
Chapter 5

Non–stationary extremes
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5.1 Introduction

In the context of environmental processes, it is common to
observe non–stationarity :

different seasons having different climate patterns

long term trends owing to climate change

The models from chapters 2 and 3 assume that the
observations used are IID!
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5.1 Introduction

We examined the effects of dependence in Chapter 4:

Likely that consecutive extremes of wind or rain will be
correlated

Block maxima: Doesn’t matter – provided we can assume
long–range independence (Leadbetter’s D(un) condition),
then the GEV still appropriate

Threshold exceedances: Not quite so straightforward,
although we can decluster , and fit the GPD to cluster
peak excesses ? Problems?
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5.1 Introduction

To date, no general theory for non–stationary extremes has
been established.

In practice, it is common to adopt pragmatic ‘workarounds’
based on the type of non–stationarity observed.

For this reason, in this Chapter we will give some specific
examples of how practitioners have dealt with non–stationarity
in recent work and publications.

MAS8304: Environmental Extremes



5.2 Annual maximum sea levels in Venice

Recall question 4 in problems sheet 2 , which investigated the
use of the r–largest order statistics model for extreme sea
levels at Venice (1961–2011).

These data are available to download from the course
webpage.
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5.2 Annual maximum sea levels in Venice

Demonstration in R
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5.2 Annual maximum sea levels in Venice

One way of capturing the trend observed in the Venice annual
maxima is to allow the GEV location parameter µ to vary across
time.

From Figure 5.1, a simple linear trend in time seems plausible
for our annual maximum sea levels X , and so we could use the
model

Xt ∼ GEV(µ(t), σ, ξ),

where
µ(t) = β0 + β1t (5.1)

and t is an indicator of year.
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5.2 Annual maximum sea levels in Venice

µ(t) = β0 + β1t :

Variations over time modelled as a linear trend in the
location parameter

β1 represents the slope – in this case, the annual rate of
change in sea–level maxima at Venice

The time–homogeneous model is a special case of this
time dependent model, with β1 = 0...

...since this is nested within the model which allows for a
time dependence, the deviance statistic can be used to
formally compare models (see later)
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5.2.1 Parameter estimation

Recall the log–likelihood function for the GEV:

ℓ(µ, σ, ξ;x) = −mlogσ − (1/ξ + 1)
m
∑

i=1

log
[

1 + ξ

(

xi − µ

σ

)]

+

−
m
∑

i=1

[

1 + ξ

(

xi − µ

σ

)]

−1/ξ

+

,

where m is the number of block maxima x1, x2, . . . , xm.
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5.2.1 Parameter estimation

We simply replace µ in the above expression with equation
(5.1), giving

ℓ(β0, β1, σ, ξ;x , t) = −mlogσ

−(1/ξ + 1)
m
∑

i=1

log
[

1 + ξ

(

xi − (β0 + β1t)
σ

)]

+

−

m
∑

i=1

[

1 + ξ

(

xi − (β0 + β1t)
σ

)]

−1/ξ

+

,

with the usual replacement when ξ = 0.
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5.2.1 Parameter estimation

Could maximise ℓ(β0, β1, σ, ξ;x , t) ‘from first principles’
using nlm

However, easier to do in the ismev package!

Demonstration in R
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5.2.1 Parameter estimation

Thus, we have

β̂0 = 96.986(4.249) β̂1 = 0.564(0.139)

σ̂ = 14.584(1.578) ξ̂ = −0.027(0.083)

(with standard errors in parentheses).

This gives:
µ̂(t) = 96.986 + 0.564t ,

giving an estimated increase in maximum sea levels at Venice
of about 0.564cm per year.
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5.2.1 Parameter estimation

For example, the estimated value for µ in the year 2013 would
be

µ̂(53) = 96.986 + 0.564 × 13 = 116.878;

we could, of course, use the delta method to obtain the
corresponding standard error.

Using this simple linear model, we can estimate µ for
t = 1,2, . . . ,51 to cover the years for which we have data (i.e.
1961, 1962, . . . , 2011).
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5.2.1 Parameter estimation
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5.2.2 Model choice

Fitting a completely stationary model to the set of annual
maxima, as you did in question 4(a) of problems sheet 2, gives:

gev.fit(venice.anmax)

$conv
[1] 0

$nllh
[1] 222.7145

$mle
[1] 111.09925486 17.17548761 -0.07673265

$se
[1] 2.6280071 1.8033672 0.0735214
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5.2.2 Model choice

Questions:

Is the non–stationary model worthwhile?

Is the trend we observe in Figure 5.1 significant ?

In other words, does the non–stationary model provide an
improvement in fit over the simpler model shown here?

MAS8304: Environmental Extremes



5.2.2 Model choice

We can use a version of the result in Section 2.4 (page 41) to
address this question.

Generally, maximum likelihood estimation of nested models
leads to a simple test procedure of one model against the other.

With models M0 ⊂ M1, we define the deviance statistic as

D = 2 {ℓ1(M1)− ℓ0(M0)} ,

where ℓ1(M1) and ℓ0(M0) are the maximised log–likelihood
under models M1 and M0 respectively.

Asymptotically, D ∼ χ2
k , where k = dim(M1)− dim(M0).
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5.2.2 Model choice

Formally,
H0 : M1 = M0.

Thus, large values of D suggest that the increase in model size
has been worthwhile, and that model M1 explains substantially
more of the variation in the data than M0.
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5.2.2 Model choice

Suppose

M1: model allowing for linear trend in µ

M0: stationary model
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5.2.2 Model choice

Thus,

D = 2 {−216.0626− (−222.7145)} = 13.3038.

The difference in dimensionality is 1, so the critical value for our
test is

χ2
1(0.05) = 3.841.

Relative to this, our deviance statistic is large: the model which
allows for a linear trend in µ explains substantially more of the
variation in the data than does the simpler stationary model.
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5.2.2 Model choice

We could, of course, use this method to check for a more
complex association through time.

For example, to check for a quadratic trend we might use a
model M2 with the following form for µ:

µ(t) = β0 + β1t + β2t2.

Demonstration in R
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5.2.2 Model choice

Comparing model M2 with model M1 gives

D = 2 {−216.0555− (−216.0626)} = 0.0142,

which is small compared to χ2
1(0.05) = 3.841.

Thus, allowing for a quadratic dependence in time does not
improve on our model which allows for a linear trend through
time, and so we would reject model M2.
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5.2.3 Model diagnostics

Before estimating return levels, we should check the
goodness–of–fit of our model which allows for a linear trend in
µ.

The lack of homogeneity in the distributional assumptions for
each observation, however, mean some modification of the
standard procedures (e.g. probability plots and quantile
plots ) is required.
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5.2.3 Model diagnostics

For example, for the Venice annual maximum sea levels, we
have

Xt ∼ GEV(µ(t), σ, ξ), t = 1,2, . . . ,51,

giving a different GEV in each year indicated by t .

What we need to do is standardise so that we can assume the
Xt are IID across all years t .

Usually, the set of non–stationary annual maxima are
transformed to a common Gumbel distribution with distribution
function F (y) = exp {−e−y}.
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5.2.3 Model diagnostics

We can obtain the required transformation by equating F (yt) to
GEV(xt ; µ̂(t), σ̂, ξ̂) and solving for yt :

exp
{

−e−yt
}

= exp







−

[

1 + ξ̂

(

xt − (β̂0 + β̂1t)
σ̂

)]

−1/ξ̂






e−yt =

[

1 + ξ̂

(

xt − (β̂0 + β̂1t)
σ̂

)]

−1/ξ̂

yt =
1

ξ̂
log

[

1 + ξ̂

(

xt − (β̂0 + β̂1t)
σ̂

)]

,
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5.2.3 Model diagnostics

This gives gives the following transformation to common
Gumbel margins for our Venice annual maxima:

yt = −
1

0.027
log
[

1 − 0.027
(

xt − (96.986 + 0.564t)
14.584

)]

.

Demonstration in R
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5.2.3 Model diagnostics

Now that we have transformed the original data to a single
common distribution, we can apply the standard graphical
diagnostics.

For example, we can compare the empirical probabilities and
quantiles of yt to their theoretical counterparts from the
Gumbel distribution.

Fortunately, the usual command in ismev can be used to
produce these plots for us.

Demonstration in R
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5.2.4 Return level estimation

Recall Equation (2.10) (memorise! ) from Chapter 2 for
estimating return levels from the GEV:

ẑr = µ̂+
σ̂

ξ̂

[

(

−log
(

1 − r−1
))

−ξ̂
− 1
]

.

Since we have a time–varying location parameter
µ̂(t) = β̂0 + β̂1t , we will clearly have time–varying estimates of
return levels ẑr (t).

For example, an estimate of the sea level we might expect to
see in Venice once every 100 years is given by

ẑr (t) = (96.986+0.564t)−
14.584
0.027

[

(

−log
(

1 − 100−1
))0.027

− 1
]

.
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5.2.4 Return level estimation

Figure 5.4 shows how we might expect this estimate to vary for
t = 52,53, . . ., i.e. for the years 2012, 2013, . . . .

We could treat these as forecasts of the 100–year return levels
as we move through time.

obviously, such forecasts will assume the linear trend for µ
continues beyond the range of data we have observed and will,
of course be subject to error (which we can estimate by
constructing point–wise 95% confidence intervals using the
profile log–likelihood, for example).
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5.2.4 Return level estimation
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5.3 Sea levels and the SOI

A different situation which could use the same approach as that
in the previous section is where the extremal behaviour of a
series is related to another variable, rather than time.

For example, studies have revealed a link between annual
maximum sea levels at Fremantle, Australia, and the mean
value of the Southern Oscillation Index (SOI, an indicator of
meteorological volatility due to effects such as El Niño).
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5.3 Sea levels and the SOI
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5.3 Sea levels and the SOI

Thus, the following model for Xt , the annual maximum sea level
at Fremantle in year t , might be suitable:

Xt ∼ GEV(µ(t), σ, ξ),

where
µ(t) = β0 + β1SOI(t), (5.3)

where SOI(t) denotes the mean value of SOI in year t .
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5.3 Sea levels and the SOI

However, the plot in the right–hand–side of Figure 5.5 also
reveals a possible trend in sea levels through time, suggesting

µ(t) = β0 + β1t , (5.4)

where t = 1,2, . . . , as in Example 5.2.
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5.3 Sea levels and the SOI

We can combine Equations (5.3) and (5.4) to allow for a
dependence on time and SOI by letting

µ(t) = β0 + β1SOI(t) + β2t ; (5.5)

however, a technique of forward selection should be used to
check whether or not any of Equations (5.3), (5.4) or (5.5) give
significant improvement over the stationary model.
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5.3 Sea levels and the SOI

Class demonstration in R
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5.4 Rainfall extremes in New York City

Recall Section 3.2 in which we modelled rainfall extremes in
New York using a threshold–based approach.

The Generalised Pareto distribution was applied to rainfall
exceedances over a threshold of u = 30mm, giving estimates
of the scale and shape as

σ̂ = 7.44(0.958) ξ̂ = 0.184(0.101)

(respectively).
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5.4 Rainfall extremes in New York City

Recall that the GPD(σ, ξ) arises from the GEV(µ, σ, ξ), where
the GPD scale parameter is a function of the GEV location and
shape parameters.

Thus, attempting to model any trend in our threshold
exceedances is usually done through linear modelling of the
scale parameter σ (the GPD doesn’t have a location parameter
per se).
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5.4 Rainfall extremes in New York City

Since the scale parameter σ must be positive, we might choose
to model a trend through time as

σ = exp{β0 + β1t}, (5.6)

where t is, once again, an indicator of time.

Class demonstration in R
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5.5 Generalisation

With reference to the examples discussed so far, we could
model non–stationarity through any of the parameters in our
extremal model.

For example, take a non–stationary GEV model to describe the
distribution of Xt , for t = 1,2, . . . ,m:

Xt ∼ GEV(µ(t), σ(t), ξ(t)),

where each of the model parameters have an expression in
terms of a parameter vector β and some covariates.

The likelihood is then

L(xt ;β) =

m
∏

i=1

g(xt ;µ(t), σ(t), ξ(t)),

where g is the GEV density function.
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5.5 Generalisation

From this, we can form the log–likelihood, and then maximise in
the usual way (for example, using nlm in R).

In terms of threshold exceedances Yt , t = 1,2, . . . , k , we could
replace the GEV with the GPD:

Yt ∼ GPD(σ(t), ξ(t)),

with σ being defined as in Equation (5.6) to retain the positivity
of the GPD scale.
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5.6 Wind speed extremes at High Bradfield
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5.6 Wind speed extremes at High Bradfield
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5.6.1. Single season approach

Under the single season approach, an extremal model is fitted
to the extremes of an environmental process from the season
which gives rise to the ‘most extreme’ extremes.

Bradfield wind speeds – use January only

Some appeal: easy to implement , focuses on the most
extreme extremes

But: wasteful of data – especially if we decluster as well!
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5.6.2 Seasonal piecewise approach

It is usual in strongly seasonal climates for the occurrence of
extreme winds to be confined to a certain part of the yearly
cycle.

Example: U.K. −→ unusual for wind damage to occur outside
the period October–March .
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5.6.2 Seasonal piecewise approach

The seasonal variation observed at Bradfield might be
expected: Prolonged, anticyclonic periods more prevalent
during June, July and August.

There is only a point to modelling the extremes which occur in
summer months if we believe that they can help us understand
what happens in winter months, where genuinely large events
can occur.
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5.6.2 Seasonal piecewise approach

For this to be realistic, we must assume that the same
mechanism is responsible for the generation of large gusts
throughout the year −→ it is just the scale of this mechanism
which changes.

Indeed, in temperate climates (such as that of the U.K.), the
same alternating sequence of anticyclones and depressions
leads to most of the storms which occur throughout the year.

The seasonal variability comes from the severity of these
systems.
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5.6.2 Seasonal piecewise approach

Taking the calendar month as our seasonal unit:

For the U.K., experience suggests this might be OK

Strikes a good balance between:

– reflecting the continuous nature of seasonal changes in
climate

– retaining a substantial amount of data for analysis within
each season
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5.6.2 Seasonal piecewise approach

Month (m) um nm σ̂m ξ̂m

1 55.341 28 21.373 (5.358) −0.420 (0.183)
2 41.531 24 15.130 (4.635) −0.226 (0.233)
3 48.100 29 23.277 (6.316) −0.894 (0.259)
4 39.910 29 14.853 (4.448) −0.440 (0.249)
5 31.943 46 9.456 (1.990) −0.158 (0.147)
6 35.670 35 12.329 (2.592) −0.409 (0.143)
7 32.290 36 12.517 (2.609) −0.605 (0.161)
8 32.639 34 10.199 (2.361) −0.203 (0.159)
9 33.232 49 18.772 (3.668) −0.255 (0.138)
10 44.914 34 11.669 (3.533) −0.274 (0.254)
11 48.394 33 14.991 (3.381) −0.225 (0.149)
12 49.341 35 18.681 (4.229) −0.416 (0.166)
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5.6.2 Seasonal piecewise approach

In terms of return level inference , it would not make practical
sense to have monthly varying estimates of the r–year return
level zr .

To include information from all months in our return level
estimation procedure, we solve

12
∏

m=1

H(ẑr ; λ̂um , σ̂m, ξ̂m) = 1 −
1

rny

for ẑr , where H is the GPD distribution function and ny is the
(average) number of observations per year.
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5.6.2 Seasonal piecewise approach

Thus, we need to solve

12
∏

m=1

{

1 − λ̂u

[

1 + ξ̂

(

ẑr − um

σ̂m

)]

−1/ξ̂m

+

}

= 1 −
1

rny

for ẑr , that is

12
∏

m=1

{

1 − λ̂u

[

1 + ξ̂

(

ẑr − um

σ̂m

)]

−1/ξ̂m

+

}

−

(

1 −
1

rny

)

= 0.
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5.6.2 Seasonal piecewise approach

This equation cannot be solved analytically.

Rather, a numerical procedure must be used.

This is easy to do in R using the uniroot procedure.

[Class demonstration in R]
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5.6.2 Seasonal piecewise approach

Return period (r years)
10 50 200 1000

ẑr (st. err.) 102.33 (3.970) 104.59 (15.951) 106.21 (23.793) 108.89 (44.865)

MAS8304: Environmental Extremes



5.6.2 Seasonal piecewise approach

For the standard errors, we use the delta method. However, we
now have:

V =

























λ̂u1 (1−λ̂u1 )

N1
0 . . . 0 . . . 0

0
. . . . . .

...
. . .

...
...

. . . λ̂u12(1−λ̂u12 )

N12
0 . . . 0

0 . . . 0 v1,1 . . . v1,24
...

. . .
...

...
. . .

...
0 . . . 0 v24,1 . . . v24,24

























,

where vi ,j denotes the (i , j)–th term of the variance–covariance
matrix of σ̂m and ξ̂m, m = 1, . . . ,12.
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5.6.2 Seasonal piecewise approach

Hence, by the delta method,

Var(ẑr ) ≈ ∇zT
r V∇zr ,

where

∇zT
r =

[

∂zr

∂λu1

, . . . ,
∂zr

∂λu12

,
∂zr

∂σ1
, . . . ,

∂zr

∂σ12
,
∂zr

∂ξ1
, . . . ,

∂zr

∂ξ12

]

,

evaluated at (λ̂u1 , σ̂1, ξ̂1, . . . , λ̂u12 , σ̂12, ξ̂12).
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5.6.2 Seasonal piecewise approach

As an aside, notice how the estimate of the 50–year return level
wind speed here differs to that when we assumed stationarity in
Section 4.3.2:

Assuming stationarity : ẑ50 = 101.53 knots

Seasonal piecewise : ẑ50 = 104.59 knots

Such discrepancies become more pronounced for
longer–period return levels.
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5.6.3 Smoothly varying seasonal parameters

Various authors (e.g. Fawcett and Walshaw (2006)) have
investigated the use of continuously varying parameters for the
GPD when seasonal variation is present.

For example, Fourier forms can be used to allow the GPD
scale and shape to vary smoothly through time.

However, such analyses for the Bradfield wind speed data
yielded little, if any, improvement over the seasonal piecewise
approach.
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