
Chapter 2

Classical models for extremes
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2.1 Background and theoretical motivation

Suppose that X1,X2, . . . ,Xn is a sequence of independent and
identically distributed (IID) random variables with common
distribution function F .

One way of characterising extremes is by considering the
distribution of the maximum order statistic

Mn = max {X1,X2, . . . ,Xn} . (2.1)
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2.1 Background and theoretical motivation

Think back to the example in Section 1.4 concerning sea
surges at Wassaw Island.

Sea surge measurements were taken every hour; for each year
(1955–2004) you were presented with the annual maximum
sea surge.

Thus, here n = 365 × 24 = 8760 (for non–leap years, anyway),
and we might use the notation:

M8760,i , i = 1, . . . ,50,

to denote, generally, the 50 annual maxima given in Table 1.1
(of course, for leap years the notation would be M8784,i).

MAS8304: Environmental Extremes



2.1 Background and theoretical motivation

The assumption of IID might be reasonable here.

For example, each annual maximum is likely to occur during the
hurricane season (which is usually at its peak in
September/October), and so it seems likely that maximum
hourly observations from one year to the next will be far enough
apart to be independent.

Issues of non–stationarity, however, might arise in long–range
datasets owing to the effects of climate change, for example,
and we will come back to this in Chapter 4.
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2.1 Background and theoretical motivation

Assuming, for now, that our maxima are IID, how can we obtain
the distribution of Mn?
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2.1 Background and theoretical motivation

This is trivial (in principle), since

Pr {Mn ≤ x} = Pr {X1 ≤ x ,X2 ≤ x , . . . ,Xn ≤ x}
= Pr {X1 ≤ x} × Pr {X2 ≤ x} × · · · × Pr {Xn ≤ x}
= {F (x)}n .

However, in practice the distribution function F is unknown.
This leads to an approach based on asymptotic arguments –
specifically, we look for limiting distributions for {F (x)}n as
n → ∞ — this is where the field of Extreme Value Theory was
born.
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2.1.1 A brief history of Extreme Value Theory

One of the earliest books on the statistics of extreme values is
E.J. Gumbel (1958, see Figure 2.1).

Gumbel traces the origins back to 1709, when N. Bernoulli
considers the problem of estimating the age of the longest
survivor in a group of people.
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2.1.1 A brief history of Extreme Value Theory

Research into extreme values as a subject in it’s own right
began much later, between 1920 and 1940, when work by E.L.
Dodd , M. Fréchet , E.J. Gumbel , R. von Mises and L.H.C.
Tippett investigated the asymptotic distribution of the largest
order statistic.

This led to the main theoretical result: the Extremal Types
Theorem (see Section 2.1.2), which was developed in stages
by Fisher, Tippett and von Mises, and eventually proved in
general by B. Gnedenko in 1943.
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2.1.1 A brief history of Extreme Value Theory

Until 1950, development was largely theoretical.

In 1958, Gumbel started applying theory to problems in
engineering.

In the 1970s, L. de Haan and J. Pickands generalised the
theoretical results, giving a better basis for statistical models.
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2.1.1 A brief history of Extreme Value Theory

Since the 1980s, methods for the application of Extreme Value
Theory have become much more widespread.

Current researchers who have played a significant role in
developing applications and methodology include Richard
Smith , Anthony Davison , Jonathan Tawn and Stuart Coles .
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2.1.1 A brief history of Extreme Value Theory

There are still gaps between the theory and the models, and
also between the models and common practice in applications
– this is where our work fits in (Fawcett and Walshaw ).
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2.1.2 The Extremal Types Theorem

The obvious questions now are:

What possible distributions might be considered
candidates for the distribution for Mn = {F (x)}n as
n → ∞?

Can we formulate this set of candidate distributions into a
single class – say G – which is independent of F?

Can we estimate the distribution of Mn using G, without
any reference to F?

MAS8304: Environmental Extremes



2.1.2 The Extremal Types Theorem

Clearly, the limiting distribution of Mn is degenerate :

The distribution converges to a single point on the real line
with probability 1

In this case, this single point is the upper endpoint of F

In some applications, this will be ∞
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2.1.2 The Extremal Types Theorem

This is analogous to the sample mean X̄ converging to the
population mean µ with certainty in the Central Limit
Theorem .

Here, the degenerate limit is prevented by allowing a linear
rescaling, so that

X̄ − bn

an

D−−−→ N(0,1)

where bn = µ and an = σ/
√

n, where σ and n are the
population standard deviation and sample size, respectively.

Can we apply a similar linear rescaling to Mn to avoid
convergence of the distribution to a single point?
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2.1.2 The Extremal Types Theorem

The answer, of course, is “yes”, and is provided by the main
result in classical extreme value theory – the Extremal Types
Theorem – a result for the maximum Mn which is analogous to
the Central Limit Theorem for the mean µ.
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2.1.2 The Extremal Types Theorem

Theorem (The Extremal Types Theorem)

If there exist sequences of constants an > 0 and bn such that,
as n → ∞,

Pr {(Mn − bn)/an ≤ x} → G(x) (2.2)

for some non–degenerate distribution G, then G is of the same
type as one of the following distributions:

I : G(x) = exp {−exp(−x)} −∞ < x < ∞; (2.3)

II : G(x) =
{

0 x ≤ 0
exp(−x−α) x > 0, α > 0;

(2.4)

III : G(x) =
{

exp {−(−x)α} x < 0, α > 0
1 x ≥ 0.

(2.5)
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2.1.2 The Extremal Types Theorem

The three types of distribution – I, II and III – have become
known as the Gumbel , Fréchet and Weibull types
(respectively), and are known collectively as the extreme value
distributions .

For both the Gumbel and Fréchet distributions the limiting
distribution G is unbounded ; that is, the upper–endpoint tends
to ∞. Of the two, the Fréchet distribution gives heavier tails .

For the Weibull distribution, the limiting distribution is bounded .
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2.1.2 The Extremal Types Theorem

It should be noted that this Theorem does not ensure the
existence of a non–degenerate limit for Mn.

Nor does it specify which of types I, II or III is applicable if a
limit distribution does exist (i.e. in which domain of attraction
the distribution of G lies).

However, when such a distribution does exist, we find that, by
analogy with the Central Limit Theorem, the limiting distribution
of sample maxima follows one of the distributions given by the
Extremal Types Theorem, no matter what the parent
distribution F .
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2.1.2 The Extremal Types Theorem

So we know that
Mn − bn

an

D−−−→ G,

where – if it exists – G is given by one of the extreme value
distributions.

But how do we know which one of these distributions to use?
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2.1.3 The Generalised Extreme Value distribution

In practice, working with — and having to choose between —
three distributions is inconvenient.

However, there exists a parameterisation which encompasses
all three types of extreme value distribution.
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2.1.3 The Generalised Extreme Value distribution

Von Mises (1954) and Jenkinson (1955) independently
derived the generalised extreme value distribution (GEV),
often denoted G(µ, σ, ξ), with CDF:

G(x ;µ, σ, ξ) = exp

{

−
[

1 + ξ

(

x − µ

σ

)]−1/ξ

+

}

, (2.6)

where a+ = max(0,a). The situation where ξ = 0 is not defined
in (2.6), but is taken as the limit as ξ → 0, given by

G(x ;µ, σ) = exp
{

−exp
(

x − µ

σ

)}

. (2.7)
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2.1.3 The Generalised Extreme Value distribution

The parameters µ (−∞ < µ < ∞), σ (> 0) and ξ (−∞ < ξ < ∞)
are location , scale and shape parameters, respectively.

Shape parameter ξ:

ξ = 0: Gumbel (type I extreme value) distribution

ξ > 0: Fréchet (type II extreme value) distribution

ξ < 0: Weibull (type III extreme value) distribution

Through inference for ξ, the data themselves determine
the most appropriate type of tail behaviour – no need for
any a priori judgements

The standard error for ξ accounts for our uncertainty in
choosing between the 3 EV distributions
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2.1.3 The Generalised Extreme Value distribution
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2.1.3 The Generalised Extreme Value distribution

But what about the constants an and bn?

We know that

Mn − bn

an

D−−−→ G(µ, σ, ξ), as n → ∞.

After some algebra, it turns out that

Mn
D−−−→ G(µ∗, σ∗, ξ), approximately, as n → ∞,

with an and bn being absorbed into µ∗ and σ∗.
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2.1.3 The Generalised Extreme Value distribution

Since the GEV parameters need to be estimated anyway, in
practice we just ignore the normalisation constants and fit the
GEV directly to our set of maxima Mn,i .

However, before we consider applications of the GEV to real
data, let us first consider some theoretical examples which
demonstrate that, with careful choices of an and bn, one of the
three extreme value distributions is always achieved when the
parent distribution F is known.
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Example 2.1

Suppose X1,X2, . . . ,Xn is a sequence of independent Exp(1)
variables, that is

F (x) = 1 − e−x , x > 0.

By letting an = 1 and bn = log n, show that the limit distribution
of (Mn − bn)/an is of extreme value type, and identify the
distribution.
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Example 2.1: Solution (1/2)

We want the distribution of (Mn − bn)/an, i.e.

Pr
{

Mn − bn

an
≤ z

}

= Pr
{

Max(X1, . . . ,Xn)− bn

an
≤ z

}

= Pr
{

X1 − bn

an
≤ z, . . . ,

Xn − bn

an
≤ z

}

= Pr {X1 ≤ anz + bn} × · · ·

=
[

1 − e−(anz+bn)
]n

,

as X1, . . . ,Xn are I.I.D.

MAS8304: Environmental Extremes



Example 2.1: Solution (2/2)

Now using an = 1 and bn = log n, we get

[

1 − e−(z+log n)
]n

=
[

1 − e−zelog n−1
]n

=
[

1 − n−1e−z
]n

.

From Stage 1 methods courses, you should know that

exp(y) = limn→∞

(

1 +
y
n

)n
.

Thus, we have
[

1 +
−e−z

n

]n

−→ exp
(

−e−z) , as n → ∞.

This is the Gumbel (type I extreme value) distribution.
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Example 2.2

Suppose X1,X2, . . . ,Xn is a sequence of independent
Fréchet(1) variables, that is

F (x) = e−1/x , x > 0.

By letting an = n and bn = 0, show that the limit distribution of
(Mn − bn)/an is of extreme value type, and identify the
distribution.
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Example 2.2: Solution (1/1)

Following the solution to Example 2.1, we find:

Pr
{

Mn − bn

an
≤ z

}

= Pr {X1 ≤ anz + bn} × · · ·

=

[

exp
{

− 1
anz + bn

}]n

.

Letting an = n and bn = 0 gives

[

exp
{

− 1
nz

}]n

= e−1/z ,

which is the Fréchet (type II extreme value) distribution with
α = 1, i.e. a unit Fréchet distribution.
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2.1.4 Typical application – 1: Data pre–processing

Choose your block length n (usually the number of
observations in a calendar year)

Discard all but the largest observation within each block

n too small: limiting arguments will not hold

n too large: not enough maxima to work with!

MAS8304: Environmental Extremes



2.1.4 Typical application – 2: Parameter estimation

Fit the GEV to your set of block maxima Mn,i – numerical
maximum likelihood estimation is the most common approach
here.

Assuming independence, we form the likelihood in the usual
way:

L(µ, σ, ξ;x) =
m
∏

i=1

g(xi ;µ, σ, ξ),

where g is the GEV probability density function and can be
found, after differentiation of the distribution function (2.6), to be

1
σ

[

1 + ξ

(

x − µ

σ

)]−(1/ξ+1)

+

exp

{

−
[

1 + ξ

(

x − µ

σ

)]−1/ξ

+

}

.

(2.8)
(try this yourself!)
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2.1.4 Typical application – 2: Parameter estimation

Use the GEV probability density function in (2.8) to form the
likelihood function L(µ, σ, ξ;x). Also, obtain the GEV
log–likelihood function ℓ(µ, σ, ξ;x) and the corresponding (log)
likelihood equations.
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2.1.4 Typical application – 2: Parameter estimation

The likelihood is given by

L(µ, σ, ξ;x) =

m
∏

i=1

1
σ

[

1 + ξ

(

xi − µ

σ

)]−(1/ξ+1)

+

×exp

{

−
[

1 + ξ

(

xi − µ

σ

)]−1/ξ

+

}
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2.1.4 Typical application – 2: Parameter estimation

The log–likelihood is given by

ℓ(µ, σ, ξ;x) =

m
∑

i=1

log σ−1 +

m
∑

i=1

log
[

1 + ξ

(

xi − µ

σ

)]−(1/ξ+1)

+

−
m
∑

i=1

[

1 + ξ

(

xi − µ

σ

)]−1/ξ

+

= −mlog σ − (1/ξ + 1)
m
∑

i=1

log
[

1 + ξ

(

xi − µ

σ

)]

+

−
m
∑

i=1

[

1 + ξ

(

xi − µ

σ

)]−1/ξ

+

.
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2.1.4 Typical application – 2: Parameter estimation

The (log)–likelihood equations are ∂ℓ
∂µ = ∂ℓ

∂σ = ∂ℓ
∂ξ = 0. For

example:

∂ℓ

∂µ
=

ξ + 1
σ

m
∑

i=1

[

1 + ξ

(

xi − µ

σ

)]−1

+
1
σ

m
∑

i=1

[

1 + ξ

(

xi − µ

σ

)]−(1/ξ+1)

= 0

The other two (log)–likelihood equations would be found in
exactly the same way.
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2.1.4 Typical application – 2: Parameter estimation

How would you use the (log) likelihood equations in order to
obtain maximum likelihood estimates of µ, σ and ξ?

Why can’t we obtain closed form solutions for µ̂, σ̂ and ξ̂?

How can we get around this?
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2.1.4 Typical application – 2: Parameter estimation

The next step would be to replace µ, σ and ξ with their
corresponding estimators µ̂, σ̂ and ξ̂ (respectively), and then
solve for µ̂, σ̂ and ξ̂.

In fact, for the GEV there are no closed–form solutions for µ̂, σ̂
and ξ̂ – the (log) likelihood equations cannot be solved
analytically.

We can get around this by adopting a numerical method to
obtain (approximate) solutions to the (log) likelihood equations
– R uses a Newton–Raphson type algorithm .
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2.1.4 Typical application – 3: Model adequacy

As with all statistical models, there are various
goodness–of–fit properties that should be considered to
check the overall adequacy of the fitted GEV.

These include probability plots , quantile–quantile (Q-Q
plots) and simply plotting a histogram of the data against the
fitted density.

Again, these will be reviewed shortly via a real–life data
demonstration in R.
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2.1.4 Typical application – 4: Return level estimation

As discussed in Section 1.3, interest usually lies not in
estimates of the GEV parameters themselves, but in how we
can use the fitted model to estimate other quantities – such as

The height of a sea wall to protect against the once in a
hundred year sea–surge ;

The “fifty year wind speed ” to provide new structures
enough protection against wind damage.
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2.1.4 Typical application – 4: Return level estimation

Such quantities, in extreme value terminology, are usually
referred to as return levels .

If we have faith in our fitted model being suitable beyond the
range of our observed data, we can estimate the r–year return
level zr for any period by setting the GEV distribution function
equal to 1 − 1/r and solving for x = ẑr (provided we have
annual maxima).
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2.1.4 Typical application – 4: Return level estimation

For example, suppose we fit the GEV to the set of annual
maxima given in Table 1.1 and obtain estimates of the location,
scale and shape as µ̂, σ̂ and ξ̂ (respectively).

Suppose further that the authorities require an estimate of z100,
the sea surge we might expect to be exceeded once in a
hundred years.

Then we can write down the following probability statement:

Pr(annual maximum > z100) =
1

100
,

i.e.

1 − Pr(annual maximum ≤ z100) =
1

100
. (2.9)
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2.1.4 Typical application – 4: Return level estimation

Now the left–hand–side of (2.9), in terms of our fitted GEV, is

1 − G(ẑ100; µ̂, σ̂, ξ̂),

giving

1 − exp

{

−
[

1 + ξ̂

(

ẑ100 − µ̂

σ̂

)]−1/ξ̂
}

= 0.01 i.e.

exp

{

−
[

1 + ξ̂

(

ẑ100 − µ̂

σ̂

)]−1/ξ̂
}

= 0.99.
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2.1.4 Typical application – 4: Return level estimation

Solving for ẑ100 gives an estimate of the 100–year return level
as

ẑ100 = µ̂+
σ̂

ξ̂

[

(−log(0.99))−ξ̂ − 1
]

;

more generally, estimates of the r–year return level zr are given
by

ẑr = µ̂+
σ̂

ξ̂

[

(

−log
(

1 − r−1
))−ξ̂

− 1
]

. (2.10)
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2.1.4 Typical application – 4: Return level estimation

Care needs to be taken when ξ = 0; in this case, as with
forming the likelihood in the first place, we should work with the
limiting form (as ξ → 0) of the distribution function (i.e. Equation
(2.7)).

Of course, a point estimate of the return level alone is not
enough; any estimate requires a corresponding standard error.

To obtain standard errors for return levels, we can use the delta
method (see MAS2305).

However, as we shall see later, we do not recommend using
these standard errors to form confidence intervals for zr .
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2.2 Sea surge at Wassaw Island

Recall the example from Section 1.4.

The southeastern coast of the USA is an area often hit by
hurricanes

The historic city of Savannah, Georgia, has suffered direct
hits from 22 Hurricanes since 1871

The city can expect to ‘brushed’ or directly hit once every
other year

Predictions show that the city is three years overdue it’s
next direct hit

8.5 8.9 9.1 8.9 8.4 9.7 9.1 9.6 8.7 9.3
9.6 9.3 8.7 9.0 8.8 8.9 8.9 12.2 7.8 7.7
8.3 8.1 7.3 6.8 6.7 7.3 7.6 8.2 8.6 9.8
9.5 7.4 7.3 10.2 10.3 10.4 8.8 9.7 10.0 10.8
11.1 12.7 11.5 11.8 12.6 13.0 10.5 10.5 10.0 9.4
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2.2 Sea surge at Wassaw Island

Recall that, in Chapter 1, we tried to estimated quantities
beyond the range of our observed data.

For example, using simple empirical arguments,

Pr(Sea surge exceeds 14 feet) = 0,

simply because, over the time-frame we have data for, we have
not observed such an extreme event.

Does this really mean this event is impossible ?
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2.2.1 Data pre–processing

None necessary — we are given a set of annual maxima (in the
first computer practical session, we will consider how to
pre–process a dataset to obtain the set of block maxima).

Figure 2.2 shows a time series plot and histogram of the 50
annual maxima:

No obvious trend in our dataset

Issue of dependence?
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2.2.1 Data pre–processing

In R:

> wassaw=scan(’wassaw.txt’)

Or:

> wassaw=c(8.5, 8.9, ..., 9.4)
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2.2.1 Data pre–processing

In R:

> year=seq(1955,2004,1)
# Sequence of values from 1995 to 2004

Then, to produce the plots shown in Figure 2.2:

> par(mfrow=c(1,2))
# Partitions the plotting space

> plot(wassaw∼year,type=’b’)
> hist(wassaw)
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2.2.1 Data pre–processing
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2.2.2 Fitting the GEV: Parameter estimation

We now use R to maximise

ℓ(µ, σ, ξ;x) = −50log σ − (1 + 1/ξ)
50
∑

i=1

log
[

1 + ξ

(

xi − µ

σ

)]

+

−
50
∑

i=1

[

1 + ξ

(

xi − µ

σ

)]−1/ξ

+

with respect to µ, σ and ξ.

In R:

> theta=c(mean(wassaw), sd(wassaw), 0.1)
# Sets up parameter vector θ = (µ, σ, ξ)
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2.2.2 Fitting the GEV: Parameter estimation

> gev.loglik=function(theta) {
mu=theta[1]
sigma=theta[2]
xi=theta[3]
m=min((1+(xi*(dataset-mu)/sigma)))
if(m<0.00001)return(as.double(1000000))
if(sigma<0.00001)return(as.double(1000000))
if(xi==0){
loglik=-length(dataset)*log(sigma)

+ -sum((dataset-mu)/sigma)
+ -sum(exp(-((dataset-mu)/sigma)))}
else{
loglik=-length(dataset)*log(sigma)

+ -(1/xi+1)*sum(log(1+(xi*(dataset-mu)/sigma)))
+ -sum((1+(xi*(dataset-mu)/sigma))**(-1/xi))}

return(-loglik)}
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2.2.2 Fitting the GEV: Parameter estimation

> gev.loglik=function(theta){
mu=theta[1]
sigma=theta[2]
xi=theta[3]
m=min((1+(xi*(dataset-mu)/sigma)))
if(m<0.00001)return(as.double(1000000))
if(sigma<0.00001)return(as.double(1000000))
if(xi==0){
loglik=-length(dataset)*log(sigma)

+ -sum((dataset-mu)/sigma)
+ -sum(exp(-((dataset-mu)/sigma)))}
else{
loglik=-length(dataset)*log(sigma)

+ -(1/xi+1)*sum(log(1+(xi*(dataset-mu)/sigma)))
+ -sum((1+(xi*(dataset-mu)/sigma))**(-1/xi))}

return(-loglik)}

MAS8304: Environmental Extremes



2.2.2 Fitting the GEV: Parameter estimation

> gev.loglik=function(theta){
mu=theta[1]
sigma=theta[2]
xi=theta[3]
m=min((1+(xi*(dataset–mu)/sigma)))
if(m<0.00001)return(as.double(1000000))
if(sigma<0.00001)return(as.double(1000000))
if(xi==0){
loglik=-length(dataset)*log(sigma)

+ -sum((dataset-mu)/sigma)
+ -sum(exp(-((dataset-mu)/sigma)))}
else{
loglik=-length(dataset)*log(sigma)

+ -(1/xi+1)*sum(log(1+(xi*(dataset-mu)/sigma)))
+ -sum((1+(xi*(dataset-mu)/sigma))**(-1/xi))}

return(-loglik)}
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2.2.2 Fitting the GEV: Parameter estimation

> gev.loglik=function(theta){
mu=theta[1]
sigma=theta[2]
xi=theta[3]
m=min((1+(xi*(dataset-mu)/sigma)))
if(m<0.00001)return(as.double(1000000))
if(sigma<0.00001)return(as.double(1000000))
if(xi==0){
loglik=-length(dataset)*log(sigma)

+ -sum((dataset-mu)/sigma)
+ -sum(exp(-((dataset-mu)/sigma)))}
else{
loglik=-length(dataset)*log(sigma)

+ -(1/xi+1)*sum(log(1+(xi*(dataset-mu)/sigma)))
+ -sum((1+(xi*(dataset-mu)/sigma))**(-1/xi))}

return(-loglik)}
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2.2.2 Fitting the GEV: Parameter estimation

> gev.loglik=function(theta){
mu=theta[1]
sigma=theta[2]
xi=theta[3]
m=min((1+(xi*(dataset-mu)/sigma)))
if(m<0.00001)return(as.double(1000000))
if(sigma<0.00001)return(as.double(1000000))
if(xi==0) {

loglik=–length(dataset)*log(sigma)
+ –sum((dataset–mu)/sigma)
+ –sum(exp(–((dataset–mu)/sigma)))}
else{
loglik=-length(dataset)*log(sigma)

+ -(1/xi+1)*sum(log(1+(xi*(dataset-mu)/sigma)))
+ -sum((1+(xi*(dataset-mu)/sigma))**(-1/xi))}

return(-loglik)}
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2.2.2 Fitting the GEV: Parameter estimation

> gev.loglik=function(theta){
mu=theta[1]
sigma=theta[2]
xi=theta[3]
m=min((1+(xi*(dataset-mu)/sigma)))
if(m<0.00001)return(as.double(1000000))
if(sigma<0.00001)return(as.double(1000000))
if(xi==0){
loglik=-length(dataset)*log(sigma)

+ -sum((dataset-mu)/sigma)
+ -sum(exp(-((dataset-mu)/sigma)))}

else{
loglik=–length(dataset)*log(sigma)

+ –(1/xi+1)*sum(log(1+(xi*(dataset–mu)/sigma)))
+ –sum((1+(xi*(dataset–mu)/sigma))**(–1/xi))}

return(-loglik)}
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2.2.2 Fitting the GEV: Parameter estimation

> gev.loglik=function(theta) {
mu=theta[1]
sigma=theta[2]
xi=theta[3]
m=min((1+(xi*(dataset-mu)/sigma)))
if(m<0.00001)return(as.double(1000000))
if(sigma<0.00001)return(as.double(1000000))
if(xi==0){
loglik=-length(dataset)*log(sigma)

+ -sum((dataset-mu)/sigma)
+ -sum(exp(-((dataset-mu)/sigma)))}
else{
loglik=-length(dataset)*log(sigma)

+ -(1/xi+1)*sum(log(1+(xi*(dataset-mu)/sigma)))
+ -sum((1+(xi*(dataset-mu)/sigma))**(-1/xi))}

return(–loglik) }
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2.2.2 Fitting the GEV: Parameter estimation

In R:

> dataset=wassaw
# Attaches the sea–surge extremes to “dataset”

> nlm(gev.loglik,theta)
# Minimisation routine

$minimum
[1] 89.52412

$estimate
[1] 8.7112735 1.3114836 -0.1084451

$gradient
[1] 3.350727e-06 2.316675e-05 2.145839e-06

$code
[1] 1
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2.2.2 Fitting the GEV: Standard errors

In R:

> A=nlm(gev.loglik,theta,hessian=TRUE)
# Stores output, including Hessian, in A

Now:

> A
...

$hessian
[,1] [,2] [,3]

[1,] 27.375570 -4.837481 18.06140
[2,] -4.837481 56.151740 29.89004
[3,] 18.061397 29.890039 118.18086
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2.2.2 Fitting the GEV: Standard errors

The Hessian is the matrix of second–order partial derivatives.

In the case of our log–likelihood function, this is

Hessian =

















∂2ℓ
∂µ2

∂2ℓ
∂σ∂µ

∂2ℓ
∂σ2

∂2ℓ
∂ξ∂µ

∂2ℓ
∂ξ∂σ

∂2ℓ
∂ξ2

















= −Iobs,

evaluated at the MLEs.

However, since gev.loglik returns the negative
log–likelihood, in this example

Hessian = Iobs!!
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2.2.2 Fitting the GEV: Standard errors

Recall from MAS2305 that inversion of the Information matrix
gives the Variance–Covariance matrix .

Thus, we have a 3 × 3 matrix to invert!

You should be able to do this (e.g. assignments), but let’s use
the solve command in R.
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2.2.2 Fitting the GEV: Standard errors

In R, solve will solve the system of equations:

aX = b.

In our example, a = Iobs. Omitting b in the execution of solve
assumes the identity matrix for b, giving:

Iobs · X =





1 0 0
0 1 0
0 0 1





Thus, solving for X will return the inverse of Iobs – the
variance–covariance matrix !
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2.2.2 Fitting the GEV: Standard errors

In R:

> solve(A$hessian)
[,1] [,2] [,3]

[1,] 0.043869792 0.008491490 -0.008852201
[2,] 0.008491490 0.022223135 -0.006918367
[3,] -0.008852201 -0.006918367 0.011564254

> varcovar=solve(A$hessian)

> sqrt(diag(varcovar))

[1] 0.2094512 0.1490743 0.1075372
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2.2.2 Fitting the GEV: Standard errors

Thus, we now have the following inference for our annual
maximum sea surges, in terms of the GEV distribution:

µ̂ = 8.711(0.209) σ̂ = 1.311(0.149) ξ̂ = −0.108(0.108)

From this, we can construct confidence intervals in the usual
way (“Wald” intervals).

For example: parameter estimate ± 1.96 × standard error for a
95% CI, owing to the normality of maximum likelihood
estimators — giving

(8.301,9.121) (1.019,1.603) and (−0.320,0.104)

for µ, σ and ξ (respectively).

Note that the confidence interval for ξ includes zero — a
Gumbel–type tail for our data could be appropriate.
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2.2.3 Model adequacy: Probability plots

Probability plots compare empirical cumulative probabilities
with corresponding values from the fitted model.

For example, the ordered sea–surges at Wassaw, x(i),
i = 1, . . . ,50, are:

6.7 6.8 7.3 7.3 7.3 7.4 7.6 7.7 7.8 8.1
8.2 8.3 8.4 8.5 8.6 8.7 8.7 8.8 8.8 8.9
8.9 8.9 8.9 9.0 9.1 9.1 9.3 9.3 9.4 9.5
9.6 9.6 9.7 9.7 9.8 10.0 10.0 10.2 10.3 10.4
10.5 10.5 10.8 11.1 11.5 11.8 12.2 12.6 12.7 13.0

x(i) Fitted: G(x(i); µ̂, σ̂, ξ̂) Empirical: i/(n + 1)
6.7 0.016 0.020
6.8 0.021 0.039
7.3 0.063 0.059

...
...

...
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2.2.3 Model adequacy: Quantile plots

Quantile plots compare empirical quantiles with corresponding
values from the fitted model:

Empirical: x(i) Prob: i/(n + 1) Fitted: G−1(i/(n + 1); µ̂, σ̂, ξ̂)
6.7 0.020 6.78
6.8 0.039 7.07
7.3 0.059 7.27
...

...
...
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2.2.3 Model adequacy: Quantile plots

Quantile plots compare empirical quantiles with corresponding
values from the fitted model:

Empirical: x(i) Prob: i/(n + 1) Fitted: G−1(i/(n + 1); µ̂, σ̂, ξ̂)
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2.2.3 Probability plot in R

In R:

>ordered=sort(dataset)
# Orders the data

> empirical=vector(’numeric’,length(ordered))

> for(i in 1:length(empirical)){
empirical[i]=i/(length(dataset)+1)}
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2.2.3 Probability plot in R

The function GEV.DF defines the distribution function for the
GEV:

GEV.DF=function(data,mu,sigma,xi){
if(xi==0){
GEV=exp(-exp(-((data-mu)/sigma)))}
else{
GEV=exp(-(1+xi*((data-mu)/sigma))**(-1/xi))}
return(GEV)}
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2.2.3 Probability plot in R

Then:

> model=vector(’numeric’,length(dataset))
> for(i in 1:length(model)){

model[i]=GEV.DF(ordered[i],A$est[1],A$est[2],A$est[3])}

Plotting model against empirical produces the
corresponding probability plot.
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2.2.3 Probability/Quantile plots in R
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2.2.4 Return level estimation

In question 2 of Section 1.4, you were asked to provide an
estimate of the height of a new sea wall to protect the city of
Savannah against the storm surge we would expect to see

(i) once in ten years;

(ii) once in a hundred years.
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2.2.4 Return level estimation

Using the data alone we could not obtain a meaningful estimate
of (ii) because we only have 50 years of data.

However, we can now use our fitted GEV to extrapolate beyond
the range of our data to estimate such return levels.

Using Equation (2.10):

ẑr = µ̂+
σ̂

ξ̂

[

(

−log
(

1 − r−1
))−ξ̂

− 1
]

, (2.10)

we find that

ẑ10 = 8.711−1.311
0.108

[

(

−log
(

1 − 10−1
))0.108

− 1
]

= 11.33 feet;

similarly,

ẑ10 = 8.711−1.311
0.108

[

(

−log
(

1 − 100−1
))0.108

− 1
]

= 13.46 feet.
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2.2.4 Return level estimation

Thus, an estimate of the height of the sea–wall might be about
11.5 feet or 13.5 feet to protect against the once in ten year, or
once in a hundred year, storm surges (respectively).

In fact, due to the invariance property of maximum likelihood
estimators, our estimates of z10 and z100 are also the maximum
likelihood estimators of these quantities.
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2.2.4 Return level estimation

As with our inference for the GEV parameters, it is preferable to
quote estimates of return levels with their estimated standard
errors.

Since zr is a function of the GEV parameters µ, σ and ξ, we
can use the delta method (see MAS2305) to find the
approximate variance of ẑr .

Specifically,

Var(ẑr ) ≈ ∇zT
r V∇zr ,

where V is the variance–covariance matrix of (µ̂, σ̂, ξ̂)T and

∇zT
r =

[

∂zr

∂µ
,
∂zr

∂σ
,
∂zr

∂ξ

]

=
[

1,−ξ−1(1 − y−ξ
r ), σξ−2(1 − y−ξ

r )− σξ−1y−ξ
r log yr

]

,

where yr = −log(1 − r−1), evaluated at (µ̂, σ̂, ξ̂).
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2.2.4 Return level standard errors in R

Recall that we previously stored V in the matrix varcovar in R.

Also, recall that our estimates of the GEV parameters are
stored in A$est.

We can define ∇z10, for example, in R as:

>y10=–log(1–(1/10))
>del=matrix(ncol=1,nrow=3)
>del[1,1]=1
>del[2,1]=-((A$est[3])**(-1))*(1-(y10**(-A$est[3])))
>del[3,1]=((A$est[2])*((A$est[3])**(-2))*(1-((y10)**(-A$est[3]))))
-((A$est[2])*((A$est[3])**(-1))*((y10)**(-(A$est[3])))*log(y10))

>del.transpose=t(del)
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2.2.4 Return level standard errors in R

Then the R command for matrix multiplication – %*% – can be
used to obtain an estimate of the standard error for ẑ10 in the
following way:

> sqrt(del.transpose%*%varcovar%*%del)

[,1]
[1,] 0.3614568

Estimated standard errors for other return levels can be
obtained in a similar way.
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2.2.4 Return level standard errors in R

For example, for the standard error for the 100–year return
level, we would replace

> y10=-log(1-(1/10))

with

> y100=-log(1-(1/100))

and then y10 would be replaced with y100 throughout.
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2.2.4 Return level estimation

Table 2.2 shows a range of estimated return levels, with
associated standard errors in parentheses.

Of course, we could use these standard errors to construct
confidence intervals for our return level estimates; however, as
we shall shortly discuss, such confidence intervals can be
misleading .

Return level: MLE (s.e.)
z10 z100 z200 z1000

11.33 (0.361) 13.46 (0.938) 13.99 (1.182) 15.09 (1.821)
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2.2.5 Using the ismev package in R

Class demonstration in R
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Example 2.3: Rainfall in the Lake District

The data shown in Table 2.3 are annual maximum rainfall
accumulations, obtained from daily records, for a period of 21
years (1991–2011 inclusive) at Eskdale in the Lake District.

333 213 790 343 351 521 307 305 352 277 319
319 339 262 285 297 327 620 350 545 258
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Example 2.3: Rainfall in the Lake District

Shown below are the maximum likelihood estimates of the GEV
parameters, obtained using R; also shown is the observed
information matrix IO.

µ̂ = 304.242; σ̂ = 68.977; ξ̂ = 0.249;

IO =





0.0062 −0.0046 0.1962
−0.0046 0.0091 −0.2114
0.1962 −0.2114 48.4122



 .
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Example 2.3: Rainfall in the Lake District

(a) Estimate the standard errors for µ̂, σ̂ and ξ̂, and use these
to estimate the 95% confidence intervals for the GEV
parameters. Comment.

(b) What is the estimated correlation between σ and ξ?

(c) Estimate the 100 and 1000 year return levels for daily
rainfall totals at Eskdale.

(d) Obtain standard errors for your estimates in (b), and use
these to construct 95% confidence intervals in the usual
way. Comment.
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Example 2.3: Solution to part(a) (1/8)

The standard errors are found from the variance–covariance
matrix, which is I−1

O .

1. Find the determinant of IO:

det(IO) = 0.0062(0.0091 × 48.4122 − 0.21142)

+0.0046(−0.0046 × 48.4122 − 0.1962 × (−0.2114))

+0.1962(0.0046 × 0.2114 − 0.2962 × 0.0091)

= 0.00146.
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Example 2.3: Solution to part(a) (2/8)

2. Find the transpose of IO:

IT
O =





0.0062 −0.0046 0.1962
−0.0046 0.0091 −0.2114
0.1962 −0.2114 48.4122
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Example 2.3: Solution to part(a) (3/8)

3. Find the determinants of each of the 2 × 2 minor
matrices:

∣

∣

∣

∣

0.0091 −0.2114
−0.2114 48.4122

∣

∣

∣

∣

= 0.395861

∣

∣

∣

∣

−0.0046 −0.2114
0.1962 48.4122

∣

∣

∣

∣

= −0.181219

∣

∣

∣

∣

−0.0046 0.0091
0.1962 −0.2114

∣

∣

∣

∣

= −0.000813
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Example 2.3: Solution to part(a) (4/8)

∣

∣

∣

∣

−0.0046 0.1962
−0.2114 48.4122

∣

∣

∣

∣

= −0.181219

∣

∣

∣

∣

0.0062 0.1962
0.1962 48.4122

∣

∣

∣

∣

= 0.261661

∣

∣

∣

∣

0.0062 −0.0046
0.1962 −0.2144

∣

∣

∣

∣

= −0.000408
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Example 2.3: Solution to part(a) (5/8)

∣

∣

∣

∣

−0.0046 0.1962
0.0091 −0.2114

∣

∣

∣

∣

= −0.000813

∣

∣

∣

∣

0.0062 0.1962
−0.0046 −0.2114

∣

∣

∣

∣

= −0.000408

∣

∣

∣

∣

0.0062 −0.0046
−0.0046 0.0091

∣

∣

∣

∣

= 0.000035
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Example 2.3: Solution to part(a) (6/8)

4. This gives us the matrix of cofactors – we multiply each
term in this this by the sign indicated below, to get the
adjoint matrix :




0.395861 −0.181219 −0.000813
−0.181219 0.261661 −0.000408
−0.000813 −0.000408 0.000035



×





+ − +
− + −
+ − +





=





0.395861 0.181219 −0.000813
0.181219 0.261661 0.000408
−0.000813 0.000408 0.000035
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Example 2.3: Solution to part(a) (7/8)

5. Final step:

I−1
obs =

1
det(Iobs)

(

adj(Iobs)

)

= 0.00146−1 ×





0.395861 0.181219 −0.000813
0.181219 0.261661 0.000408
−0.000813 0.000408 0.000035





=





271.1377 124.1226 −0.5568
124.1226 179.2199 0.2795
−0.5568 0.2795 0.0240



 .

The standard errors are thus
√

271.1377 = 16.466,√
179.2199 = 13.387 and

√
0.0240 = 0.155 for µ̂, σ̂ and ξ̂,

respectively.
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Example 2.3: Solution to part(a) (8/8)

Using the estimated standard errors, we can form confidence
intervals for the GEV parameters in the usual way:

µ : 304.242± 1.96 × 16.466 −→ (271.969,336.515)

σ : 68.977 ± 1.96 × 13.387 −→ (42.738,95.216)

ξ : 0.249 ± 1.96 × 0.155 −→ (−0.055,0.553)

Comment: ξ > 0 (i.e. we have Fréchet tails), suggesting
unbounded, heavy tails – seems plausible for rainfall. However,
the 95% CI for ξ passes through zero (only just, though!).
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Example 2.3: Solution to part(b) (1/1)

The correlation between σ and ξ can be estimated using

corr(σ̂, ξ̂) =
cov(σ̂, ξ̂)

√

var(σ̂)× var(ξ̂)

=
0.2795√

179.2119 × 0.0240

= 0.1348.
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Example 2.3: Solution to part(c) (1/1)

Using Equation (2.10):

ẑr = µ̂+
σ̂

ξ̂

[

(

−log
(

1 − r−1
))−ξ̂

− 1
]

,

we get:

ẑ100 = 304.242+
68.977
0.249

[

(

−log
(

1 − 100−1
))−0.249

− 1
]

= 898.1133 mm; similarly,

ẑ1000 = 1574.085 mm.
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Example 2.3: Solution to part(d) (1/3)

From earlier, we know that

∇zT
r =

[

∂zr

∂µ
,
∂zr

∂σ
,
∂zr

∂ξ

]

=
[

1,−ξ−1(1 − y−ξ
r ), σξ−2(1 − y−ξ

r )− σξ−1y−ξ
r log yr

]

,

where yr = −log(1 − r−1); evaluated at the MLEs for µ, σ and
ξ, we get

∇zT
100 = [1,8.6097,1621.187]
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Example 2.3: Solution to part(d) (2/3)

Thus,

var(ẑ100) = ∇zT
100V∇z100

= [1,8.6097,1621.187]

×





271.1377 124.1266 −0.5568
124.1266 179.2199 0.2795
−0.5568 0.2795 0.0240





×





1
8.6097

1621.187





= 84768.61

Therefore, s.e.(ẑ100) =
√

84768.61 = 291.1505.
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Example 2.3: Solution to part(d) (3/3)

Similar calculations for ẑ1000 give

s.e.(ẑ1000) = 932.325.

From these standard errors, we can construct 95% confidence
intervals:

ẑ100 : 898.1133± 1.96 × 291.1505 −→ (327.5,1468.8) mm;

ẑ1000 : 1574.085± 1.96 × 932.325 −→ (−253.3,3401.4) mm.

Comment: CI’s are very wide; also, the CI for ẑ1000 is partly
negative – not sensible!
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