu(y7 )\ua 7T7 >\Q7 T) —

(L _ Ny—N
E ( / ) AU OW SLLPL LDV
na
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Allow for uncertainty in A,m and in A, :

AT~ gamma(ay, by,)

Ag ~ gamma(ag, by)
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where
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Imagine prior probabilities p,,(loll,...,p,,(lolm for the m

hypothetical “unknown” proteins and suppose that these
are not associated with different beliefs about A,m.

Let

— 0 | _ p0
B | =R
j=1
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Then

p
p@(O)Lyz’
Z] 1 P §)Ly]+P( )L
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