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Abstract

We develop methods for analysing decision problems based on multi-attribute utility
hierarchies, structured by mutual utility independence, which are not precisely spec-
ified due to unwillingness or inability of an individual or group to agree on precise
values for the trade-offs between the various attributes. Instead, our analysis is based
on whatever limited collection of preferences we may assert between attribute collec-
tions. These preferences identify a class of Pareto optimal decisions. We show how to
reduce the class further by combining rules which are almost equivalent and introduce
general principles appropriate to selecting decisions in an imprecise hierarchy. The
approach is illustrated by the design of a university course module.

Keywords: Robust decisions; Imprecise utilities; Pareto optimality; Utility hierar-
chies; Mutual utility independence.

1 Introduction

One of the most difficult steps in many decision analyses is the quantification of the
relative importance of different types of risk. Therefore, it is of fundamental interest to
develop methods for analysing multi-attribute utilities which do not require the spec-
ification of precise trade-offs between different risks. This paper is concerned with
decision analysis using multi-attribute utilities which are not precisely specified, due
to an unwillingness or inability to specify fixed risk trade-offs or from disagreement
within a group with responsibility for the decision. We are particularly concerned with
problems where the number of alternatives is large. Many real decision problems have
very large spaces of possible decision rules. Relaxing the requirement for precise trade-
off specification reduces our ability to eliminate rules by dominance and can leave us
with a large class of rules, none of which is dominated by any other over the whole
range of possible trade-offs allowed by the imprecise specification. We therefore need
to find practical and tractable ways to reduce the decision space.

An earlier paper (Farrow and Goldstein, 2006) introduced our approach to con-
structing imprecise multi-attribute utility hierarchies and finding the Pareto optimal
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rules in the context of experimental design. In section 3 of this paper, we describe this
structure, based on a utility hierarchy with utility independence at each node. In section
4, we define imprecise utility trade-offs for such a hierarchy, based on limited collec-
tions of stated preferences between outcomes, and use Pareto optimality to reduce the
set of alternatives. In section 5 we consider ways to reduce further the class of alter-
natives, by eliminating rules which are “ε-dominated” and combining rules which are
“ε-equivalent.” We explore the effects of different values of ε and of different parts of
the hierarchy to identify when and why rules are eliminated. The approach is illustrated
by an example which we describe in section 2.

2 Example: Designing a new course module at a university

To illustrate our approach, we consider the design of a new course module at a uni-
versity. The example concerns the introduction into academic planning of utility-based
consideration of attribute trade-offs between, for example, costs and the student learn-
ing experience. It is based on an actual course but some details have been changed and
nothing in the example represents an official view or position at any university. How-
ever, in developing the example we benefited from discussions with Mr.W.Middleton
of the University of Sunderland about his recent experiences of course design.

The module in question is for the first year of a degree course which contains math-
ematics, statistics and computing applicable to business as well as business studies
topics. The aim of the module is to develop concepts and techniques in applicable
mathematics which will give the student a solid foundation leading to successful study
of mathematical modelling modules in subsequent years. The module is to contain six
units, or topics, each of which may, for the purpose of this example, be considered to
be of the same size in the sense that, given the same teaching method, they would re-
quire the same length of time. Each topic could be taught by any one of three teaching
methods: (1) a traditional course of lectures and tutorials, (2) a laboratory-based course
using a computer algebra package, (3) an “open learning” course in which students use
prepared teaching material without lectures or formal laboratory sessions.

Thus we have 36 = 729 possible choices of combinations of teaching methods.
Observe that, in cases where we have to make a series of inter-related choices, the
number of possible decisions can increase very quickly, and it is therefore important
that our methods are able to cope with large numbers of alternatives. We can denote a
choice (µ1, . . . , µ6) where µi = 1,2 or 3 according to which method is used for unit i.
The attributes which we consider in our analysis are

for students: short term learning as measured by grade at the end of the module;
longer-term learning as measured by the grades achieved in later modules; satisfaction
(measured by a feedback questionnaire);

for staff: satisfaction (measured through the module leader’s annual report and the
staff appraisal process); development (e.g. in terms of the acquisition of new skills and
experience, measured through the annual staff appraisal process);

for the institution: benefit (e.g. in terms of being seen to be involved in “inno-
vative” teaching methods and measured, for example, through the Teaching Quality
Assessment); financial cost.
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As for many problems, the attributes are in very different units and it may be diffi-
cult to establish precise attribute trade-offs on which to rank the teaching choices.

3 Utility Hierarchies

3.1 Mutually utility independent hierarchies

In this section we summarise the concepts and definitions, introduced in Farrow and
Goldstein (2006), for a general class of multi-attribute utility functions. Attributes
Y = (Y1, ..., Yk) are utility independent of Z = (Z1, ..., Zr) if conditional preferences
over lotteries with differing values of Y but fixed values, z, of Z, do not depend on the
particular choice of z. Attributes X = (X1, ..., Xs) are mutually utility independent if
every subset ofX is utility independent of its complement. If attributesX are mutually
utility independent, then the utility function for X must be of the multiplicative form

(1 + kU(X)) =
s∏
i=1

(1 + kaiUi(Xi)), (1)

or the additive form

U(X) =
s∑
i=1

aiUi(Xi), (2)

where Ui(Xi) is a conditional utility function for attribute Xi, namely an evaluation of
the utility of Xi for fixed values of the other attributes. (Mutual utility independence
implies that Ui(Xi) is unaffected by the choice of these fixed values.) The coefficients
in (1) and (2) are the trade-off parameters; the ai reflect the relative importance of the
attributes and k reflects the degree to which rewards may be regarded as complemen-
tary, if k > 0, or as substitutes, if k < 0. See Keeney and Raiffa (1976).

We form an overall multi-attribute utility from marginal utilities for the various at-
tributes by a hierarchical structure which may be represented by a graph. The marginal
utilities are shown as marginal nodes, which have no predecessors. At each non-
marginal node, i, several utilities, Ui,1, . . . , Ui,si , are merged into a combined utility,
Ui, as indicated by arcs from the “parent” nodes i1, . . . isi to the “child” node i. This
combined utility is merged with others at a node in the next level until, finally, one over-
all utility function is formed. In each case we regard the children of a node as being at
a “higher” level so that the overall utility node is at the “top” level. For each node i, we
denote by N(i), the sub-hierarchy under i, where N(i) is the set of nodes containing
i and all of its predecessors. If, at each node, we have mutual utility independence
for the utilities combined at that node, then we term such a utility function a Mutually
Utility Independent Hierarchic (MUIH) utility. Thus, in a MUIH utility, at each node
we combine utilities using either (1) or (2). Note that we do not insist on mutual utility
independence over the whole collection of attributes, only among the parents at each
node. We divide the child nodes in the hierarchy into the following three types:
an additive node, where utilities are combined as in (2) with

∑s
i=1 ai ≡ 1 and ai > 0

for i = 1, . . . , s;
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a binary node, where exactly two utilities are combined, scaled as

U = a1U1 + a2U2 + hU1U2 (3)

where 0 < ai < 1 and −ai ≤ h ≤ 1− ai, for i = 1, 2, and a1 + a2 +h ≡ 1. Note that
(3) is derived by setting s = 2 and h = ka1a2 in (1).
a multiplicative node, where more than two utilities are combined and the parameter k
in (1) may be nonzero. We rescale the utility so that

U =
∏s
i=1(1 + kaiUi)− 1∏s
i=1(1 + kai)− 1

(4)

where a1 ≡ 1, k > −1 and, for i = 1, . . . , s, we have ai > 0 and kai > −1.
For each child node i, we denote by φ

i
= (φi1, . . . , φim(i)) the collection of trade-

off parameters which determine how the parent utilities at node i are combined to give
the value at the child node. Thus, each φij corresponds to an ai in (2) an ai or h term in
(3), or an ai or k in (4). If there are n child nodes, then we denote by θ = (φ

1
, . . . , φ

n
)

the collection of all the trade-off parameters in the hierarchy.
As we shall vary the trade-off parameters, and thus the utilities at the child nodes,

we require a standard scale, constructed as follows, for all utilities in the hierarchy, so
that the interpretation does not depend on the choice of trade-off parameters. We norm
all the marginal utilities to lie between 0, the worst outcome for the problem, and 1, the
best outcome. The effect of our utility scalings is that, at each node i in the hierarchy,
the utility is 1 for the outcome Ci when all marginal predecessor nodes have utility 1,
and is zero for the outcome ci when all marginal predecessor nodes have utility zero.
Therefore, a utility value of u at node i may always be interpreted as the utility of a
gamble giving Ci with probability u and ci with probability 1 − u, irrespective of the
chain of trade-off parameters in the hierarchy. Throughout this paper, all utilities are
assumed to be on the standard scale.

3.2 Example: Utility hierarchy

Continuing the example of section 2, the utility hierarchy is shown in figure 1.
The overall utility node U is a binary node, combining cost C and quality Q. The

cost of teaching staff time is included in the financial cost although, in practice, there
may be other considerations involved with the allocation of staff time. Staff time is
used in both preparation and delivery. More preparation time is required in the first
year of operation (very much more for open learning) but the cost considered here is
the total over the five-year validation period. There are differences in the non-staff
costs between teaching methods. While some resource costs, e.g. library, are common
to all methods and can therefore be disregarded, there are extra costs for hardware and
software, in the case of laboratory-based teaching, and for open learning material. The
financial costs are summarised in table 1.

The utility for financial cost is UC = 1 − C/7500 where C is the total cost, in £,
of the module, calculated using table 1, and £7500 represents a “worst case” cost. This
cost is traded against module quality Q so the overall utility is U = aQUQ + aCUC +
hUUQUC , where UQ is the “module quality” utility. This is a binary node, given by
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Figure 1: Utility hierarchy
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UQ = aSUS + aV UV + hQUSUV , where US and UV are the utilities for “Students”
and “University”. Each of these is an additive node which depends on three marginal
attributes: US = aS1US1 + aS2US2 + aS3US3, UV = aV 1UV 1 + aV 2UV 2 + aV 3UV 3

The marginal attributes S1, short term learning, and S2, long term learning, are
measured by the average final marks in this module and in a selection of second-year
modules. The utilities for these in the example are simply the marks themselves on
a [0, 1] scale. Similarly, a score derived from the ratings given on student response
forms, scaled to lie in [0, 1], provides the marginal student satisfaction utility US3.
For the university, the utility UV 1, representing staff satisfaction, is measured by the
response to a rating scale in the annual staff self-appraisal. The institutional benefit V2

is measured using the grades obtained in the Teaching Quality Assessment. Attribute
V3 represents the University’s future ability to deploy staff experienced in the various
teaching methods. An individual staff member’s “experience level” for a particular
method increases with the number of teaching hours in that method, but not linearly.
The gain in “experience level” per hour is less when the accumulated experience is
greater. Thus there is less to be gained in staff development terms from using a more
traditional method. The utility function is fully specified when we assign values to all
of the trade-off parameters in the above relations.
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Table 1: Expected financial costs per unit per cohort. Suitable open learning material
for Unit 2 had already been written.

Staff OL Material Laboratory Total
Lectures £600 - - £600
Laboratory £750 - £300 £1050
Open Learning (Unit 2) £300 £60 - £360
Open Learning (other) £600 £60 - £660

4 Using Imprecise Trade-off Parameters

4.1 Imprecise utility trade-offs

Quantification of the various trade-off parameters between intrinsically different types
of costs and benefits is a difficult task. Therefore, it is important to consider problems
where we are unwilling to fix on particular trade-off values or where a group of individ-
uals must make a joint decision, and there is broad agreement on the marginal utilities,
but different members of the group have different priorities when trading risks.

The theory of imprecise probability can be built around the notion that, while we
may be unwilling to specify a precise value for the probability of some event, there
are various prices at which we would certainly buy a gamble on the outcome and other
prices at which we would certainly sell such a gamble. These preferences may be used
to construct upper and lower probabilities for the corresponding event. See e.g. Walley
(1991). In the theory of imprecise utility we may apply a similar approach to the
trade-offs between attribute values. There will be certain combinations of outcomes
over which we are prepared to state preferences and these comparisons establish the
region of the space of trade-off parameters which we must consider. We choose to
elicit our imprecision in the values of the trade-off parameters θ based on our stated
preferences over utility combinations for outcomes, as this is usually more meaningful
than considering directly the imprecision in the elements of θ. Farrow and Goldstein
(2006) described the construction and properties of such imprecise utility hierarchies.

Some authors also consider imprecision in the marginal utility functions. Recent
examples include Mateos et al. (2003) who describe a decision support system in which
the imprecise multi-attribute utility function is additive and Jiménez et al. (2003), who
allow a multiplicative function in which a range for the value of k in (1) is determined
by considering the values implied by ranges given for a1, . . . , as. In both cases ranges
for the trade-off parameters are combined to form a rectangular space. In this paper
we only consider imprecision in trade-offs and assume that the necessary expectations
of marginal utilities, and in some cases their products, can be agreed. However we
do not impose an arbitrary probability distribution over ranges of imprecision, or over
attributes, nor do we assume a rectangular shape for the space of trade-off parameters
allowed by the imprecise specification resulting from a careful elicitation process.

If we allow imprecision in some of the elements of θ, then we refer to the resulting
utility specification as an imprecise independence hierarchy (IIH). If there are no mul-
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tiplicative nodes in the hierarchy some features of the methodology become simpler
and we refer to the specification as a simple imprecise independence hierarchy (SIIH)

For each child node, we make a collection of pairwise comparisons between vec-
tors of values of parent utilities (or, equivalently, the corresponding vectors of attribute
values). For example, in the hierarchy in figure 1, trade-off imprecision at node S is
determined by eliciting pairwise preferences between values of the vector (S1, S2, S3),
while at node Q ranges are determined by preferences between vectors (S, V ). In ev-
ery case, preferences are expressed between lotteries over the corresponding marginal
attributes. All utilities are expressed in the standard scale. For example, the utility S∗

is the value of the lottery giving (S1 = 1, S2 = 1, S3 = 1) with probability S∗, and
(S1 = 0, S2 = 0, S3 = 0) with probability 1− S∗.

At node i, we denote strict preference for utility vector U = (U1i, U2i, ..., Usi)
over utility vector V = (V1i, V2i, ..., Vsi) as U �∗ V , and denote the weak pref-
erence, namely that we do not prefer V to U as U �∗ V . Each such preference
places constraints on the allowable choices for the trade-off parameters φi. We term
the collection, R, of all sets of trade-off parameters consistent with each of the stated
preferences the feasible set of choices for the trade-off parameters. We say that the
collection of pairwise comparisons is consistent if R is non-empty, i.e. there is at
least one set of trade-off parameters satisfying all stated preferences. A comparison
is redundant if its removal does not affect R. A change in any marginal utility will
produce a change of the same sign in the overall utility. Therefore, when comparing
two utility vectors where A �∗ B, we consider whether we can decrease any of the
utilities in A or increase any of the utilities in B while preserving the preference, to
avoid redundancy and make stringent comparisons leading to the smallest feasible set
that we can determine through our stated preferences. We describe a comparison as
sharp if (U11, . . . , Us1) �∗ (U12, . . . , Us2) but there is no vector (δ1, . . . , δs) such that
δi ≥ 0, for i = 1, . . . , s, and

∑s
i=1 δi > 0 for which we are prepared to assert that

(U11 − δ1, . . . , Us1 − δs) �∗ (U12, . . . , Us2). We seek sharp comparisons to restrict
R as far as possible. Note that the absolute limits for the values of tradeoff parameters
provide bounds for the feasible set even before we specify any preferences. Specifica-
tion of preferences results in the elimination of parts of this initial set.

For additive and binary child nodes, elicitation is unconstrained. For each such
node, we state whichever preferences we wish between pairs of utility vectors for the
parent nodes. Farrow and Goldstein (2006) showed that the shape of the resulting
region of trade-off parameters for an SIIH is as follows. At each additive or binary
node i, we obtain a convex polyhedron Ri for the allowable values of φ

i
. The regions

R1, . . . , Rn together define a region R in the combined space of parameters θ, where
θ ∈ R if and only if φ

i
∈ Ri for i = 1, . . . , n. For each node i, we define Pi to be the

set φ
i

= {φi1, . . . , φir(i)} of values at the r(i) > m(i) vertices of Ri, and denote by P
the set of overall vertex specifications for R, so that P is the subset of R with elements
θ = (φ

1
, . . . , φ

n
) ∈ R such that φ

i
∈ Pi for i = 1, . . . , n.

For multiplicative nodes, the process of eliciting the feasible set for tradeoff param-
eters is modified. For additive and binary nodes we can express the combined utility
linearly in the parameters and we constrain the sum of the parameters to be 1 without
loss of generality. For a multiplicative node, we cannot express the combined utility
linearly in the parameters but we still need to impose one constraint to make the param-
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eters identifiable. Rather than attempt to constrain the sum of the weights on the parent
utilities, which involve products of the parameters, we fix one of the ai to be 1. Fur-
thermore, if we allowed unconstrained comparisons at a multiplicative child node, then
the boundary of the feasible set, even with respect to a1, . . . , as for fixed k, would no
longer be a convex polyhedron and comparisons over the region would become much
more difficult. Therefore, we impose the following restrictions on elicited preferences
at a multiplicative child node. First, at each such node, we choose one of the parent
utilities to be a standard or reference utility. Suppose that this is U1. We set a1 ≡ 1.
We then assess trade-off ranges for each of the other attributes at the node by compar-
ing that attribute with the standard. Thus, in each comparison, we vary only one of
the utilities at a time, so that we compare each attribute j with attribute 1. Denote by
U+
j (u) the vector (U1, . . . , Us) for which Uj = u and Ui = 0, j 6= i. For each j > 1,

we make at least one comparison of the form U+
1 (u1) �∗ U+

j (uj), to give each aj
an upper limit. We already have the constraint aj > 0 but, optionally, we can make
comparisons of the form U+

j (uj) �∗ U+
1 (u1) to impose tighter upper limits. Secondly,

we elicit pairwise preferences between utility vectors of the form U+
1 (u) and vectors

(U12, . . . , Us2), where only U1 = U12 and Uj = Uj2 are positive. Such a comparison
imposes a limit on aj for fixed k and a limit on k for fixed aj .

Farrow and Goldstein (2006) showed that the shape of the region of trade-off pa-
rameters resulting from the above elicitation scheme for an IIH is as follows. At each
additive or binary node i, the shape is as for a SIIH. For each multiplicative node i, for
each fixed value of k, we obtain a bounded rectangular region Ri(k) for the remaining
elements of φ

i
. The region Ri of allowable specifications for φ

i
is the union of the

collections (k,Ri(k)). For each fixed value of the remaining elements of φ
i
, we obtain

an interval for the value of k. The regionsR1, . . . , Rn together define a regionR in the
combined space of parameters θ, where θ ∈ R if and only if φ

i
∈ Ri for i = 1, . . . , n.

The shape of the feasible region for a multiplicative node i is complex so we often
choose to expand such a region to a more convenient shape R?. For additive and
binary nodes we define R?i ≡ Ri. For multiplicative nodes we define R?i as follows.
Firstly, we identify the maximum and minimum values of k, denoted kM , km, in the
set Ri. For each trade-off parameter aj , we define ajM , ajm to be the maximum and
the minimum values of aj respectively over the two sets Ri(kM ), Ri(km). Denote
by R?i , the rectangular region bounded by the values km < k < kM , ajm < aj <
ajM , j = 2, .... Then R?i is the smallest rectangular region for which Ri ⊆ R?i . When
we replace each such Ri by R?i , we denote the corresponding extended feasible region
as R?. For each additive or binary node define P ?i to be the set {φ

i1
, . . . , φ

ir(i)
} of the

r(i) > m(i) vertices of R?i . For each multiplicative node with s parents define P ?i to
be the set of φ

i
such that aj = ajm or aj = ajM , for j = 2, . . . , s, and km < k < kM .

Then P ? is the set of overall specifications each element of which is the combination
of one element from each of P ?1 , . . . , P

?
n .

4.2 Example: specifying imprecise utility trade-offs

Consider node S in our example. We elicit preferences among vectors of attribute val-
ues. At this node, the utility valuesUSi are equal to the attribute values Si when known,
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i = 1, 2, 3. For the vector (S1, S2, S3), (0.5, 0.65, 0.8) �∗ (0.6, 0.5, 0.9). Further, re-
ducing the value ofUS2 in the first triple leads to uncertainty over the preference so that,
for example, it is not agreed whether (0.5, 0.64, 0.8) should be preferred to (0.6, 0.5,
0.9). Therefore the comparison is sharp and we adopt aS2 > 0.4 as part of the bound-
ary of our parameter region. Similarly, (0.5, 0.5, 0.9) �∗ (0.51, 0.51, 0.81) but we are
unwilling to state preferences between (0.5, 0.5, 0.89) and (0.51, 0.51, 0.81). The defi-
nite preference here leads to aS3 > 0.1. Also (0.58, 0.5, 0.7) �∗ (0.5, 0.52, 0.72), but
we do not state a preference between (0.57, 0.5, 0.7) and (0.5, 0.52, 0.72). Here, the
definite preference leads to aS2 + aS3 < 0.8. These three inequalities define a triangu-
lar region. Note that we could impose more constraints but the region would always be
the convex hull of a finite number of vertex points. In the absence of suitable informa-
tion on definite preferences, the absolute limits would apply. For example, without the
third inequality above, aS2 + aS3 < 1 would be the third side of the triangle.

As an example of a node higher in the hierarchy, consider nodeQ. Suppose that we
offer a choice between the following alternatives: (1) with certainty, attribute values
such that US = 1 and UV = 0; (2) with probability α, attribute values such that
US = UV = 1 and, with probability 1 − α, attribute values such that US = UV = 0.
We find that (2) is preferred whenever α > 0.89, so hQ ≥ 0.11 − aV , and that (1)
is preferred whenever α < 0.50, so hQ ≤ 0.50 − aV . Now suppose that we consider
a choice between the following alternatives: (1) with probability 1/3, attribute values
such that US = 1 and UV = 0 and with probability 2/3, attribute values such that
US = 0 and UV = 1; (2) with probability α, attribute values such that US = UV = 1
and, with probability 1 − α, attribute values such that US = UV = 0. We find that
(2) is preferred whenever α > 0.50, so hQ ≥ aV − 0.5, and that (1) is preferred
whenever α < 0.37, so hQ ≤ aV − 0.11. These four constraints give the four sides of
a quadrilateral region in the plane of aV and hQ. Table 2 gives the vertex set Pi for the
elicited feasible set Ri, at each node i in our course module example.

4.3 Pareto optimal decisions

We have to choose from a set D of decisions. We denote the utility of a particular
choice A ∈ D, evaluated with trade-off parameters θ as UAθ. This is evaluated as
the expected value of Uθ, with respect to the probability distribution, induced by the
decision A, over the marginal attributes involved in U. For two alternatives, A, B,
let dAB(θ) = UAθ − UBθ. Different choices of trade-off parameters induce different
preference orderings over the possible alternatives. A natural weak, partial preference
ordering over allowable alternatives is that alternative A is at least as good as B, over
feasible region R, written A � B, if UAθ ≥ UBθ ∀θ ∈ R, A is preferred to B, over R
written A � B, if A � B and UAθ > UBθ for some θ ∈ R, and A is equivalent to B,
written A ' B, if UAθ = UBθ ∀θ ∈ R. We call alternative A Pareto optimal for R if
there is no other allowable alternativeB for whichB � A overR.We restrict attention
to Pareto optimal alternatives. We form equivalence classes of equivalent decisions
A1 ' A2 ' ... ' Ar, and restrict attention to only one representative member of each
equivalence class. When we choose a decision, we may re-examine the corresponding
equivalence class, to see whether there are any subsidiary criteria, not yet introduced
into the problem formalism, which may distinguish between the members of the class.
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Table 2: Trade-off parameter values.

Vertex aS1 aS2 aS3

φ
S1

0.2 0.4 0.4
φ
S2

0.2 0.7 0.1
φ
S2

0.5 0.4 0.1

(A) Parameter values at Node S
(Students).

Vertex aV 1 aV 2 aV 3

φ
V 1

0.05 0.50 0.45
φ
V 2

0.05 0.75 0.20
φ
V 2

0.20 0.55 0.25

(B) Parameter values at Node V
(University).

Vertex aS aV hQ
φ
Q1

0.890 0.110 0.000
φ
Q2

0.500 0.500 0.000
φ
Q3

0.890 0.305 -0.195
φ
Q4

0.500 0.305 0.195

(C) Parameter values at Node Q
(Module Quality).

Vertex aC aQ hU
φ
U1

0.7 0.3 0.0
φ
U2

0.5 0.5 0.0
φ
U3

0.7 0.4 -0.1
φ
U4

0.5 0.4 0.1

(D) Parameter values at Node U
(Overall Utility).

The operational research literature contains work concerned with mathematical,
usually linear, programming methods for identifying Pareto optimal (or “non-dominated”)
and potentially optimal alternatives. In our terms, a potentially optimal alternative is
an alternative A such that there exists θ in the feasible set such that dAB(θ) ≥ 0 for all
B 6= A. See, for example, Hazen (1986), Mateos et al. (2007). Our approach differs in
that we express expectations over marginal utilities, we allow a more general form for
the utility hierarchy and we allow a more general shape for the feasible set.

In Farrow and Goldstein (2006) we showed that, for any alternatives A,B,

argmax
R

dAB(θ) ∈ P and argmin
R

dAB(θ) ∈ P, (5)

if we have an SIIH utility, and, for a general IIH utility, constructed as in section 4.1,

argmax
R∗

dAB(θ) ∈ P ∗ and argmin
R∗

dAB(θ) ∈ P ∗ (6)

From these we showed that it is sufficient to check for Pareto decisions in the vertex
set P or P ∗ since, if QS is the set of Pareto optimal alternatives in the set S, then

QR = QP , (7)

for an SIIH utility, and, for a general IIH utility, constructed as in section 4.1,

QR∗ = QP∗ . (8)
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4.4 Example: Pareto decisions.

In the example there are two binary nodes, U and Q, and two additive nodes, S and V,
each with s = 3. Thus, at every node in the example, the dimension of the parameter
space is m− 1 = 2. Triangular regions are specified for nodes S and V with quadrilat-
eral regions for nodesQ andU. Thus the overall parameter space has 3×3×4×4 = 144
vertices. We must choose between 729 alternatives, each being a particular selection
of the teaching methods for the six units. For each decision, we elicit expectations
of the utilities of the attributes. In this example, the attributes are considered to be
stochastically independent, given a particular decision. Thus the expectations of prod-
ucts in utilities at binary nodes are just the products of the expectations at the parent
nodes. The elicited expectations for the utilities of S1 and S2, if the module has n1

lecture-based topics, n2 laboratory-based topics and n3 open-learning topics are

E(US1) =
55n1 + 45n2 + (60− 5n3)n3

600
− 10∆1,2 + 2δ62δ̄52 + δ52δ̄42 + δ42δ̄32

100

E(US2) =
55n1 + 60n2 + (60− 7n3)n3

600
− 5∆1,2 + 5∆3,2 − 5δ62 − 4δ12

100

where δij = 1 if mi = j, and δij = 0 otherwise, δ̄ij = 1 − δij and ∆j,2 =∏6
i=j δ̄i2.The quadratic terms in n3 are present because open learning was judged to be

more successful in small doses. The terms involving δi2 and δ̄i2 concern the laboratory-
based elements of the course. The ability to use a computer algebra package is a learn-
ing outcome for the module so the complete absence of Method 2 is penalised. In some
cases, using the computer algebra package in one unit helps with the following unit.
Experience of laboratory-based work in certain units is important for Year 2.

Student satisfaction was expected to be good provided that not more than four of the
units used the same method. The expectations, E(US3), which were directly elicited,
are given in Table 3. Staff satisfaction was judged to be worst with open learning
and best with laboratory work so these were assigned expected utilities 0.1 and 0.9.
Traditional lecturing was then given 0.7. Thus E(UV 1) = [0.7n1 + 0.9n2 + 0.1n3]/6.
Similarly E(UV 2) = [0.1n1 + 0.9n2 + 0.7n3]/6 and E(UV 3) = [0.1n1 + 0.9n2 +
0.8n3]/6. To establish Pareto optimality we only need to make comparisons at the
vertices. In our example we find that 50 of the original 729 alternatives are Pareto
optimal. We can discard the 679 other alternatives, since each one is dominated by at
least one of the Pareto optimal alternatives over the parameter range. Furthermore, we
find that 37 of the Pareto optimal rules can be eliminated because they are equivalent to
others which are retained, as, in this example, there are many pairs of decisions which
have the same utility everywhere. The thirteen remaining rules are listed in Table 4 in
which each is assigned a letter for identification later.

5 Almost Preferred Decisions

Given the imprecision in trade-off parameters, we seek a robust choice of decision.
This necessitates a careful comparison between the Pareto decisions over the allowable
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Table 3: Expected utilities for student satisfaction.

n2

0 1 2 3 4 5 6
n1 = 0 0.3 0.5 0.9 0.9 0.9 0.7 0.6

1 0.4 0.8 0.9 0.9 0.9 0.8 -
2 0.8 0.8 0.9 0.9 0.9 - -
3 0.8 0.8 0.9 0.9 - - -
4 0.8 0.8 0.9 - - - -
5 0.6 0.7 - - - - -
6 0.5 - - - - - -

range of trade-off parameters. In Farrow and Goldstein (2006) we introduced boundary
linear utility as a means of choosing an alternative from among the Pareto optimal
rules This is based on a linear combination of the utility functions at the vertices of the
feasible set. Now, rather than move directly to a single criterion for selecting a single
rule, we consider in more detail the comparisons between rules. If there are many
alternative decisions, then there may be many Pareto optimal rules. Therefore, it is
very helpful to reduce further the class of alternatives, both to simplify the subsequent
comparisons of the remaining rules and also to allow us to make simple displays of the
leading alternatives to support our formal arguments.

5.1 Almost dominance and almost equivalence

We may decide to eliminate decisionA from consideration, even ifA is Pareto optimal,
provided thatA is almost dominated, namely that there is an alternativeB whose utility,
over the entire feasible trade-off region, is never sufficiently less than the utility of A
to be of any practical concern. We therefore define ε-preference, ε-equivalence and ε-
dominance as follows, where ε ≥ 0 is a value chosen to indicate a practical indifference
between utility values. For two alternatives A and B, we say that A is ε-preferable to
B, written A �ε B, over the set Q of parameter specifications if infQ(dAB(θ)) ≥ −ε.
Two alternatives A,B are said to be ε-equivalent, written A 'ε B, if both A �ε B
and B �ε A. Alternative A is said to ε-dominate alternative B, written A �ε B, if
A �ε B but B 6�ε A, where the negation of the relationship is indicated in the usual
way. Setting ε = 0, an alternative which is not 0-dominated by any other is Pareto
optimal. We extend the preference notation to collections of alternatives as follows.
The collection A is ε-preferable to the collection B of alternatives, written A �ε B if,
for each B ∈ B, there is at least one A ∈ A for which A �ε B.

For any two alternatives A,B, if A �ε B it does not follow that A �η B where
η > ε. However, if A �ε B but A 6�η B, then it follows that A 'η B. If A 'ε B,
then either there is an η < ε for which A �η B, in which case we might eliminate
B, or a value for which B �η A, in which case we might eliminate A, or there is
no such value, when we might eliminate either. To determine which of these is the
case, we may compare inf[dAB(θ)] = mAB with inf[dBA(θ)] = MAB . We would
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often prefer to eliminate B rather than A if MAB > −mAB since this implies that, for
−mAB < ε < MAB , A �ε B.However this consideration does not give us a complete
ordering of the alternatives as the following simple example illustrates. Suppose we
have three alternatives, A,B,C, and three vertices and the utilities of A,B,C are 0.6,
0.4, 0.5 at the first vertex, 0.6, 0.7, 0.5 at the second and 0.6, 0.7, 0.8 at the third. Then,
with ε = 0.15, A �ε B, B �ε C and C �ε A. Therefore, in any algorithm based on
ε- preference, we will need to be careful as to which rules we choose to eliminate.

To define ε-preference, ε-equivalence and ε-dominance at a child node i we con-
sider the utility at i under variation only of the parameters in N(i), the sub-hierarchy
under i. Consider first a SIIH. Just as we defined P and R for the whole hierarchy, we
define P (i) and R(i) for N(i). If A �ε B over P (i) we say that A �ε B at node i.
Clearly (5) and (7), applying to the whole hierarchy, also apply to any sub-hierarchy.
Just as Pareto optimality over the whole feasible region corresponds to Pareto optimal-
ity at the vertex set, a similar equivalence holds for each ε comparison, at each level in
the hierarchy. We have the following corollary, showing that to assess each comparison
we only need to evaluate dAB(θ) at the vertices, which is deduced directly from (5).

Corollary 1 For alternatives A and B and a node i, respectively A �ε B, A 'ε
B, A �ε B, over R(i) if and only if A �ε BA 'ε B, A �ε B, over P (i).

In the case of a IIH we use (6) and (8) instead of (5) and (7) and replace R(i) and
P (i) in Corollary 1 with P ∗(i) and R∗(i).

5.2 Reducing the collection of alternative decisions

Having selected one representative from each equivalence class of the Pareto optimal
rules, we now eliminate from further consideration alternatives which are almost dom-
inated or almost equivalent to others by finding ε-Pareto decision sets for a range of
values of ε. Let our set of Pareto optimal rules be D. Then A ⊆ D is an ε-Pareto
decision set if A �ε B where A ∪ B = D and A ∩ B = ∅. We choose values of ε
on the standard utility scale for the hierarchy. We determine, for each ordered pair of
rules A,B the value of mAB = inf(dAB(θ)). From these values, we construct a list of
decisions and the ε values at which they are just deleted by ε-preference. Increasing the
value of ε eliminates progressively more alternatives, so that we must balance between
preference for small ε and our aim of eliminating many decisions from consideration.

We form two lists of alternatives, A for those selected for retention and B for those
selected for deletion, at the current value of ε. We start with ε = 0, and gradually in-
crease ε, so initially all Pareto optimal alternatives are in A and B is empty. Suppose
that there are nP Pareto rules. We would like to find, for each n = nP − 1, nP −
2, nP − 3, . . . , 1 the smallest value of ε such that we may choose an ε-Pareto set A
containing exactly n rules. Because ε-preference is not transitive, we impose a prag-
matic constraint in the algorithm that we use to create these collections, namely that at
each step, as we decrease n, rules already in B stay in B. This constraint is imposed
to simplify both the search procedure and the interpretation of the results. We use the
following algorithm: repeat steps 1 to 3 until there is only one rule left in A.
[1] For each rule C ∈ A : (i) formA(C) = A\{C} and B(C) = B∪{C}; (ii) for each
B ∈ B(C) find maxA∈A(C)mAB = mB(C); (iii) find minB∈B(C)mB(C) = m?(C).
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[2] Choose C? which has the greatest value of m?(C).
[3] Move C? to B. If there are now k rules in B, record the choices Ck = C? and
εk = −m?(Ck).

For each k = 1, . . . , nP − 1, we have divided the Pareto rules into two sets, the
eliminated rules Bk = {C1, C2, ...Ck}, and the remaining rules retained in Ak, where
Ak �εk

Bk. We can now see which alternatives are retained at each value of ε, and
therefore consider how best to balance the conflicting requirements in our choice of ε.

While the above algorithm automatically suggests decisions to eliminate, we often
want to compare the performance of the rules carefully before accepting such sugges-
tions. We explore the elimination process in two ways, each referring to elimination
at specific sub-nodes. This involves using the algorithm which we have just defined,
suitably adapted to refer to the sub-hierarchy under a particular node.

First, we apply the selection algorithm at each node in the hierarchy, listing retained
alternatives at each node. This allows us to examine the results of selection based only
on particular subsets of the attributes and to see whether similar sets of rules are being
selected in different parts of the hierarchy, and, if not, in which ways they differ. (It may
be that lists differ simply because different members of ε-equivalence classes have been
selected and this is checked by producing a list of equivalences for each alternative.)

Secondly we may look at stepwise elimination as we move through the hierarchy.
Suppose that we have chosen a value for ε from the global elimination algorithm. Let
the set of Pareto optimal rules be A. Starting at the overall utility node and working
down the hierarchy towards the marginal nodes we form two lists, N1 and N2, at
each non-marginal node n. (At a marginal node n, there will be a single list N1. For
notational simplicity, we set N2 ≡ N1 at n.) Lists N1 and N2 are formed as follows.
[1] FromAwe select those rules which would be eliminated at node n, using the chosen
ε, for every possible combination of trade-off parameters. This is done by extending
all parameter ranges at n to their maximum possible values. The eliminated rules are
put in N1.
[2] We then introduce the restriction that the specified parameter ranges at n must fall
within the feasible region that we have elicited for these parameters, and determine the
further rules which are eliminated. Any additional rules eliminated, which are not in
N1, form N2. ( At a marginal node there are no trade-off parameters so we obtain a
single list.)
[3] For ease of interpretation, we modify the selection algorithm, at both steps [1]
and [2], so that any rules which are not eliminated at the child node of node n are
automatically retained at node n.

The resulting lists can be displayed on a diagram of the utility hierarchy so that
the elimination of a particular rule can be traced to its roots. Looking first at marginal
nodes, and moving towards the overall utility, we see the effect of gradually reducing
the range of possible parameter values by introducing ranges at the various nodes. This
allows alternatives to be eliminated progressively and we can observe the effect on
the retained list of each new node. We may eliminate A at a child node n if there is
a retained choice B for which B �ε A. This dominance may be a consequence of
restrictions imposed on the trade-off parameters at n or this may be because B �ε′ A
at each parent node of n, where ε′ is sufficiently small to ensure that B �ε A at n,
whatever the trade-off parameters at that node. In the latter case, we mark rule A with
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an asterisk on the diagram at n, to indicate this. We now show that, when n is an
additive node, the value ε′ = ε is sufficient for this purpose, if n is binary, ε′ = ε/2 is
sufficient and, if n is multiplicative with s components, ε′ = ε/s is sufficient.

5.3 Stepwise elimination

When we have many alternatives to compare, it is often computationally simplest to de-
termine ε-preference at the lower levels of the hierarchy, as there are fewer trade-offs
to consider. Therefore, it is natural to consider whether dominance at all parent nodes
implies dominance for the corresponding child node, as this may suggest ways to re-
duce the number of competing alternatives that we must consider, leading to substantial
simplifications in the algorithm of section 5.2.

For additive nodes, as we shall show, the relationship is very simple, namely that if
A �ε B at every parent of a node N , then A �ε B at N . For binary and multiplicative
child nodes the relation is more complicated, as the utility at the child node involves
the product of the parent utilities and so, in general, is not deducible from the parent
utilities. The special case where we may deduce the child utility from the parent util-
ities corresponds to the condition that the parents of any binary or multiplicative node
are stochastically independent, given any decision in D. We call an SIIH in which this
condition holds a simple imprecise stochastic independence hierarchy (SISIH). Simi-
larly an IIH with this additional property is called an imprecise stochastic independence
hierarchy (ISIH). In a SISIH or ISIH the utility of a decision at any node may be calcu-
lated directly from the utilities of the decision at the parent nodes and the values of the
trade-off parameters. The following theorem shows that ε-preference is preserved at
additive nodes and that it is conservatively modified to ε/2-preference at binary nodes
or ε/s-preference at multiplicative nodes.

Theorem 1 If, for two alternatives A,B, we have A �ε B at every parent of a node
N with s parents, then (i) in a SISIHA �ε′ B atN where ε′ = ε in additive nodes and
ε′ = 2ε − ε2 in binary nodes, (ii) in an ISIH, A �ε′ B at N where ε′ = ε in additive
nodes and ε′ = 1− (1− ε)s in binary and multiplicative nodes.

Proof: Let the utility of alternative D at parent i be UiD. By the stochastic inde-
pendence assumption expectations of all necessary products of parental utilities are the
products of the expectations. Because the utility at N is increasing in every parental
utility, and therefore, given independence where necessary, in their expectations, to at-
tain the minimum for dAB we must set each UiA −UiB to its minimum value, i.e. −ε.
Therefore we set UiB = UiA + ε.

1. Additive nodes. In this case dAB =
∑
aiUiA−

∑
aiUiB . SettingUiB = UiA+ε

we obtain dAB = −ε.

2. Binary nodes. In this case

dAB = a1(U1A − U1B) + a2(U2A − U2B) + h(U1AU2A − U1BU2B).
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Setting UiB = UiA + ε,

dAB = −a1ε− a2ε+ h{U1AU2A − (U1A + ε)(U2A + ε)}
= −a1ε− a2ε+ h{−U1Aε− U2Aε− ε2}. (9)

(a) h < 0 With h < 0, (9) is minimised by making U1A, U2A as small as
possible, i.e. U1A = U2A = 0. Hence (9) becomes dAB = −a1ε − a2ε −
hε2. The minimum of this must be at one of the vertices of the permissible
region for a1, a2, h and it is easily confirmed that it occurs when a1 = a2 =
1, h = −1 in which case dAB = −2ε+ ε2.

(b) h > 0 With h > 0, (9) is minimised by making U1A, U2A as large as pos-
sible, i.e. U1A = U2A = 1− ε. Hence (9) becomes dAB = −a1ε− a2ε−
h(−2ε+ε2). The minimum of this must be at one of the vertices of the per-
missible region for a1, a2, h and it is easily confirmed that it occurs when
a1 = a2 = 0, h = 1 in which case dAB = −2ε+ ε2.

3. Multiplicative nodes. With k 6= 0 we can write

dAB =
∏

(1 + kaiUiA)−
∏

(1 + kaiUiB)∏
(1 + kai)− 1

.

Setting UiB = UiA + ε we obtain

dAB =
∏

[1 + kaiUiA]−
∏

[1 + kai(UiA + ε)]∏
[1 + kai]− 1

. (10)

This is linear in any single UiA with gradient

∂dAB
∂UiA

= kai

{∏
j 6=i[1 + kaiUiA]−

∏
j 6=i[1 + kai(UiA + ε)]∏

[1 + kai]− 1

}
.

Since
∏
j 6=i[1+kaiUiA]−

∏
j 6=i[1+kai(UiA+ε)] < 0 the sign of this derivative

is that of −k.

(a) k < 0 With k < 0 (10) is minimised by making UiA as small as possible,
i.e. UiA = 0. Hence (10) becomes

dAB =
1−

∏
[1 + kaiε]∏

[1 + kai]− 1
.

Choose any j in 1 ≤ j ≤ s and let kaj → −1, its upper limit. Then

dAB → (1− ε)
∏
i6=j

(1 + kaiε).

This is clearly minimised by letting every other kai → −1 so the minimum
of dAB is (1− ε)s − 1.
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(b) k > 0 With k > 0, (10) is minimised by making UiA as large as possible,
i.e. UiA = 1− ε. Hence (10) becomes

dAB =
∏

[1 + kai(1− ε)]−
∏

[1 + kai]∏
[1 + kai]− 1

Choose any j in 1 ≤ j ≤ s and hold kaj constant while letting every other
kai →∞. Then

dAB →
[1 + kaj(1− ε)](1− ε)s−1

(1 + kaj)
− 1.

This is minimised by letting kaj → ∞. Hence the minimum of dAB is
(1− ε)s − 1.

2

Observe that, for each node-type, the case ε = 0 implies that Pareto dominance for
all parents always implies Pareto dominance for the corresponding child node.

We may therefore adjust the elimination procedure as follows. Our overall aim
is as for the algorithm in section 5.2, namely to eliminate rules at stated levels of ε
preference. If the overall node is an additive node, then a sufficient condition to ensure
ε preference at this node is to require ε preference for each parent. Alternately, if the
overall node is a binary node, then we must reduce the value of ε that we require at
all parent nodes, so that the required value of ε will apply at the overall utility node.
As a conservative approximation, we may divide ε by 2 to obtain, roughly, the value
required. Simlarly, at a multiplicative node, we divide ε by s. We may continue in this
fashion, working down from the top to the bottom of the hierarchy, and every time we
pass down through a binary node, dividing ε by 2 and every time we pass down through
a multiplicative node, dividing ε by s to obtain, conservatively, the required threshold
for ε-preference at that node. Our algorithm now proceeds as follows (replacing P with
P ∗ where there are multiplicative nodes).
[1] We evaluate the utility of each alternative at each of the marginal nodes.
[2] At any stage some of the nodes are considered to be entered. Initially the marginal
nodes and no others are entered. At each subsequent stage we enter one more node,
each one only after all of its predecessors have already been entered. Any node which
is entered but whose successor is not is said to be active.
[3] At each stage, at each active node n we determine, for each ordered pair A,B
of retained alternatives, the value of mAB = infP (n)(dAB(θ)). We now consider ε-
preference over all active nodes. This allows us to eliminate at this stage any alternative
B to which another, retained, alternativeA is ε-preferred at all active nodes. IfA �ε B
at all of these nodes then it must be ε′-preferred at all succeeding nodes, where ε′ may
differ from ε because of binary or multiplicative nodes. The algorithm is the same as
before except that, if nodes n1, . . . , ns are active, the values of MAB and mAB are
taken over

⋃s
i=1 P (ns). Much of the calculation required as each node is entered will

already have been done when its predecessors were introduced. The list of alternatives
eliminated as each node is entered is displayed.
[4] We continue until we reach the overall utility node.

17



Table 4: Selecting alternatives for retention: order of elimination.

Order Alternative ε Order Alternative ε
A 13 1, 3, 1, 1, 3, 2 H 6 1, 3, 3, 3, 3, 2 0.0105
B 12 2, 3, 1, 3, 3, 2 0.0403 I 5 2, 3, 3, 3, 3, 2 0.0105
C 11 1, 3, 1, 3, 3, 2 0.0205 J 4 1, 3, 1, 1, 1, 2 0.0103
D 10 1, 3, 1, 1, 1, 3 0.0180 K 3 2, 3, 1, 1, 1, 2 0.0079
E 9 1, 3, 1, 1, 3, 3 0.0145 L 2 1, 3, 1, 1, 1, 1 0.0040
F 8 2, 3, 1, 1, 3, 2 0.0135 M 1 2, 3, 3, 3, 2, 2 0.0032
G 7 1, 3, 1, 3, 3, 3 0.0105

[5] It is possible that an alternative A may be eliminated at some stage because there is
another retained alternative B which is ε-preferred to A, but at a later stage B may be
also dropped. As ε-preference is not transitive, we check at the final stage whether we
should reinstate any alternatives dropped at earlier stages by searching among the alter-
natives we have eliminated for any to which no retained alternative is now ε-preferred.

If the stochastic independence condition that we require for an SISIH or ISIH does
not hold at all binary nodes in a SIIH or at all binary and multiplicative nodes in an IIH,
then we need to modify the stepwise procedure. Starting from the overall utility node,
we work downwards and determine the lowest node, down each branch, which can be
reached without passing through any binary or multiplicative nodes which violate the
independence condition. Where such a node is not a marginal node, we cannot assume
that dominance and equivalence can be lifted from the marginal nodes up to this node
and so we need to evaluate directly expected utilities at this node looking at the vertices
of the region defined by the ranges at this node and its predecessors.

5.4 Example: eliminating alternatives

In the example, we have found 13 Pareto optimal rules. Applying the algorithm in
section 5.2 we obtain the results in Table 4. In each case the value of ε given is the value
at which it becomes possible to eliminate the rule. For example, it becomes possible to
eliminate alternative B = (2, 3, 1, 3, 3, 2) only when ε is increased to 0.0403.

A reasonable choice to balance our wish that ε should be small with our aim to
eliminate many decisions is the value ε = 0.012. At the central value of the parameters
at node U, this would correspond to a change of 0.02 in UC , which corresponds to a
change of £150 in the overall cost of the module. Such a change would be of little
consequence. Using our chosen value of ε = 0.012 we retain only the first six choices.
The fact that teaching method 3 is used for unit 2 in each of these is because the open
learning material is already written for this unit, hence the lower cost.

The first five alternatives in the ε-preference ordering at node Q are M,F,K,B,J.
Only the first three, M,F and K would be retained with ε = 0.012. One of these is also
in the retained list at the overall utility node and the other two would be if we reduced
the effective value of ε to 0.003. The extra retained rules in the overall list show the
influence of NodeC on the final choice. At Node S only rule K (2,3,1,1,1,2) is retained
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and at node V only rule M (2,3,3,3,2,2) is retained when ε = 0.012. Each of these is
retained at NodeQ. The contrast between these two highlights an interesting difference
between what might be done for the “student” and “University” interests.

The results of the top-down exploration of the elimination of the seven rules G, . . . ,
M are displayed on figure 1, with ε = 0.012. At each node, list 1, of the rules elimi-
nated regardless of the parameter values, is displayed below the node name and list 2,
of the additional rules eliminated when the ranges are introduced, is shown above. We
see that G,H,I are eliminated everywhere and we can discard them with confidence.
Rule J is eliminated everywhere except at Node S1. The financially more costly rules
M,K are only eliminated at Node C. The most pronounced conflict appears to be be-
tween financial cost and the other attributes. Notice that it is necessary to introduce the
parameter range at node U before any rules, other than L, are eliminated. In contrast, in
the sub-hierarchy under nodeQ, rules tend to be eliminated without the need to specify
the range. Indeed the asterisks indicate that, in many cases, there are rules which are
ε-preferred across all of the parents of a node. Overall our exploration suggests that
the choices in this example are relatively insensitive to the imposition of the parameter
ranges, with the possible exception of node U.

Applying the stepwise procedure of section 5.3 over the SISIH, makes no difference
in our example. None of the rules A-M is eliminated until the overall utility node U is
entered. Then G-M are eliminated as before. This can be attributed to the fact that the
main conflict of utilities among A-M is between financial cost and module quality.

The last rule to be eliminated in table 4 is Rule A. This is also the rule chosen if we
apply the boundary linear utility with equal weights on all vertices. Table 5 gives the
first eighteen lines of a list of all alternatives, whether Pareto optimal or not, ordered
according to the smallest value of ε, given in the final column, at which they are just ε-
preferred to A. Here A is denoted A1, Rules A1-A4 have the same utility everywhere in
R.We can see that they only differ in the position of one of the two open-learning units,
the other being Unit 2. A choice between these four rules might be made, for example,
on timetabling grounds. No other rule has a critical ε value with respect to A of less
than 0.012. The next group, N1-N2, the members of which are not Pareto optimal, have
a critical ε value of 0.0138 and differ from A1-A2 only in that the methods for Units 3
and 6 are exchanged. Unexpected circumstances might make this advantageous and we
see that little would be lost in terms of overall utility by this change. The first Pareto
optimal rule to appear in the list after A1-A4 is Rule J in seventeenth place.

In more complicated applications we could repeat the calculation used to produce
table 5 at each node, working our way up the hierarchy, and adjusting the value of ε
according to theorem 1 to explore why particular rules are being selected. Another pos-
sibility might be a formal introduction of secondary criteria, in a second stage analysis,
to help choose between rules which are almost equivalent in our initial analysis.

The example analysis leads us to conclude that one of A1-A4 would be a good
choice, without having to collapse our trade-off ranges to give a fully specified utility
function. Our example was chosen to be small enough to use as an illustration and
many problems could involve much larger decision spaces and much greater potential
for disagreement between stakeholders but this makes our approach to structuring the
decision problem and reducing the number of potential choices even more important.
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Table 5: Alternatives almost preferable to A.

Order Alternative ε Order Alternative ε
A1 1 1, 3, 1, 1, 3, 2 0.0000 O2 9 1, 3, 1, 2, 1, 3 0.0147
A2 1 1, 3, 1, 3, 1, 2 0.0000 O3 9 1, 3, 1, 2, 3, 1 0.0147
A3 1 1, 3, 3, 1, 1, 2 0.0000 O4 9 1, 3, 1, 3, 2, 1 0.0147
A4 1 3, 3, 1, 1, 1, 2 0.0000 O5 9 1, 3, 3, 1, 2, 1 0.0147
N1 5 1, 3, 2, 1, 1, 3 0.0138 O6 9 1, 3, 3, 2, 1, 1 0.0147
N2 5 1, 3, 2, 1, 3, 1 0.0138 O8 9 3, 3, 1, 1, 2, 1 0.0147
N3 5 1, 3, 2, 3, 1, 1 0.0138 O9 9 3, 3, 1, 2, 1, 1 0.0147
N4 5 3, 3, 2, 1, 1, 1 0.0138 J 17 1, 3, 1, 1, 1, 2 0.0169
O1 9 1, 3, 1, 1, 2, 3 0.0147 P1 18 2, 3, 1, 1, 1, 3 0.0169
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