
Chapter 3

Threshold methods
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3.1 Background and theoretical motivation

Threshold methods use a more natural way of determining
whether an observation is extreme – all observations greater
than some high value (threshold ) are considered.

This allows more efficient use of data and avoids the problems
that can arise as a result of blocking...

...but brings its own problems (see later).

We must first go back and consider the asymptotic theory
appropriate for this new situation.
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3.1 Background and theoretical motivation

Suppose once more that X1,X2, . . . ,Xn is a sequence of IID
random variables having marginal distribution F , and – once
again – let

Mn = max {X1, . . . ,Xn} .
We know from Chapter 2 that

Pr {Mn ≤ x} ≈ G(x),

where

G(x) = exp

{

−
[

1 + ξ

(

x − µ

σ

)]

−1/ξ

+

}

is the Generalised Extreme Value distribution with location,
scale and shape µ, σ and ξ respectively.
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3.1 Background and theoretical motivation

Theorem (Distribution of threshold excess)

For a large enough threshold u, the distribution function of
(X − u), conditional on X > u, is approximately

H(y) = 1 −
(

1 +
ξy
σ̃

)

−1/ξ

+

, (3.1)

defined on y > 0, where

σ̃ = σ + ξ(u − µ). (3.2)
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Outline proof (1/5)

Denote an arbitrary term in the Xi sequence by X . Then it
follows that a description of the behaviour of extreme events is
given by

Pr {X > u + y |X > u} =
Pr(X > u + y ,X > u)

Pr(X > u)

=
Pr(X > u + y)

Pr(X > u)

=
1 − F (u + y)

1 − F (u)
. (†)
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Outline proof (2/5)

From Section 2.1, we know that

Pr {Mn ≤ x} = F n(x) ≈ G(x) = exp

{

−
[

1 + ξ

(

x − µ

σ

)]

−1/ξ

+

}

,

for some parameters µ, σ and ξ. Hence

nlog F (x) ≈ −
[

1 + ξ

(

x − µ

σ

)]

−1/ξ

+

(‡)

MAS8304: Environmental Extremes



Outline proof (3/5)

For large values of x , a Taylor series expansion implies that

log F (x) ≈ −{1 − F (x)} .

Substitution into (‡) gives

n (−{1 − F (u)}) ≈ −
[

1 + ξ

(

u − µ

σ

)]

−1/ξ

+

1 − F (u) ≈ 1
n

[

1 + ξ

(

u − µ

σ

)]

−1/ξ

+

for large u. Similarly, for y > 0,

1 − F (u + y) ≈ 1
n

[

1 + ξ

(

u + y − µ

σ

)]

−1/ξ

+

.
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Outline proof (4/5)

Substitution into (†) then gives

Pr {X > u + y |X > u} =
1 − F (u + y)

1 − F (u)

≈
1
n

[

1 + ξ
(u+y−µ

σ

)]

−1/ξ
+

1
n

[

1 + ξ
(u−µ

σ

)]

−1/ξ
+

=

[

1 + ξ
(u−µ

σ

)

+ ξ y
σ

1 + ξ
(u−µ

σ

)

]

−1/ξ

+

=

[

1 + ξ
(u−µ

σ

)

1 + ξ
(u−µ

σ

) +
ξ y
σ

1 + ξ
(u−µ

σ

)

]

−1/ξ

+

=

[

1 +
ξy

σ + ξ(u − µ)

]

−1/ξ

+
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Outline proof (5/5)

This gives

Pr {X > u + y |X > u} =

[

1 +
ξy
σ̃

]

−1/ξ

+

,

where σ̃ = σ + ξ(u − µ), as required (compare with Equation
3.1 on page 45).

The family of distributions defined by Equation (3.1) is known
as the Generalised Pareto family ; the distribution itself is often
referred to as the Generalised Pareto Distribution , or GPD for
short.
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3.1 Background and theoretical motivation

If block maxima have approximate distribution G, then
threshold excesses have a corresponding distribution given
by the Generalised Pareto family.

The parameters of the GPD are uniquely determined by
those of the GEV:

– The parameter ξ in Equation (3.1) is equal to that of the
corresponding GEV

– The GPD scale parameter is a function of the GEV location
and shape parameters
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3.1 Background and theoretical motivation

Estimates of the GEV parameters are sensitive to the size
of block chosen to identify extremes; estimates of the GPD
parameters are ‘stable’.

The duality between the GEV and GPD means that the
shape parameter ξ is dominant in determining the
qualitative behaviour of the GPD:

If ξ < 0 the distribution of excesses has an upper bound

if ξ > 0 the distribution has no upper limit

the case ξ = 0 is also unbounded, and is taken as the limit
ξ → 0, giving

H(y) = 1 − exp
(

−y
σ̃

)

, y > 0;

i.e. an exponential distribution with rate 1/σ̃.
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3.1 Background and theoretical motivation

Until this point, we have used the notation σ̃ to denote the
scale parameter of the GPD, so as to distinguish it from the
corresponding parameter of the GEV...

... For notational convenience we now drop this distinction,
using σ to denote the scale parameter within either family.
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Example 3.1

Suppose X1,X2, . . . ,Xn is a sequence of independent exp(1)
random variables.

Show that the limiting distribution of threshold excesses
belongs to the generalised Pareto family.
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Example 3.1: Solution

If Xi ∼ exp(1), then F (x) = 1 − e−x for x > 0.

By direct calculation,

1 − F (u + y)
1 − F (u)

=
1 −

(

1 − e−(u+y)
)

1 − (1 − e−u)

=
e−(u+y)

e−u = e−y , y > 0.

Thus, the limit distribution is an exponential distribution; i.e. a
GPD with ξ = 0. Further, we know that when ξ = 0, we have

1 − H(y) = exp
(

−y
σ

)

;

hence, we also have σ = 1. That is, the limit distribution of
threshold exceedances is GPD(1,0).
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Example 3.2

Suppose X1,X2, . . . ,Xn is a sequence of independent U(0,1)
random variables.

Show that the limiting distribution of threshold excesses
belongs to the generalised Pareto family.
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Example 3.2: Solution

If Xi ∼ U(0,1), then F (x) = x for 0 ≤ x ≤ 1.

Hence
1 − F (u + y)

1 − F (u)
=

1 − u + y
1 − u

= 1 − y
1 − u

.

For the GPD with ξ 6= 0, we have

1 − H(y) =
[

1 +
ξy
σ

]

−1/ξ

.

Thus, we have ξ = −1 and σ = 1 − u, i.e. the limiting
distribution for threshold exceedances is GPD(1–u,–1).
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3.2 Application: rainfall extremes in NYC

The file newyork.txt, available to download from the course
webpage, gives daily rainfall accumulations (in mm) for New
York City for the years 1914–1961 (inclusive).

Much of the northeastern United States is relatively low–lying
and so prone to flooding; this is made much worse on the odd
occasion that a hurricane travels this far north (for example,
“Superstorm Sandy’ ’ in 2012).

Thus, analysing extreme rainfall data has a real practical
motivation here, in terms of river and sea flood defence
systems .

In this Section, we will illustrate a complete threshold–based
analysis of the rainfall extremes observed at New York.

MAS8304: Environmental Extremes



3.2 Application: rainfall extremes in NYC

The data have been scanned into R from the course webpage
and stored in the vector rain:

rain=scan(’newyork.txt’)
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3.2.1 Threshold choice

The threshold stability property of the GPD means that if the
GPD is a valid model for excesses over some threshold u0,
then it is valid for excesses over all thresholds u > u0.

Denoting by σu0 the GPD scale parameter for excesses over
threshold u0, the expected value of our threshold excesses,
conditional on being greater than the threshold, is

E [X − u|X > u] =
σu0 + ξu

1 − ξ
. (3.3)

Thus, for all u > u0, E [X − u|X > u], is a linear function of u.
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3.2.1 Threshold choice

Furthermore, E [X − u|X > u] is simply the mean of the
excesses of the threshold u, for which the sample mean of the
threshold excesses of u provides an estimate.

This leads to the mean residual life plot , a graphical
procedure for identifying a suitably high threshold for modelling
extremes via the GPD.

In this plot, for a range of candidate values for u we identify the
corresponding mean threshold excess; we then plot this mean
threshold excess against u, and look for the value u0 above
which we can see linearity in the plot.
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3.2.1 Threshold choice

We can easily do this from first principles in R.

First of all, we set up a vector of possible thresholds, starting at
zero and going up to the maximum value in our dataset:

> u=seq(0,max(rain),0.1)

The vector x is then set up to take the corresponding values for
the mean excess over each value in u:

> x=vector(’numeric’, length(u))
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3.2.1 Threshold choice

Then the following code computes the mean excess for each
value in u and stores it in x:

> for(i in 1:length(x))
{
threshold.exceedances=rain[rain>u[i]]
x[i]=mean(threshold.exceedances-u[i])

}

The MRL plot is then produced using the following code, giving
the plot in Figure 3.1:

plot(u,x,type=’l’, main=’MRL plot’,ylab=’mean
excess’)
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3.2.1 Threshold choice
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3.2.2 Data pre–processing

In problems sheet 1, we considered how to use R to extract the
set of block maxima to be modelled by the generalised extreme
value distribution.

Writing R code to do this can be a time–consuming process,
and the code needs to written specifically for the data being
analysed.

In a threshold–based analysis the data pre–processing is far
more straightforward.

Using u0 = 30 as our threshold for identifying extremes (see
Figure 3.1), we can easily obtain our set of threshold
exceedances for modelling with the generalised Pareto
distribution:

above.threshold=rain[rain>30]
threshold.exceedances=above.threshold-30
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3.2.3 Fitting the GPD

The most commonly–used approach to fit the GPD to the set of
threshold excesses is that of maximum likelihood.

The GPD log–likelihood function can be derived in the usual
way; this is left as an exercise, but can be shown to be:

ℓ(σ, ξ;y) = −152log σ − (1 + 1/ξ)
152
∑

i=1

log
(

1 +
ξyi

σ

)

+

, (3.4)

where y = (y1, . . . , y152)
T are the set of exceedances above

threshold u0 = 30.

For the case ξ = 0, interpreted as ξ → 0, we have the
log–likelihood f or an exponential distribution with rate 1/σ
(again, see problems sheet 2).
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3.2.3 Fitting the GPD

R demo, including assessment of model adequacy
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3.2.5 Return level estimation

Figure 3.2 seems to indicate that the GPD is suitable for our set
of threshold exceedances y1, . . . , y152; that is,

Pr(X > u + y |X > u) ≈
[

1 +
ξ̂y
σ̂

]

−1/ξ̂

+

, (3.5)

for ξ 6= 0. Working with the LHS of (3.5), we see that

Pr(X > u + y |X > u) =
Pr(X > u + y)

Pr(X > u)
,

giving

Pr(X > u + y) = Pr(X > u)Pr(X > u + y |X > u).
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3.2.5 Return level estimation

After substitution of (3.5), we get

Pr(X > u + y) ≈ λ̂u

[

1 +
ξ̂y
σ̂

]

−1/ξ̂

+

, (3.6)

where λu = Pr(X > u) and is estimated as the empirical
threshold exceedance rate λ̂u.
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3.2.5 Return level estimation

Now each yi , i = 1, . . . ,152, are the raw rainfall observations
(exceeding the threshold) minus the threshold (xi − u), as the
GPD models the magnitude of excess over u.

Substitution of yi = xi − u into (3.6) gives

Pr(X > x) ≈ λ̂u

[

1 + ξ̂

(

x − u
σ̂

)]

−1/ξ̂

+

. (3.7)
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3.2.5 Return level estimation

Thus, an estimate of the level zt that is exceeded on average
once every t observations is obtained as the solution of

λ̂u

[

1 + ξ̂

(

ẑt − u
σ̂

)]

−1/ξ̂

+

=
1
t
,

giving

ẑt = u +
σ̂

ξ̂

[

(tλ̂u)
ξ̂ − 1

]

(3.8)

for ξ 6= 0, and
ẑt = u + σ̂log(tλ̂u)

when ξ = 0 (see problems sheet 2).
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3.2.5 Return level estimation

By construction, zt is the t–observation return level.

However, it is often more convenient to give return levels on an
annual scale, so that the r–year return level is the level
expected to be exceeded once every r years .

MAS8304: Environmental Extremes



3.2.5 Return level estimation

If there are ny observations per year, this corresponds to the
t–observation return level with t = r × ny .

Hence, an estimate of the r–year return level zr is defined by

ẑr = u +
σ̂

ξ̂

[

(rny λ̂u)
ξ̂ − 1

]

,

unless ξ = 0, in which case

ẑr = u + σ̂log(rny λ̂u).
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3.2.5 Return level estimation

Thus, for the New York City rainfall extremes, we have

ẑ50 = 30+
7.44
0.184

[

(50 × 365.25 × 0.00867)0.184 − 1
]

= 92.24mm

as an estimate of the 50–year return level, where ny = 365.25
to account for leap years (we have daily observations).
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3.2.5 Return level estimation

The delta method can, once again, be used to obtain estimated
standard errors for such return levels.

We should, however, also include uncertainty in our estimate of
λu in the calculation (since zr is a function of λu).

Now the number of threshold exceedances follows a binomial
distribution Bin(N, λu), where N is the total number of
observations in the series. We know (from MAS2302) that

Var(λ̂u) = λ̂u(1 − λ̂u)/N = 0.00072

in our rainfall example.
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3.2.5 Return level estimation

Recall that, by the delta method,

Var(ẑr ) ≈ ∇zT
r V∇zr .

Here, V is now the variance–covariance matrix of the triple
(λ̂u , σ̂, ξ̂)

T ; in our rainfall example, this is

V =





0.00072

0 0.9582

0 −0.0655 0.1012



 ,

assuming that Var(λ̂u, σ̂) = Var(λ̂u, ξ̂) = 0.
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3.2.5 Return level estimation (1/3)

As in Chapter 2,

∇zT
r =

[

∂zr

∂λu
,
∂zr

∂σ
,
∂zr

∂ξ

]

;

this can be shown to give

∇zT
r =

[

σ(rny )
ξλξ−1

u , ξ−1
{

(rnyλu)
ξ − 1

}

,

−σξ−2 {(rnyλu)− 1}+ σξ−1(rnyλu)
ξ log(rnyλu)

]

,

which we evaluate at (λ̂u , σ̂, ξ̂).
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3.2.5 Return level estimation (2/3)

This gives:

∇zT
50 = (2179.096,8.366,181.757),

and so

Var(ẑ50) = (2179.096,8.366,181.757)

×





0.00072

0 0.9582

0 −0.0655 0.1012





×





2179.096
8.366

181.757





= 397.1853
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3.2.5 Return level estimation (3/3)

And so
s.e.(ẑ50) =

√
397.1853 = 19.930.
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3.2.6 Profile likelihood

As discussed in Chapter 2, confidence intervals for return levels
are better constructed via the method of profile likelihood,
owing to the asymmetry in the likelihood surface often
observed.

A plot of the profile log–likelihood for the 50–year return level
for daily rainfall accumulations at New York is shown in Figure
3.3 of the lecture notes.

This gives
(74.1 mm,143 mm).

Interpretation: “Once every fifty years, we might expect daily
rainfall accumulations in New York City to reach up to about
143mm”.

MAS8304: Environmental Extremes



3.2.6 Profile likelihood

Compare the 95% confidence interval for the 50–year return
level obtained from profiling the log–likelihood to that you would
obtain using the standard error. Comment.
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3.2.6 Profile likelihood

From the profiled log–likelihood:

(74.1 mm,143 mm).

Using the standard error, we get:

92.24 ± 1.96 × 19.93 −→ (53.2 mm,131.3 mm).

Comment: the confidence interval based on the profiled
log–likelihood is much more conservative, giving a substantially
higher upper bound for the return level.
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