
Chapter 2

Classical models for extremes

2.1 Background and theoretical motivation

Suppose that X1, X2, . . . , Xn is a sequence of independent and identically distributed
(IID) random variables with common distribution function F . One way of characterising
extremes is by considering the distribution of the maximum order statistic

Mn = max {X1, X2, . . . , Xn} . (2.1)

Think back to the example in Section 1.4 concerning sea surges at Wassaw Island. Sea
surge measurements were taken every hour; for each year (1955–2004) you were presented
with the annual maximum sea surge. Thus, here n = 365 × 24 = 8760 (for non–leap
years, anyway), and we might use the notation:

M8760,i, i = 1, . . . , 50,

to denote, generally, the 50 annual maxima given in Table 1.1 (of course, for leap years we
would writeM8784,i). The assumption of IID might be reasonable here. For example, each
annual maximum is likely to occur during the hurricane season (which is usually at its
peak in September/October), and so it seems likely that maximum hourly observations
from one year to the next will be far enough apart to be independent; issues of non–
stationarity, however, might arise in long–range datasets owing to the effects of climate
change, for example, and we will come back to this in Chapter 4.

Assuming, for now, that our maxima are IID, how can we obtain the distribution of Mn?

✎
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2.1.1 A brief history of Extreme Value Theory

One of the earliest books on the statistics of extreme values is E.J. Gumbel (1958, see
Figure 2.1). Gumbel traces the origins back to 1709, when N. Bernoulli considers the
problem of estimating he age of the longest survivor in a group of people.

Research into extreme values as a subject in it’s own right began much later, between
1920 and 1940, when work by E.L. Dodd, M. Fréchet, E.J. Gumbel, R. von Mises
and L.H.C. Tippett investigated the asymptotic distribution of the largest order statis-
tic. This led to the main theoretical result: the Extremal Types Theorem (see Section
2.1.2), which was developed in stages by Fisher, Tippett and von Mises, and eventually
proved in general by B. Gnedenko in 1943.

Until 1950, development was largely theoretical. In 1958, Gumbel started applying the-
ory to problems in engineering. In the 1970s, L. de Haan and J. Pickands generalised
the theoretical results, giving a better basis for statistical models.

Since the 1980s, methods for the application of Extreme Value Theory have become much
more widespread. Current researchers who have played a significant role in developing
applications and methodology include Richard Smith (University of North Carolina),
Anthony Davison (Ecole Polytechnique Federale de Lausanne) Jonathan Tawn (Lan-
caster University) and Stuart Coles (University of Padua and SmartOdds).

There are still gaps between the theory and the models, and also between the models
and common practice in applications – this is where our work fits in (Fawcett and
Walshaw, see Figure 2.1), and this is the area of research we will focus on in the latter
part of this course.

Figure 2.1: Emil Julius Gumbel (left), and his book “Statistics of Extremes” (centre);
the latest book to hit the shops in August 2013 (right, pre–order on Amazon now!!).
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2.1.2 The Extremal Types Theorem

The obvious question now, is, what possible distributions might be considered candidates
for the distribution for Mn as n → ∞? It might also be convenient to find out if we
can formulate this set of candidate distributions into a single class – say G – which is
independent of F ; if so, we can estimate the distribution of Mn using G, without any
reference to F .

Clearly, the limiting distribution of Mn is degenerate, that is, the distribution converges
to a single point on the real line with probability 1, this single point being the upper
endpoint of F (which itself will be ∞ in some applications). This is analogous to the
sample mean X̄ converging to the population mean µ with certainty in the Central Limit
Theorem; here, the degenerate limit is prevented by allowing a linear rescaling, so that

X̄ − bn
an

D−−−→ N(0, 1)

where bn = µ and an = σ/
√
n, where σ and n are the population standard deviation

and sample size, respectively. Can we apply a similar linear rescaling to Mn to avoid
convergence of the distribution to a single point? The answer, of course, is “yes”, and is
provided by the main result in classical extreme value theory – the Extremal Types The-
orem – a result for the maximum Mn which is analogous to the Central Limit Theorem
for the mean µ.

Theorem (The Extremal Types Theorem)

If there exist sequences of constants an > 0 and bn such that, as n → ∞,

Pr {(Mn − bn)/an ≤ x} → G(x) (2.2)

for some non–degenerate distribution G, thenG is of the same type as one of the following
distributions:

I : G(x) = exp {−exp(−x)} −∞ < x < ∞; (2.3)

II : G(x) =

{

0 x ≤ 0
exp(−x−α) x > 0, α > 0;

(2.4)

III : G(x) =

{

exp {−(−x)α} x < 0, α > 0
1 x ≥ 0.

(2.5)

The three types of distribution in the Extremal Types Theorem (I , II and III ) have
become known as the Gumbel, Fréchet and Weibull types (respectively), and are known
collectively as the extreme value distributions. For both the Gumbel and Fréchet dis-
tributions the limiting distribution G is unbounded; that is, the upper–endpoint tends
to ∞. The Weibull distribution has a finite upper bound. It should be noted that the
Extremal Types Theorem does not ensure the existence of a non–degenerate limit for
Mn; nor does it specify which of types I , II or III is applicable if a limit distribution
does exist (i.e. in which domain of attraction the distribution of G lies). However, when
such a distribution does exist, we find that, by analogy with the Central Limit Theorem,
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the limiting distribution of sample maxima follows one of the distributions given by the
Extremal Types Theorem, no matter what the parent distribution F .

So we know that
Mn − bn

an

D−−−→ G,

where – if it exists – G is given by one of the extreme value distributions (either the
Gumbel, Fréchet or Weibull distributions). But how do we know which one of these
distributions to use?

2.1.3 The Generalised Extreme Value (GEV) distribution

In practice, working with, and having to choose between, three distributions is incon-
venient. However, there exists a parameterisation which encompasses all three types of
extreme value distribution. Von Mises (1954) and Jenkinson (1955) independently de-
rived the generalised extreme value distribution (GEV), often denoted G(µ, σ, ξ), whose
cumulative distribution function is given by

G(x;µ, σ, ξ) = exp

{

−
[

1 + ξ

(

x− µ

σ

)]

−1/ξ

+

}

, (2.6)

where a+ = max(0, a). The situation where ξ = 0 is not defined in (2.6), but is taken as
the limit as ξ → 0, given by

G(x;µ, σ) = exp

{

−exp

(

x− µ

σ

)}

. (2.7)

The parameters µ (−∞ < µ < ∞), σ (> 0) and ξ (−∞ < ξ < ∞) are location, scale
and shape parameters respectively. The value of the shape parameter ξ differentiates
between the three types of extreme value distribution in Theorem 2.1: ξ = 0, leading to
(2.7), corresponds to the Gumbel distribution (type I ); ξ > 0 and ξ < 0 correspond to
the Fréchet (type II ) and Weibull (type III ) distributions respectively. In practice, when
we estimate the shape parameter ξ, the standard error for ξ accounts for our uncertainty
in choosing between the three models given by (2.3)—(2.5).

But what about the constants an and bn? We know that

Mn − bn
an

D−−−→ G(µ, σ, ξ), as n → ∞.

After some algebra, it turns out that

Mn
D−−−→ G(µ∗, σ∗, ξ), as n → ∞,

with an and bn being absorbed into µ∗ and σ∗. Since the GEV parameters need to be
estimated anyway, in practice we just ignore the normalisation constants and fit the
GEV directly to our set of maxima Mn,i. However, before we consider applications of
the GEV to real data, let us first consider some theoretical examples which demonstrate
that, with careful choices of an and bn, one of the three extreme value distributions is
always achieved when the parent distribution F is known.
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Example 2.1

Suppose X1, X2, . . . , Xn is a sequence of independent Exp(1) variables, that is

F (x) = 1− e−x, x > 0.

By letting an = 1 and bn = logn, show that the limit distribution of (Mn − bn)/an is of
extreme value type, and identify the distribution.

Solution

✎
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Example 2.2

Suppose X1, X2, . . . , Xn is a sequence of independent Fréchet(1) variables, that is

F (x) = e−1/x, x > 0.

By letting an = n and bn = 0, show that the limit distribution of (Mn − bn)/an is of
extreme value type, and identify the distribution.

Solution

✎



2.1. BACKGROUND AND THEORETICAL MOTIVATION 17

2.1.4 Typical application

1. Data pre–processing

Unless you already have a filtered set of block/annual maxima, the first step in any
application of the GEV is to obtain your Mn,i. This requires choosing a block length
n (usually the calendar year), and then discarding all but the maximum value in each
block. Be careful – if your block length is too short, the limiting arguments supporting
the GEV might not be valid, and your maxima may be too close together to assume
independence; if n is too large, you won’t have enough data to work with!

2. Estimation of the GEV parameters

A typical application of the generalised extreme value distribution is to fit (2.6) to a
series of block (often annual) maxima. Numerous ways of fitting this to a set of maxima
have been considered, though numerical maximum likelihood estimation has become
generally accepted as the most robust procedure. For example, differentiation of (2.6)
gives the probability density function of the GEV; this can be found to be

g(x;µ, σ, ξ) =
1

σ

[

1 + ξ

(

x− µ

σ

)]

−(1/ξ+1)

+

exp

{

−
[

1 + ξ

(

x− µ

σ

)]

−1/ξ

+

}

. (2.8)

Use the GEV probability density function in (2.8) to form the likelihood function
L(µ, σ, ξ;x). Also, obtain the GEV log–likelihood function ℓ(µ, σ, ξ;x) and the corre-
sponding (log) likelihood equations.

✎
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How would you use the (log) likelihood equations in order to obtain maximum likelihood
estimates of µ, σ and ξ? Why can’t we obtain closed form solutions for µ̂, σ̂ and ξ̂? How
can we get around this?

✎

The usual techniques can be used to obtain standard errors for the estimated GEV
parameters, i.e. via inversion of the information matrix: these can be used to construct
confidence intervals and perform hypothesis tests.

3. Checking model adequacy

As with all statistical models, there are various goodness–of–fit properties that should
be considered to check the overall adequacy of the fitted GEV. These include probability
plots, quantile–quantile (Q-Q plots) and simply plotting a histogram of the data against
the fitted density. Again, these will be reviewed shortly via a real–life data demonstration
in R.

4. Return level estimation

As discussed in Section 1.3, interest usually lies not in estimates of the GEV parameters
themselves, but in how we can use the fitted model to estimate other quantities, such as

• The height of a sea wall to protect against the once in a hundred year sea–surge;

• The “fifty year wind speed” to provide new structures enough protection against
wind damage.

Such quantities, in extreme value terminology, are usually referred to as return levels.
Provided we have faith in our fitted model being suitable beyond the range of our ob-
served data, we can estimate the r–year return level zr for any period by setting the GEV
distribution function (Equation 2.6) equal to 1 − 1/r and solving for x = ẑr, provided
we have annual maxima.
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For example, suppose we fit the GEV to the set of annual maxima given in Table 1.1
and obtain estimates of the location, scale and shape as µ̂, σ̂ and ξ̂ (respectively).
Suppose further that the authorities require an estimate of z100, the sea surge we might
expect to be exceeded once in a hundred years (this could be used to help estimate
the corresponding height of a new sea wall). Then we can write down the following
probability statement:

Pr(annual maximum > z100) =
1

100
,

i.e.

1− Pr(annual maximum ≤ z100) =
1

100
. (2.9)

Now the left–hand–side of (2.9), in terms of our fitted GEV, is

1−G(ẑ100; µ̂, σ̂, ξ̂),

giving

1− exp

{

−
[

1 + ξ̂

(

ẑ100 − µ̂

σ̂

)]

−1/ξ̂
}

= 0.01 i.e.

exp

{

−
[

1 + ξ̂

(

ẑ100 − µ̂

σ̂

)]

−1/ξ̂
}

= 0.99.

Solving for ẑ100 gives an estimate of the 100–year return level as

ẑ100 = µ̂+
σ̂

ξ̂

[

(−log(0.99))−ξ̂ − 1
]

;

more generally, estimates of the r–year return level zr are given by

ẑr = µ̂+
σ̂

ξ̂

[

(

−log
(

1− r−1
))

−ξ̂ − 1
]

. (2.10)

Care needs to be taken when ξ = 0; in this case, as with forming the likelihood in the
first place, we should work with the limiting form (as ξ → 0) of the distribution function
(i.e. Equation (2.7)).

Of course, a point estimate of the return level alone is not enough; any estimate requires
a corresponding standard error. As the return level is a function of the GEV parameters,
which we have standard errors for, we can use the delta method (see MAS2305 notes) to
obtain standard errors for return level estimates. Further, confidence intervals formed
in the usual way are often extremely misleading for return level estimates, owing to the
(often severe) asymmetry encountered in the surface of the likelihood for these quantities;
rather, the method of profile likelihood is preferred to construct confidence intervals here
(see later).
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2.2 Worked example: sea surge at Wassaw Island

Recall the example from Section 1.4. The southeastern coast of the USA is an area often
hit by hurricanes. The historic city of Savannah, Georgia, has suffered direct hits from
22 Hurricanes since 1871, and can expect to ‘brushed’ or directly hit once every other
year. Predictions show that the city is three years overdue it’s next direct hit (keep an
eye on the news this summer). The figures in Table 2.1 below show the annual maximum
sea surges observed at Wassaw Island, a barrier island just off the coast of Savannah,
between 1955 and 2004 (inclusive).

8.5 8.9 9.1 8.9 8.4 9.7 9.1 9.6 8.7 9.3
9.6 9.3 8.7 9.0 8.8 8.9 8.9 12.2 7.8 7.7
8.3 8.1 7.3 6.8 6.7 7.3 7.6 8.2 8.6 9.8
9.5 7.4 7.3 10.2 10.3 10.4 8.8 9.7 10.0 10.8
11.1 12.7 11.5 11.8 12.6 13.0 10.5 10.5 10.0 9.4

Table 2.1: Annual maximum sea–surges at Wassaw Island, 1955–2004 (inclusive). Units
are feet.

Recall that, in Chapter 1, we tried to estimated quantities beyond the range of our
observed data. For example, using simple empirical arguments,

Pr(Sea surge exceeds 14 feet) = 0,

simply because, over the time-frame we have data for, we have not observed such an
extreme event. Does this really mean this event is impossible? Probably not, it’s just
that we’re trying to estimate the probability of an event more extreme than we’ve ever
observed before. We will now proceed with a detailed extreme value analysis of these
annual maxima.

2.2.1 Data pre–processing

In order to fit the GEV distribution, we need to pre–process our data so we have a
filtered set of extremes – in particular, block, or annual, maxima. In this example no
pre–processing is necessary, as we are given a set of annual maxima. In the first computer
practical session, we will consider how to pre–process a dataset to obtain the set of block
maxima.

Figure 2.2 shows a time series plot and histogram of the 50 annual maxima. Notice there
is no obvious trend in our dataset, although there could be an issue of dependence, with
neighbouring years having similar values of maximum sea surge. These plots have been
produced using R, and, in your own time, you should make sure you can reproduce them.
The data are available to download/copy–and–paste from the MAS8304 webpage, in the
file “wassaw.txt”. To load them into R, save the file to your own workspace and then
type:

> wassaw=scan(’wassaw.txt’)
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Alternatively, you can type them directly into an R terminal:

> wassaw=c(8.5, 8.9, ..., 9.4)

The following code sets up a year counter (from 1955 to 2004):

> year=seq(1955,2004,1)

Then, to produce the plots shown in Figure 2.2, you can type:

> par(mfrow=c(1,2))

Generically, par partitions the plotting window, and mfrow=c(a,b) tells R to split the
window into a rows and b columns. Then:

> plot(wassaw~year,type=’b’)

> hist(wassaw)

Obviously, these are the basic commands; further arguments can be defined to choose
different titles/axis labels etc.
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Figure 2.2: Time series plot (left) and histogram (right) of annual maximum sea–surges
observed at Wassaw Island.
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2.2.2 Fitting the GEV

As discussed in Section 2.1.4, the most commonly–used technique for fitting the GEV is
maximum likelihood, which requires maximisation of the GEV log–likelihood function
ℓ(µ, σ, ξ; x). In particular, for our data we have

ℓ(µ, σ, ξ;x) = −50logσ − (1 + 1/ξ)
50
∑

i=1

log

[

1 + ξ

(

xi − µ

σ

)]

+

−
50
∑

i=1

[

1 + ξ

(

xi − µ

σ

)]

−1/ξ

+

, (2.11)

As previously discussed, there is no analytical solution for obtaining the maximum likeli-
hood estimates of the GEV parameters. Instead, we need to maximise the log–likelihood
in (2.11) numerically; we do this using R.

Using R to estimate the GEV parameters

You should, at some point, try the following code for yourself. Having already stored our
data in wassaw, the next step is to define the GEV parameter vector θ = (µ, σ, ξ), and
to provide R with “starting values” for the elements of θ. Since µ and σ are the GEV
location and scale parameters, it is common to use the mean and standard deviation
(respectively) as starting values for these parameters; the shape parameter ξ can be
given any starting value, but a common choice is 0.1. Thus, in R:

> theta=c(mean(wassaw), sd(wassaw), 0.1)

Now, the fiddly bit is to define the GEV log–likelihood function. Read through the
following code, and corresponding notes, carefully – you will be expected to do this sort
of thing in Assignment 2!

> gev.loglik=function(theta){

mu=theta[1]

sigma=theta[2]

xi=theta[3]

m=min((1+(xi*(dataset-mu)/sigma))) #See note 1

if(m<0.00001)return(as.double(1000000)) #See note 2

if(sigma<0.00001)return(as.double(1000000)) #See note 3

if(xi==0){

loglik=-length(dataset)*log(sigma)-sum((dataset-mu)/sigma)

+ -sum(exp(-((dataset-mu)/sigma)))} #See note 4

else{

loglik=-length(dataset)*log(sigma)

+ -(1/xi+1)*sum(log(1+(xi*(dataset-mu)/sigma)))

+ -sum((1+(xi*(dataset-mu)/sigma))**(-1/xi))} #See note 5

return(-loglik)} #See note 6
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Notes on the above code

1. This line stores the following component in the scale m:
[

1 + ξ

(

xi − µ

σ

)]

+

.

2. Recall that, if the component m is less than zero, we take it to be equal to zero,
as a+ = max(0, a). Thus, if for a particular combination of θ = (µ, σ, ξ) we
get m<0.00001, we return a huge value for the negative log–likelihood (1e+06)
ensuring that this combination will almost surely never be the combination that
minimises the negative log–likelihood (and so will almost surely never maximise
the log–likelihood – see note 6).

3. This line performs a similar task for sigma as the code referred to in note 2 does
for m. σ is the scale parameter and so can never be negative; thus, any attempt to
minimise the negative log–likelihood using sigma<0.00001 returns a huge negative
log–likelihood (1e+06), again ensuring that this choice of σ can almost surely never
minimise the negative log–likelihood (again, see note 6).

4. This line defines the GEV log–likelihood when ξ = 0, taken as the limit when
ξ → 0 (see Equation (2.7)).

5. This line defines the GEV log–likelihood when ξ 6= 0 (see Equation (2.6)).

6. The R routine nlm is a minimisation routine that minimises a supplied function
(here gev.loglik) using a Newton–Raphson type algorithm. Since the aim is to
find estimates of the GEV parameters thatmaximise the log–likelihood, this will be
equivalent to finding estimates of the GEV parameters that minimise the negative
log–likelihood, which is why we ask the function gev.loglik to return -loglik.

We implement the nlm routine in the following way, giving the output shown underneath:

> dataset=wassaw

> nlm(gev.loglik,theta)

$minimum

[1] 89.52412

$estimate

[1] 8.7112735 1.3114836 -0.1084451

$gradient

[1] 3.350727e-06 2.316675e-05 2.145839e-06

$code

[1] 1

$iterations

[1] 10
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Thus, our estimates of the GEV parameters are

µ̂ = 8.711 σ̂ = 1.311 ξ̂ = −0.108

The minimised negative log–likelihood is 89.524, giving a maximised log–likelihood at
the above values for the GEV parameters of −89.524. gradient gives the gradient
at the estimated minimum of the function gev.loglik, iterations gives the number
of iterations performed (in the Newton–Raphson algorithm) before the solution to the
minimisation problem was found, and code is an integer which indicates why the opti-
misation process terminated (1 indicates the relative gradient is close to zero and so the
current iterate is probably the solution).

Using R to estimate standard errors of the GEV parameters

Using nlm to minimise the negative log–likelihood function is fine, but our estimates
of the GEV parameters do not have any associated estimate of variability attached.
However, using the argument hessian in the nlm routine returns the matrix of second–
order partial derivatives (the Hessian matrix ) of the function we are trying to minimise.
In R, we type:

> A<-nlm(gev.loglik,theta,hessian=TRUE)

This will give the same output as before, but now the Hessian matrix will also be re-
turned. Note we have also stored the output in A. To look at the output, we type:

> A

$minimum

[1] 89.52412

$estimate

[1] 8.7112735 1.3114836 -0.1084451

$gradient

[1] 3.350727e-06 2.316675e-05 2.145839e-06

$hessian

[,1] [,2] [,3]

[1,] 27.375570 -4.837481 18.06140

[2,] -4.837481 56.151740 29.89004

[3,] 18.061397 29.890039 118.18086

$code

[1] 1

$iterations

[1] 10
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Recalling theory from MAS2305, our observed information matrix will be

IO =















− ∂2ℓ
∂µ2

− ∂2ℓ
∂σ∂µ

− ∂2ℓ
∂σ2

− ∂2ℓ
∂ξ∂µ

− ∂2ℓ
∂ξ∂σ

− ∂2ℓ
∂ξ2















,

evaluated at µ = µ̂, σ = σ̂ and ξ = ξ̂. Notice that this is just the negative of the hessian
of the log–likelihood function; however, the hessian returned by R in the code above is
for the negative log–likelihood (recall that gev.loglik returns -loglik), and so – in
this example – the hessian is exactly the observed information matrix.

Recall also from MAS2305 that the variance–covariance matrix is obtained via inversion
of the observed information matrix IO. One way of doing this is to use the R command
solve. This command solves, for X , a system of equations of the form

aX = b,

where both a and b can be numeric or complex matrices, a corresponding to the co-
efficients of the linear system and b giving the right–hand–side of this system. In our
example, a is the observed information matrix. If b is missing in the execution of solve,
then the identity matrix is assumed and R will thus return the inverse of a – exactly
what we want here! In R, this gives:

> solve(A$hessian)

[,1] [,2] [,3]

[1,] 0.043869792 0.008491490 -0.008852201

[2,] 0.008491490 0.022223135 -0.006918367

[3,] -0.008852201 -0.006918367 0.011564254

Thus, the square roots of the diagonal elements of the above matrix will give the expected
standard errors for the GEV parameters (µ, σ and ξ respectively). We could obtain these
standard errors in the following way:

> varcovar=solve(A$hessian)

> sqrt(diag(varcovar))

[1] 0.2094512 0.1490743 0.1075372

The first line of code stores the matrix shown above in the matrix varcovar; the second
line of code finds the square roots of the diagonal elements of varcovar. The result-
ing expected standard errors are shown underneath. Thus, we now have the following
inference for our annual maximum sea surges, in terms of the GEV distribution:

µ̂ = 8.711 (0.209) σ̂ = 1.311 (0.149) ξ̂ = −0.108 (0.108)

From this, we can construct confidence intervals in the usual way (“Wald” confidence
intervals). For example, standard symmetric 95% confidence intervals are found as:

(8.301, 9.121) (1.019, 1.603) and (−0.320, 0.104)

for µ, σ and ξ (respectively).
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2.2.3 Model adequacy

We usually fit a statistical model to data to draw conclusions about some aspect of the
population from which the data were obtained. The more accurate the fitted model is,
the more reliable these conclusions are likely to be. Since inferences are sensitive to
the accuracy of the fitted model, it is important that we check that the model fits well.
Ideally, we would like to check that our model describes well the variations in the wider
population, but this is usually not possible unless there are other sources of data for
us to judge the model,against. Thus, it is common to assess the goodness–of–fit of a
particular model using the data that were used to estimate it in the first place.

A probability plot is a plot of the points
{(

F̂
(

x(i)

)

,
i

n+ 1

)

: i = 1, . . . , n

}

,

where x(i), i = 1, . . . , n is an ordered sample of independent observations and F̂ is a
candidate model for the true probability distribution F . The quantity i/n+1 corresponds
to the empirical distribution function evaluated at x(i). If F̂ is a reasonable model for
the true distribution, the points in the probability plot will lie close to the unit diagonal.

A quantile–quantile plot (q–q plot, or just quantile plot) is a plot of the points
{(

F̂−1

(

i

n+ 1

)

, x(i)

)

: i = 1, . . . , n

}

.

The quantity F̂−1(i/(n + 1)) gives a model–based estimate of the i/(n + 1) quantile
provided by the candidate distribution F̂ whilst x(i) itself provides an empirical estimate
of this quantile. Again, a well–fitting model would provide points on this plot lying close
to the unit diagonal.

Producing a probability plot in R

Recall that in the last section, the wassaw dataset was stored in dataset. In R, the code

> ordered=sort(dataset)

then stores the ordered annual maximum sea surges observed at Wassaw Island, x(i), i =
1, . . . , 50, in the vector ordered. For each point in our ordered sample, the following
code then stores the empirical distribution function defined by i/(n + 1) in the vector
empirical:

> empirical=vector(’numeric’,length(ordered))

> for(i in 1:length(empirical)){

empirical[i]=i/(length(dataset)+1)}

The function GEV.DF defines the distribution function for the GEV, as provided by
equations (2.6) and (2.7):
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> GEV.DF=function(data,mu,sigma,xi){

if(xi==0){

GEV=exp(-exp(-((data-mu)/sigma)))}

else{

GEV=exp(-(1+xi*((data-mu)/sigma))^(-1/xi))}

return(GEV)}

Then the following code stores a model–based estimate of the distribution function,
evaluated at each point in the ordered sample ordered, in the vector model (recall
that maximum likelihood estimates of the GEV parameters were stored in the object A
previously):

> model=vector(’numeric’,length(dataset))

> for(i in 1:length(model)){

model[i]=GEV.DF(ordered[i],A$est[1],A$est[2],A$est[3])}

Plotting model against empirical produces the corresponding probability plot for the
set of sea surge annual maxima; this can be done using the code:

> plot(model~empirical,main=’Probability plot’)

> abline(0,1)

where the code abline(0,1) superimposes the line with intercept 0 and gradient 1 (i.e.
the unit diagonal). The resulting plot is shown in Figure 2.3 (left-hand-side). Notice
that the model–based probability estimates match up very closely with what we see in
our data, suggesting that the GEV is plausible.

Producing a quantile–quantile plot in R

In a similar fashion, we can produce a quantile plot using the following code in R:

> model.quantile=vector("numeric",length(dataset))

> GEV.INV=function(data,mu,sigma,xi){

if(xi==0){

INV=mu-sigma*log(-log(1-data))}

else{

INV=mu+(sigma/xi)*(((-log(data))^(-xi))-1)}

return(INV)}

> for(i in 1:length(model.quantile)){

model.quantile[i]=GEV.INV(empirical[i],A$est[1],A$est[2],A$est[3])}

> plot(model.quantile~ordered,main=’Quantile plot’)

> abline(0,1)
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Figure 2.3: Probability plot (left) and quantile–quantile plot (right) for the GEV fitted
to annual maximum sea–surges observed at Wassaw Island.

The function GEV.INV computes the inverse of the GEV distribution at each of the
points in data; we evaluate this for each value in empirical to find F̂ (i/(n + 1)) and
store the results in the vector model.quantile. We then plot model.quantile against
ordered to obtain the quantile plot, again superimposing the line of equality using
abline. The resulting plot is shown in Figure 2.3 (right-hand-side). Again, this plot
shows a reasonable fit of the GEV to the annual maximum sea surges at Wassaw.

2.2.4 Return level estimation

In question 2 of Section 1.4, you were asked to provide an estimate of the height of a
new sea wall to protect the city of Savannah against the storm surge we would expect
to see

(i) once in ten years;

(ii) once in a hundred years.

Using the data, and the data alone, we could not obtain a meaningful estimate of (ii)
because we only have 50 years of data. However, we can now use our fitted GEV to
extrapolate beyond the range of our data to estimate such return levels. Using Equation
(2.10), we find that

ẑ10 = 8.711− 1.311

0.108

[

(

−log
(

1− 10−1
))0.108 − 1

]

= 11.33 feet;

similarly,

ẑ10 = 8.711− 1.311

0.108

[

(

−log
(

1− 100−1
))0.108 − 1

]

= 13.46 feet.
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Thus, an estimate of the height of the sea–wall might be about 11.5 feet or 13.5 feet to
protect against the once in ten year, or once in a hundred year, storm surges (respec-
tively). In fact, due to the invariance property of maximum likelihood estimators, our
estimates of z10 and z100 are also the maximum likelihood estimates of these quantities.

As with our inference for the GEV parameters, it is preferable to quote estimates of
return levels with their estimated standard errors. Since zr is a function of the GEV
parameters µ, σ and ξ, we can use the delta method (see MAS2305 for more details) to
find the approximate variance of ẑr. Specifically,

Var(ẑr) ≈ ∇zTr V∇zr,

where V is the variance–covariance matrix of (µ̂, σ̂, ξ̂)T and

∇zTr =

[

∂zr
∂µ

,
∂zr
∂σ

,
∂zr
∂ξ

]

=
[

1,−ξ−1(1− y−ξ
r ), σξ−2(1− y−ξ

r )− σξ−1y−ξ
r log yr

]

,

where yr = −log(1− r−1), evaluated at (µ̂, σ̂, ξ̂).

Using R to obtain standard errors for return levels

Recall that V is stored in the matrix varcovar in R. Also, recall that our estimates of
the GEV parameters are stored in A$est. We can define ∇z10, for example, in R as

> y10=-log(1-(1/10))

> del=matrix(ncol=1,nrow=3)

> del[1,1]=1

> del[2,1]=-((A$est[3])^(-1))*(1-(y10^(-A$est[3])))

> del[3,1]=((A$est[2])*((A$est[3])^(-2))*(1-((y10)^(-A$est[3]))))

-((A$est[2])*((A$est[3])^(-1))*((y10)^(-(A$est[3])))*log(y10))

> del.transpose=t(del)

Then the R command for matrix multiplication – %*% – can be used to obtain an estimate
of the standard error for ẑ10 in the following way:

> sqrt(del.transpose%*%varcovar%*%del)

[,1]

[1,] 0.3614568

Estimated standard errors for other return levels can be obtained in a similar way. For
example, for the standard error for the 100–year return level, we would replace

> y10=-log(1-(1/10))

with
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> y100=-log(1-(1/100))

and then y10 would be replaced with y100 throughout. Table 2.2 shows a range of esti-
mated return levels, with associated standard errors in parentheses. Of course, we could
use these standard errors to construct confidence intervals for our return level estimates;
however, as we shall shortly discuss, such confidence intervals can be misleading.

Return level
z10 z100 z200 z1000

MLE (st. err.) 11.33 (0.361) 13.46 (0.938) 13.99 (1.182) 15.09 (1.821)

Table 2.2: Estimated return levels for sea surges at Wassaw Island, with standard errors
(in parentheses).

2.2.5 Using the ismev package in R

The ismev package provides an add–on suite of functions for R users to support the
examples and computations in An Introduction to Statistical Modeling of Extreme Values
(Coles, 2001); the acronym of this book gives the package its name. Once installed, ismev

gives the user access to the datasets used in Coles (2001), and the functions supplied by
this package allow the user to reproduce the examples used in the book as well as perform
rudimentary extreme value analyses on other datasets. All routines in the ismev package
assume the data (where necessary) have been pre–processed so that, for example, the
user has a set of block maxima ready to analyse. We shall give some thought to the
practicalities of obtaining a set of block maxima and dealing with incomplete datasets in
future computer practical sessions; for now, we assume any necessary data pre–processing
has taken place.

Installing the ismev package requires a version of R no older than R 1.50. Provided you
have R 1.50, or something more recent, installed on your computer, you can load ismev

using the command:

> library(ismev)

Doing so will give you access to functions which can be used to perform a basic analysis
of annual maxima in R: for example, gev.fit and gev.diag. The command gev.fit

provides a maximum likelihood fitting routine for the GEV that also allows generalised
linear modelling of each parameter (we will return to this in Chapter 5). For example,
with our set of annual maximum sea surges stored in wassaw, typing

> gev.fit(wassaw)

gives the following output:
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$conv

[1] 0

$nllh

[1] 89.52412

$mle

[1] 8.7114765 1.3114046 -0.1083845

$se

[1] 0.2094549 0.1489799 0.1074819

If the convergence code, conv, takes the value zero, then successful convergence has been
achieved, as is the case in our example above. nllh gives the value of the minimised
negative log–likelihood, which has been found to be 89.524 – exactly the value we ob-
tained when doing this “from first principles” using the nlm routine in Section 2.2.2. The
output also shows the maximum likelihood estimates, with their standard errors, giving
(to three decimal places):

µ̂ = 8.711 (0.209) σ̂ = 1.311 (0.149) ξ̂ = −0.108 (0.107)

Again, this is (almost!) exactly what we obtained when fitting the GEV ‘from first
principles’ in Section 2.2.2; any differences can be attributed to the numerical procedure
used to optimise the problem.

To check the goodness–of–fit of the GEV we can use the ismev function gev.diag. First
of all, we need to store the output from gev.fit in B, for example:

> B=gev.fit(wassaw)

Then, typing

> gev.diag(B)

gives the plots shown in Figure 2.4. You should notice that the plots in the top row
(probability plot and quantile plot) are exactly the same as those we constructed, from
”first principles”, in Figure 2.3. However, gev.diag also gives a ”return level plot”
(bottom left) and a plot of the fitted GEV density superimposed onto a histogram of the
actual data. The return level plot is really just a quantile plot, but the x–axis is drawn
on a logarithmic scale so as to compress the tail of the fitted GEV distribution and thus
focus attention on long–period return levels, extrapolated far beyond the range of our
observed data. Attached to these return level estimates are 95% confidence bounds using
estimate±1.98×s.e., where the standard errors have been obtained via the delta method
(as in Section 2.2.4). Superimposed are empirical quantiles for the data we are analysing,
for comparison. Both this plot, and the plot of the data with the fitted density, seem to
indicate the adequacy of our fitted GEV.
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Figure 2.4: Diagnostic plots indicating the goodness–of–fit of the GEV to the Wassaw
sea surge extremes.

2.3 Further examples

Example 2.3: Rainfall in the Lake District

The data shown in Table 2.3 are annual maximum rainfall accumulations, obtained from
daily records, for a period of 21 years (1991–2011 inclusive) at Eskdale in the Lake
District.

333 213 790 343 351 521 307 305 352 277 319
319 339 262 285 297 327 620 350 545 258

Table 2.3: Annual maximum daily rainfall totals (mm) at Eskdale (1991–2011).

Shown below are the maximum likelihood estimates of the GEV parameters, obtained
using R; also shown is the observed information matrix IO.

µ̂ = 304.242; σ̂ = 68.977; ξ̂ = 0.249;

IO =





0.0062 −0.0046 0.1962
−0.0046 0.0091 −0.2114
0.1962 −0.2114 48.4122



 .

(a) Estimate the standard errors for µ̂, σ̂ and ξ̂, and use these to construct 95%
confidence intervals for the GEV parameters. Comment.

(b) Find the correlation between σ̂ and ξ̂?

(c) Estimate the 100 and 1000 year return levels for daily rainfall totals at Eskdale.

(d) Obtain standard errors for your estimates in (b), and use these to construct 95%
confidence intervals in the usual way. Comment.
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Solution to Example 2.3

✎
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Solution to Example 2.3

✎



2.3. FURTHER EXAMPLES 35

Solution to Example 2.3

✎



36 CHAPTER 2. CLASSICAL MODELS FOR EXTREMES

Solution to Example 2.3

✎
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Example 2.4: Sunshine hours in Santiago de Compostela

Table 2.4 shows the annual maximum number of sunshine hours (per day) for Santiago
de Compostela, Spain, for the years 1983–2007.

12.8 10.7 11.9 13.1 13.3 10.7 11.1 11.9 12.1
11.3 12.5 12.1 12.0 12.4 11.8 10.5 10.9 10.1
11.7 12.7 10.6 11.6 9.9 9.6 12.0

Table 2.4: Annual maximum sunshine hours (per day) observed at Santiago de Com-
postela, Spain, 1983–2007 (inclusive).

(a) Use the ismev package in R to fit the GEV distribution to these data. Report
estimates of the location, scale and shape parameters, with associated standard
errors.

(b) Explain why the output in part (a) shows that the Weibull (Type III extreme
value distribution) is most appropriate here, and give a practical justification for
this.

Solution to Example 2.4

✎
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Example 2.5: Degassing bursts at the Kilauea Volcano, Hawaii

The magnitudes of the vertical forces produced by seismic degassing bursts are known to
be associated with destructive volcanoes. Table 2.5 shows the maximum force produced
by degassing bursts, every quarter in the years 2005–2011 (inclusive), for the Kilauea
Volcano in Hawaii.

Jan–Mar Apr–Jun Jul–Sep Oct–Dec
2005 99983 100067 99905 100367
2006 99980 99970 100086 99988
2007 99912 100084 100432 99921
2008 100123 99913 100240 100448
2009 100162 100296 100015 100122
2010 99930 99997 100710 100136
2011 99946 99918 99962 100052

Table 2.5: Maximum vertical forces produced (kilograms) by Seismic degassing bursts
at the Kilauea Volcano in Hawaii.

These data were stored the in the vector bursts in R, and the following output obtained:

gev.fit(haw)

$conv

[1] 0

$nllh

[1] 178.2502

$mle

[1] 9.998028e+04 8.710824e+01 5.921945e-01

$se

[1] 21.6185212 21.3598264 0.3027163

(a) Use this information to estimate the degassing bursts we would expect to see (i)
once every year, (ii) once every fifty years, and (iii) once every 100 years at this
volcano (do not attempt to obtain standard errors for these estimates). How does
your estimate in (i) compare to it’s empirical counterpart?

(b) Use Figure 2.5 (overleaf) to assess the goodness–of–fit of the GEV to these data.
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Figure 2.5: Diagnostic plots to assess the fit of the GEV to the degassing burst dataset
in Table 2.5.

Solution to Example 2.5

✎
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2.4 Profile likelihood

As we saw in our solution to Example 2.3, standard errors for long range return levels,
obtained via the delta method, can often be so large that confidence intervals become
difficult to work with, or even meaningless. Actually, it turns out that constructing
confidence intervals in the standard way (estimate ± 1.96 × s.e. for a 95% confidence
interval, for example) is not advisable for return levels. This is because of the severe
asymmetry often observed in the likelihood surface for the return level, suggesting that
the assumption of normality may not be valid for zr.

An alternative, and often more accurate, method for making inferences on a particular
parameter can be found using the profile log–likelihood. Formally, the log–likelihood for a
parameter vector θ can be written as ℓ(θj , θ−j), where θ−j corresponds to all components
of θ excluding θj . The profile log–likelihood for θj is defined as

ℓp(θj) = maxθ
−j
ℓ(θj , θ−j).

Thus, for each value of θj the profile log–likelihood is the maximised log–likelihood with
respect to all other components of θ.

For return levels using the GEV model, there are three main steps for the implementation
of profile likelihood:

(1) Re–parameterise the GEV model so that zr becomes one of the model parameters.
For example, re–arrange equation (2.10) to write µ in terms of σ, ξ and zr, i.e.:

µ = zr −
σ

ξ

[

(

−log
(

1− r−1
))

−ξ − 1
]

; (2.12)

then obtain an expression for the log–likelihood ℓ(σ, ξ, zr) by substitution of (2.12)
into

−mlogσ − (1 + 1/ξ)

m
∑

i=1

log

[

1 + ξ

(

xi − µ

σ

)]

+

−
m
∑

i=1

[

1 + ξ

(

xi − µ

σ

)]

−1/ξ

+

,

where m is the number of block maxima in the analysis.

(2) For some fixed lower value of zr = zr,low, maximise the GEV log–likelihood
ℓ(σ, ξ, zr = zr,low) with respect to the two remaining parameters (σ and ξ), to
obtain ℓp(zr) at zr,low. Here, in terms of the more general notation above, θj = zr
and θ−j = (σ, ξ).

(3) Repeat step (2) for a range of values zr for zr,low ≤ zr ≤ zr,up, and plot ℓp(zr)
against zr to show the profile log–likelihood curve for zr.

Figure 2.6 (left) shows a plot of the profile log likelihood for the 100 year return level
ℓp(z100) for the Lake District rainfall data in Example 2.3, using z100,low = 550 and
z100,up = 2900. The plot to the right–hand–side is for the 1000–year return level. Both
plots reveal strong asymmetry in the (profile) log–likelihood for the return levels, and it
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should be clear from these plots that constructing return levels in the usual way (as we
did in Example 2.3, part (c)) will be misleading. So how can we use these plots?

In this example, we are partitioning the GEV parameter vector θ = (zr, σ, ξ) into two
components (θ(1), θ(2)), where θ

(1) = zr and θ
(2) = (σ, ξ), and the profile log–likelihood

is now defined as

ℓp(θ
(1)) = max

θ
(2)(θ(1), θ(2)).

The following result leads to a procedure for making inferences on the maximum likeli-
hood estimator of θ(1).

Result

Let x1, . . . , xn be independent realisations from a distribution within a parametric family
F , and let θ̂0 be the maximum likelihood estimator of the d–dimensional model param-
eter θ0 = (θ(1), θ(2)), where θ

(1) is a k–dimensional subset of θ0. Then, under suitable
regularity conditions, for large n

Dp(θ
(1)) = 2

{

ℓ(θ̂0)− ℓp(θ
(1))

}

∼ χ2
k.

Thus, for our single component θ(1) = zr, the set of values Cα for which {zr : Dp(zr) ≤ cα}
provides a (1 − α) confidence interval for zr, where cα is the (1 − α) quantile of the χ2

1

distribution.

We apply this result to the profile log–likelihood for z100 and z1000; a cut–off point
equal to 1

2
× χ2

1(0.05) = 1.921 is shown in Figure 2.6 by the horizontal broken line.
The points of intersection between this line and the profile log–likelihood for zr define
the set of values C0.05 giving a more appropriate 95% confidence interval for zr than
obtained using the usual approach. These points of intersection are also shown on Figure
2.6 (dotted vertical lines), and give confidence interval for z100 and z1000 based on the
profile likelihood approach of (602.5, 2765)mm and (800, 103000)mm respectively. These
intervals are shown in the table below, along with the intervals we obtained the standard
way in Example 2.3.

✎
ẑ100 ẑ1000

Standard 95% CI Lee Fawcett is no good, ch Lee Fawcett is no good, ch

Profiled 95% CI Lee Fawcett is no good, ch Lee Fawcett is no good, ch

Comments
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Figure 2.6: Profile log–likelihood curves for the 100 (left) and 1000 (right) year return
levels for daily rainfall accumulations in Eskdale, the Lake District.

The plots shown above in Figure 2.6 can be produced in R using the gev.prof function
within the ismev package. For example, suppose the results of fitting the GEV to the
Lake District rainfall data (obtained using gev.fit) are stored in A. Then the code:

> gev.prof(A,xlow=550,xup=2900,100)

should produce something like the plot for the 100 year return level shown in Figure 2.6.
We will see more of this function in a forthcoming computer practical session.

2.5 Models for minima

Let M̄n = min {X1, . . . , Xn}. If we can assume the Xi are independent and identically
distributed, we can apply similar arguments to M̄n as we applied to Mn in Section 2.1.2.

If there exist sequences of constants an > 0 and bn such that, as n → ∞,

Pr
{

(M̄n − bn)/an ≤ x
}

→ Ḡ(x)

for some non–degenerate distribution Ḡ, then Ḡ is a member of the GEV family of
distributions for minima:

Ḡ(x; µ̄, σ, ξ) = 1− exp

{

−
[

1− ξ

(

x− µ̄

σ

)]

−1/ξ

+

}

,
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where a+ = max(0, a), −∞ < µ̄ < ∞, σ > 0 and −∞ < ξ < ∞. This result can be
useful where we are interested in modelling extremely small, rather than extremely large,
observations (e.g. annual minimum air temperatures). Alternatively, we could negate
our set of block minima and then model the corresponding set of maxima, giving identical
maximum likelihood estimates of the GEV parameters but for the sign correction ˆ̄µ =
−µ̂.

2.6 The GEV: Words of warning

✎


