
Chapter 6

Multivariate extremes
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6.1 Introduction

In this section we consider the problems we face if we wish to
model the extremal behaviour of two or more (dependent)
processes simultaneously .

There are several reasons why we may wish to do this:

to model the extreme behaviour of a particular variable
over several nearby locations (e.g. rainfall over a network
of sites – simultaneous flooding at several locations could
cause devastation);
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6.1 Introduction

to model the joint extremes of two or more different
variables at a particular location (e.g. wind and rain at a
site – the combined effects of wind and rain during a
hurricane can result in extreme storm surge);

to model the joint behaviour of extremes which occur as
consecutive observations in a time–series (e.g.
consecutive hourly maximum wind gusts during a storm).
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6.1. Introduction

All of these problems suggest fitting an appropriate limiting
multivariate distribution to the relevant data.

However, as we shall see, the derivation of such a multivariate
distribution is not as easy as we might hope.

The analogy with the Normal distribution as a model for means
breaks down as we move into n dimensions!

It is not even clear what the ‘ relevant data ’ should be!

Most of the increased complexity is apparent in the move from
1 to 2 dimensions, so we will focus largely on bivariate
problems .
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6.2.1 Example: Rainfall at 8 locations in Scotland

Suppose we want to study the joint extremes of daily rainfall
accumulations at the network of 8 sites is southwest Scotland
shown in Figure 6.1.
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6.2.1 Example: Rainfall at 8 locations in Scotland

Such issues are of great interest, especially currently – given
the severe flooding experienced in the U.K.

Suppose we have sequences of daily total rainfall at each
location.

There is likely to be strong inter–site dependence extremes,
in the sense that days with heavy rain are liable to occur
simultaneously across locations.

The raw multivariate observations are 8–dimensional vectors of
the daily rainfall over the eight sites.
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6.2.1 Example: Rainfall at 8 locations in Scotland

Now suppose we wish to take a block–maxima approach, with
‘blocks’ being years.

For any given year, the 8–dimensional vector of annual maxima
is unlikely to be one of the raw multivariate observations.

Let’s simplify to the bivariate case: Let (X1,Y1), (X2,Y2), . . . be
i.i.d. vectors with distribution function F (x , y).
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6.2.1 Example: Rainfall at 8 locations in Scotland

Now consider the componentwise block maxima

Mx,n = max
i=1,...,n

{Xi} and My ,n = max
i=1,...,n

{Yi}.

We define the vector of componentwise maxima to be

Mn = (Mx,n,My ,n).

Mn is not necessarily one of the original observations (Xi ,Yi).
Nevertheless, we are interested in the limiting behaviour of Mn

as n → ∞.
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6.2.1 Example: Rainfall at 8 locations in Scotland

The first point to note is that standard univariate extreme
value results apply in each margin.

When considering the dependence, this allows us to make a
simplifying assumption.
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6.2.1 Example: Rainfall at 8 locations in Scotland

We assume that the Xi and Yi variables have a known marginal
distribution. It is convenient to assume a unit Fréchet
distribution (see Chapter 2), which has CDF

F (z) = exp(−1/z), z > 0.

This gives rise to a very simple normalisation of maxima:

Pr(Xi < x) = Pr(Mx,n/n < x) = exp(−1/x), x > 0,

(and similarly for Yi ). So if we consider the re–scaled vector

M∗

n =

(
max

i=1,...,n
{Xi}/n, max

i=1,...,n
{Yi}/n

)
,

the margins are unit Fréchet for all n, and hence we can
characterise the limiting joint behaviour of M∗

n without having to
worry about the margins.
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6.2.1 Example: Rainfall at 8 locations in Scotland

Unfortunately no limiting parametric family exists (for bivariate
extremes, or multivariate extremes in general)!
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6.2.2 Limiting distributions for bivariate extremes

Let M∗

n = (M∗

x,n,M
∗

y ,n) be the normalised maxima as above,
where the (Xi ,Yi) are i.i.d. with standard Fréchet marginal
distributions.

Then if
Pr(M∗

x,n,M
∗

y ,n) → G(x , y),

where G is non–degenerate, then G has the form

G (x , y) = exp {−V (x , y)} ; x > 0, y > 0 (6.1)

where:

V (x , y) = 2
∫ 1

0
max

(
ω

x
,
1 − ω

y

)
dH (ω) (6.2)

and H is a distribution function on [0,1] satisfying the mean
constraint: ∫ 1

0
ω dH (ω) = 0.5. (6.3)
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6.2.2 Limiting distributions for bivariate extremes

Hence the class of bivariate extreme value distributions is in
one-to-one correspondence with distribution functions H
satisfying the constraint (6.3).

If H is differentiable with density h, then (6.1) becomes

V (x , y) = 2
∫ 1

0
max

(
ω

x
,
1 − ω

y

)
h(ω)dω.

However some simple models arise when H is not
differentiable. For example, if H places mass 0.5 on each of
ω = 0 and ω = 1, then we get

G(x , y) = exp{−(x−1 + y−1)}, x > 0, y > 0,

corresponding to independent x and y .
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6.2.2 Limiting distributions for bivariate extremes

Since the GEV provides the complete class of marginal limit
distributions, then the complete class of bivariate extreme
value distributions is obtained as follows.

If we suppose X and Y are GEV with parameters (µx , σx , ξx)
and (µy , σy , ξy ) respectively, then the transformations

x̃ =

[
1 + ξx

(
x − µx

σx

)]1/ξx

and ỹ =

[
1 + ξy

(
y − µy

σy

)]1/ξy

obtain unit Fréchet margins.
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6.2.2 Limiting distributions for bivariate extremes

Hence
G(x , y) = exp{−V (x̃ , ỹ)}

is a bivariate extreme value distribution with the appropriate
margins for valid V (.).

MAS8304: Environmental Extremes



6.3.1 Example: wave–surge data at Newlyn, Cornwall

Here, we choose a different type of example of dependence to
the rainfall problem considered in Section 6.2.1.

Specifically, we consider two variables recorded concurrently at
the same site .

A series of 3–hourly measurements on sea–surge were
obtained from Newlyn, southwest England, giving, at each time
point,

(i) measurements of the wave height (in metres)

(ii) measurements of the surge height (in metres)
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6.3.1 Example: wave–surge data at Newlyn, Cornwall

Figure 6.2 shows these two variables plotted against each
other.

This plot suggests a tendency for extremes of one variable to
coincide with extremes of the other.

This dependence could be important – the impact of an event
that is simultaneously extreme in both variables is likely to be
much greater than if extremes of either component occurred in
isolation.
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6.3.1 Example: wave–surge data at Newlyn, Cornwall
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6.3.2 Componentwise maxima to threshold excesses

Now we want to define our bivariate extremes as those
observations which exceed a threshold in one or other margin.

For our bivariate observation (X ,Y ), let’s focus on X .

We have already seen that the distribution function for the
exceedances of a threshold u by a variable X , conditional on
X > u for large enough u, is given by:

H(x) = 1 − λux

{
1 +

ξx (x − ux)

σx

}
−1/ξx

defined on {x − ux : x − ux > 0 and (1 + ξx (x − ux) /σx ) > 0},
where ξx 6= 0, σx > 0, and λux = Pr (X > ux).
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6.3.2 Componentwise maxima to threshold excesses

Now we can obtain a unit Fréchet margin with the
transformation :

x̃ = −

(
log

{
1 − λux

[
1 +

ξx (x − ux)

σx

]
−1/ξx

})
−1

. (6.4)

If we apply the analogous transformation in the Y margin, we
obtain

G (x , y) = exp {−V (x̃ , ỹ)} ; x > ux , y > uy ,

where V (x , y) is as defined in Equation (6.1), again satisfying
the mean constraint in Equation (6.3).
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6.4 Modelling bivariate extremes in practice

In practice, modelling usually involves identifying a parametric
sub–family with appropriate flexibility to handle the structure
inherent in the data.

Models can be fitted, e.g. by maximum–likelihood estimation,
either:

two steps (marginal components followed by dependence
function), or

or in a single sweep

All of these procedures, including the choice of models, are
handled in a very similar way when dealing with either bivariate
componentwise maxima or bivariate threshold exceedances.
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6.4.1 Modelling the dependence structure

The class of bivariate extreme value models contains many
families of distributions which can be used to model the
dependence structure in the data.

The dependence structure must satisfy the conditions on H (ω).

Possible choices are:

Logistic Model — symmetric

Negative Logistic Model

Bilogistic Model — asymmetric

Dirichlet Model

Here we will focus on the logistic model and the bilogistic model
as two commonly used but contrasting choices.
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6.4.1 Modelling the dependence structure

Symmetric dependence

X depends on Y to exactly the same degree that Y
depends on X

They both have the same influence over each other

Asymmetric dependence

X has greater influene over Y than Y has over X (or
vice–versa)

Example: Wind speeds at two nearby locations in the U.K.
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1. The Logistic model

Here, for V (x , y) in Equation (6.1), we have
(

x−1/α + y−1/α
)α

,

where x > 0, y > 0 and α ∈ (0,1), giving

G(x , y) = exp
{
−
(

x−1/α + y−1/α
)α}

.

α → 1 corresponds to independent variables.

α → 0 corresponds to perfectly dependent variables.

This model is symmetric — the variables are
exchangeable.
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2. The Bilogistic model

Now we have the following form for V (x , y):

−xγ1−α − y (1 − γ)1−β ,

where 0 < α < 1, 0 < β < 1 and γ = γ (x , y ;α, β) is the
solution of:

(1 − α) x (1 − γ)β = (1 − β) yγα

Independence is obtained when α = β → 1 and when one
of α or β is fixed and the other approaches 1.

When α = β the model reduces to the logistic model.

The value of α− β determines the extent of asymmetry in
the dependence structure.
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6.4.2 Likelihood calculations

After transformation to unit Fréchet margins, we can obtain the
probability density function of the chosen dependence model
by differentiation of Equation (6.1) to give g(x , y).

From this, the likelihood can be formed (and maximised) in the
usual way.
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6.4.2 Likelihood calculations

However, inference for the bivariate threshold excess setup is
complicated by the fact that a bivariate pair may exceed a
specified threshold in just one of its components:
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6.4.2 Likelihood calculations

We obtain contributions to the likelihood function for a pair of
observations in the following way, where θ represents the
parameter(s) in our dependence model:

g (x , y ; θ) =





∂2G
∂x∂y

∣∣∣∣
(x̃ ,ỹ)

if (x , y) ∈ Region 1

∂G
∂x

∣∣∣∣
(x̃ ,ũy)

if (x , y) ∈ Region 2

∂G
∂y

∣∣∣∣
(ũx ,ỹ)

if (x , y) ∈ Region 3

G (ũx , ũy ) if (x , y) ∈ Region 4
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6.4.2 Likelihood calculations

Then, we have

L(θ; x , y) =
n∏

i=1

g(x̃i , ỹi).
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Example 6.1: Wave–surge analysis at Newlyn

Consider the wave–surge data from Newlyn, Cornwall, shown
in Figures 6.2 and 6.3.

Flood defences in Newlyn have been designed to withstand a
sea swell resulting from, at most, a wave height of
x = 9metres combined with a surge height of y = 0.7metres.

A threshold–based approach to modelling is to be used for the
wave–surge data shown in Figures 6.2 and 6.3.

Mean residual life plots suggest marginal thresholds of
ux = 6.1metres and uy = 0.32metres (as shown in Figure 6.2)
for identifying wave height and surge height as extreme.
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Example 6.1: Wave–surge analysis at Newlyn

(a) Assuming extreme wave heights occur independently of
extreme surge heights, find the probability that the flood
defence system in Newlyn will be overwhelmed.
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Example 6.1: Solution to part (a)

Assuming independence, we have

Pr(flood defence fails)

= Pr(X > 9)× Pr(Y > 0.7)

= λ̂ux

[
1 + ξ̂x

(
9 − ux

σ̂x

)]
−1/ξ̂x

+

× λ̂uy

[
1 + ξ̂y

(
0.7 − uy

σ̂y

)]
−1/ξ̂y

+

= 0.049
[
1 − 0.188

(
9 − 6.1
1.334

)]1/0.188

+

×0.051
[
1 − 0.041

(
0.7 − 0.32

0.093

)]1/0.041

+

= 0.002995× 0.000583 = 0.00000175.
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Example 6.1: Wave–surge analysis at Newlyn

(b) Now assume there is extremal dependence between
wave height and surge height.

(i) Assuming the logistic model for this dependence, obtain the
likelihood contributions to L(α; xi , yi) if (1) both x > ux and
y > uy ; (2) only x > ux ; (3) only y > uy ; (4) neither x nor y
exceed their marginal thresholds.
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Example 6.1: Solution to (b)(i)

For the logistic model, we have

G(x , y) = exp
{
−
(

x−1/α + y−1/α
)α}

.

Region 1:

If x > ux and y > uy , then we are in Region 1 of Figure 6.3,
and so

g(x , y ;α) =
∂2G
∂x∂y

.
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Example 6.1: Solution to (b)(i)

Differentiating w.r.t. x gives

∂G
∂x

= exp
{
−
(

x−1/α + y−1/α
)α}

×− α
(

x−1/α + y−1/α
)α−1

× (−1/α)x−(1/α+1)

= exp
{
−
(

x−1/α + y−1/α
)α}(

x−1/α + y−1/α
)α−1

x−(1/α−1).

MAS8304: Environmental Extremes



Example 6.1: Solution to (b)(i)

Differentiating the result w.r.t. y then gives (after some algebra)

∂2G
∂x∂y

= (xy)−(1/α+1)
(

x−1/α + y−1/α
)α−2

×
[(

x−1/α + y−1/α
)α

− (1 − 1/α)
]

×exp
{
−
(

x−1/α + y−1/α
)α}

= (x̃ ỹ)−(1/α+1)
(

x̃−1/α + ỹ−1/α
)α−2

×
[(

x̃−1/α + ỹ−1/α
)α

− (1 − 1/α)
]

×exp
{
−
(

x̃−1/α + ỹ−1/α
)α}

,

evaluated at x = x̃ and y = ỹ .
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Example 6.1: Solution to (b)(i)

Region 2:

If only x > ux , then we are in Region 2 of Figure 6.3, and so

g(x , y ;α) =
∂G
∂x

.
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Example 6.1: Solution to (b)(i)

Thus, we have

∂G
∂x

= exp
{
−
(

x−1/α + y−1/α
)α}(

x−1/α + y−1/α
)α−1

x−(1/α+1)

= exp
{
−
(

x̃−1/α + ũ−1/α
y

)α}(
x̃−1/α + ũ−1/α

y

)α−1
x̃−(1/α+1)

evaluated at x = x̃ and y = ũy .
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Example 6.1: Solution to (b)(i)

Region 3:

If only y > uy , then we are in Region 3 of Figure 6.3, and so

g(x , y ;α) =
∂G
∂y

.
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Example 6.1: Solution to (b)(i)

Thus, in a similar fashion, we have:

∂G
∂y

= exp
{
−
(

ũ−1/α
x + ỹ−1/α

)α}(
ũ−1/α

x + ỹ−1/α
)α−1

ỹ−(1/α+1)

evaluated at x = ũx and y = ỹ .
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Example 6.1: Solution to (b)(i)

Region 4:

If both x and y are sub–threshold, then we are in Region 4 of
Figure 6.3. Thus,

g(x , y ;α) = G(ũx , ũy ) = exp
{
−
(

ũ−1/α
x + ũ−1/α

y

)α}
.
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Example 6.1: Wave–surge analysis at Newlyn

(ii) Use the evd function fbvpot to fit the logistic model with
likelihood contributions you identified in part (i). Show your
estimated dependence parameter α, with it’s standard
error.

[Demo in R]

MAS8304: Environmental Extremes



Example 6.1: Wave–surge analysis at Newlyn

(iii) Using your fitted model in (ii), find the probability that the
flood defence system in Newlyn will be overwhelmed.
Compare your answer to that in part (a).
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Example 6.1: Solution to part (b)(iii)

Assuming extremal dependence, we have

Pr(Flood defence fails) =

1 − G
(

9̃, 0̃.7
)

= 1 − exp

{
−

(
9̃−1/0.764 + 0̃.7

−1/0.764
)0.764

}
.

Using our estimated marginal GPD parameters from the output
above, and the transformation given by Equation (6.4), we have

9̃ = 321.4721 0̃.7 = 1161.417.
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Example 6.1: Solution to part (b)(iii)

This gives, on substitution into the above expression,

Pr(Flood defence fails)

= 1 − exp
{
−
(

321.4721−1/0.764 + 1161.417−1/0.764
)0.764

}
= 0.00354.

Although this probability is small:

It’s more than 2000 times larger than the probability
obtained assuming independence!

Assuming independence gives us a false sense of
security −→ grossly underestimates the chance of the
flood defence being overwhelmed

This is typical of what happens when we ignore extremal
dependence!
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Example 6.1: Wave–surge analysis at Newlyn

(c) Check for the presence of asymmetry in the dependence
structure.

[Demo in R]
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