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2. Complications and difficulties.

3. Review of some available algorithms.

4. Dealing with the difficulties.

5. The “glass (or golden!) slipper” problem.
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Picture of a spectrum.
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Close-up of a spectrum.
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General Principle

• Sample of some unidentified protein k∗.

• Database S = {k1, . . . , kn} of known proteins.

• Prior probability that k∗ = ki is p
(0)
i .

Pr(k∗ = ki|y) = p
(1)
i =

p
(0)
i Lyi∑n

j=1 p
(0)
j Lyj

. (1)
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Application to the protein problem

• For the sample we have a set Py of ny observed peaks.

• For each ki we have a set Pi of ni theoretical peaks.

• Let nyi = min{ny, ni}. The number of possible

allocations is

Nyi =
nyi∑

m=0

ny!ni!
m!(ny −m)!(ni −m)!

.

7



• The likelihood is

Lyi =
Nyi∑
j=1

Pr(ayij|ki = k∗) Pr(Py|ki = k∗, ayij). (2)
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Complications and difficulties

• “Noise”.

• Location shifts of peaks.

• Theoretical peaks might not appear. (Missed cleavage,

obscured by noise, not ionised etc.)

• Unexpected peaks might appear. (E.g. contamination,

modifications).
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Some algorithms

• Probabilistic

• Other
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“Probabilistic”

• “MOWSE” (Pappin, Højrup and Bleasby, 1993)

• “Mascot” (Perkins, Pappin, Creasy and Cottrell, 1999)

• “MSROFIT” (Berndt, Hobohm and Langen, 1999)

• “ProFound” (Zhang and Chait, 2000)
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Other

• “PepSea” (Mann, Højrup and Roepstorff, 1993)

• “PeptIdent”/“MultiIdent” (Wilkins et al., 1998, 1999)

• “PeptIdent2” (Gras et al., 1999)

See also, e.g., Fenyö (2000)
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What probabilities?

• Cf. forensic DNA database search problem. E.g. Balding

(2002).

• – Posterior Pr(k∗ = ki | y).
– Probability, given y, that we will find a “match” in

the database “by chance.”

∗ “significance”

∗ “false positive probability”
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• Pr(y | k∗ = ki) or Pr( “match” | y).

• Pr(k∗ /∈ S). See later.
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Plug-in probabilities

Example: Given θ,

p = Pr(peak appears | θ) = θ.

θ ∼ beta(a, b)
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One peak:

p =
∫ 1

0
θf(θ) dθ =

a

a + b
.

Two peaks:

∫ 1

0
θ2f(θ) dθ =

(
a

a + b

) (
a + 1

a + b + 1

)
> p2.
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Sequence of x appearances and n−x non-appearances:

pn(x) =
∫ 1

0
θx(1− θ)n−xf(θ) dθ

=
Γ(a + b)
Γ(a)Γ(b)

Γ(a + x)Γ(b + n− x)
Γ(a + b + n)

=
C(a, x)C(b, n− x)

C(a + b, n)
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pn(x) =
C(a, x)C(b, n− x)

C(a + b, n)
(3)

where

C(a, x) = a(a + 1) · · · (a + x− 1)

C(b, n− x) = b(b + 1) · · · (b + n− x− 1)

C(a + b, n) = (a + b)(a + b + 1) · · · (a + b + n− 1)
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Dealing with the difficulties

• Peak extraction

• Appearance of predicted peaks

• Location shifts of observed peaks

• Appearance of extra peaks
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Pr(ayij | ki = k∗) = Pr[b(ayij) | k = k∗]

×Pr[cy(ayij) | ki = k∗]

b(ayij): exactly the selection of species from Pi required

by the allocation ayij appears. See (3).

Pr[cy(ayij) | ki = k∗]: the probability density for the

observed peaks appearing in their observed locations,

given the allocation ayij.
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Location shifts

Dm

Model 1.

E(Dm) = 0

var(Dm) = σ2
c + σ2

e

covar(Dm, Dm′) = σ2
c
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Model 2.

Internal calibration at two masses, c1, c2.

Two theoretical masses, m, m′.

c1 < m, m′ < c2

Adjustments A1, A2 made at masses c1, c2.
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Adjustment made at m :

A1(c2 −m) + A2(m− c1)
c2 − c1

but A1, A2 have error – assume independent here.

Dm is adjustment error plus error specific to m.
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var(Dm) = C(m,m)σ2
c + σ2

e

covar(Dm, Dm′) = C(m,m′)σ2
c

C(m,m) =
(c2 −m)2 + (m− c1)2

(c2 − c1)2

C(m,m′) =
(c2 −m)(c2 −m′) + (m− c1)(m′ − c1)

(c2 − c1)2
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Models 3, 4

(May have to transform masses).

Theoretical mass Observed mass Calibration masses

ti zi c1 < · · · < cs

Also c0 ≡ 0 (usually).

Theoretical masses may be

cj < ti < cj+1 cs < ti
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Model 3

Before calibration:

zi ∼ N(ti, tiσ
2
c + σ2

e)

covar(zi, zj) = σ2
c min(ti, tj)

Similarly obs. values for calibration masses.

Condition on observations of calibration masses.

26



Model 4.

zi ∼ gamma(tiλ, λ) (λ > 0)

E(zi) = ti

z2 − z1 ∼ gamma([t2 − t1]λ, λ) (t1 < t2)
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Joint density of obs. masses (inc. calib. masses).

n∏
i=1

{
λwi(zi − zi−1)wi−1e−λ(zi−zi−1)

Γ(wi)

}
(4)

wi = (ti − ti−1)λ t0 ≡ z0 ≡ 0

Condition on calibration masses – divides mass range

into intervals.

For ti > cs use (4).
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For cj < th+1, . . . , th+n < cj+1 : Dirichlet

∏n+1
i=1 z̃wi−1

i Γ(
∑n+1

i=1 wi)∏n+1
i=1 Γ(wi)

wi = (th+i − th+i−1)λ zh ≡ cj T = cj+1 − cj

z̃i = (zh+i − zh+i−1)/T zh+n+1 ≡ cj+1

(Does not allow obs. error).
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“Extras”

Pr(Py | ki = k∗, ayij, λq) = e−λqrλ
qyij
q . (5)

λq ∼ gamma(aq, bq)

Pr(Py | ki = k∗, ayij) =
Γ(aq + qyij)

Γ(aq)
b
qyij
q

(bq + r)aq+qyij
.
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Results display.
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Results display.
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“Does it work?”

• Bayesian inference.

• Is our belief structure valid?

– “model”

– “prior”

– calibration

Diagnostic checking – prior predictive distribution.

• Are we using all of the available information?
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The “glass slipper”

What if k∗ /∈ S?

Simple normal example (e.g. slipper sizes).

Collection of “items” with “true values” Xi ∼
N(µ, σ2

X).

Sample from item i. Observe Yi where

Yi|Xi ∼ N(Xi, σ
2
Y ).
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Find a new, unknown, item, with unknown X, then

Y ∼ N(µ, σ2
X + σ2

Y ).
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Assume, for now, that we know the values of µ, σ2
X,

σ2
Y .

Database containing n known X values, x1, . . . , xn and

we suppose that there are m other items not in the

database. We observe a sample from an unidentified item

and make the observation y.

Prior probabilities p
(0)
1 , . . . , p

(0)
n for items in the database

and p
(0)
n+1, . . . , p

(0)
n+m for items not in the database.
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f(y, a, b) =
1√
2πb

exp
{
− 1

2b
(y − a)2

}
.

Then posterior probabilities, for 1 ≤ i ≤ n,

p
(1)
i ∝ ki = p

(0)
i f(y, xi, σ

2
Y ).

and, for n + 1 ≤ i ≤ n + m,

p
(1)
i ∝ ki = p

(0)
i f(y, µ, σ2

X + σ2
Y ).
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Posterior probability that the sample came from an item

not in the database, i.e. any item not in the database, is

P 1
O =

∑m
j=n+1 kj∑n

j=1 kj +
∑m

j=n+1 kj
.

Suppose p
(0)
1 = · · · = p

(0)
n = p

(0)
0 and p

(0)
n+1 = · · · =

p
(0)
n+m = Qp

(0)
0 .
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Now np
(0)
0 + mQp

(0)
0 = 1 so

Q =
1− np

(0)
0

mp
(0)
0

=
P

(0)
O

mp
(0)
0

where

P
(0)
O =

Qm

n + Qm
= 1− np

(0)
0 = 1− P

(0)
I
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The posterior probability that the sample came from an

item not in the database becomes

P
(1)
O =

P
(0)
O f(y, µ, σ2

X + σ2
Y )

P
(0)
I f̄(y, x1, . . . , xn, σ2

Y ) + P
(0)
O f(y, µ, σ2

X + σ2
Y )

where

f̄(y, x1, . . . , xn, σ
2
Y ) =

1
n

n∑
i=1

f(y, xi, σ
2
Y ).
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Example: Database, size 10

“Database” values:

-0.61 1.64 -0.38 -0.70 -0.13

0.28 1.43 1.27 1.38 0.55

P
(0)
O = P

(0)
I = 0.5
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Example: P
(1)
O against log2(σ2

Y ), σ2
X = 1, µ = 0, y = 5.
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P
(1)
O against log2(σ2

Y ), σ2
X ∼ IG(1, 0.1), µ ∼ N(0, 10), y = 5.
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Known population parameters

Unknown population parameters

Example: P
(1)
O against log2(σ2

Y ), y = 1.3.
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Application to protein matching

• Mass range, width r.

• Within range, masses from “unknown” protein: Poisson

process with rate λu.

• Each of these masses has, independently, a probability

π of appearing as a peak.

45



Probability (density) that such an “unknown” protein

would give rise to na observed peaks in particular locations

is

e−λuπr(λuπ)na.
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Additional peaks in Py must be “extras”. Use (5) and

sum over possible allocations. Obtain a “likelihood” for

an “unknown protein”

fu(y, λu, π, λq, r) =

ny∑
na=0

(
ny

na

)
e−λuπr(λuπ)naeλqτλ

ny−na
q
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Allow for uncertainty in λuπ and in λq :

λuπ ∼ gamma(au, bu)

λq ∼ gamma(aq, bq)
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Lyo =
ny∑

na=0

(
ny

na

)
Gu(na)Gq(na)

where

Gu(na) =
Γ(au + na)

Γ(au)
bau
u

(bu + r)au+na

Gq(na) =
Γ(aq + ny − na)

Γ(aq)
b
aq
q

(bq + r)aq+ny−na
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Imagine prior probabilities p
(0)
n+1, . . . , p

(0)
n+m for the m

hypothetical “unknown” proteins and suppose that these

are not associated with different beliefs about λuπ.

Let

E

 m∑
j=1

p
(0)
n+j

 = P
(0)
0 .
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Then

Pr(k∗ = ki|y) = p
(1)
i

=
p

(0)
i Lyi∑n

j=1 p
(0)
j Lyj + P

(0)
0 Lyo

.
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