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3.4 Generalisation to the r�largest order statisti
s

Given a sequen
e of IID random variables X1, X2, . . . we have shown how the generalised

extreme value distribution (expression 6) 
an be used to model the set of normalised

annual maxima. This approa
h is highly ine�
ient sin
e all but the maximum in ea
h

year (or blo
k) are dis
arded � other observations whi
h 
ould be 
onsidered extreme are

simply thrown away be
ause they are not as extreme as the maximum value in that year.

A generalisation of the result in expression (6) attempts to over
ome this, by in
orporating

the largest r order statisti
s from ea
h year, where r is any positive integer. If we denote

the r largest order statisti
s in an IID sample by M (1) ≥ M (2) ≥ . . . ≥ M (r)
, for r ≥ 1,

then the te
hnique here is to obtain the limiting joint distribution of

(

M
(1)
n − bn
an

,
M

(2)
n − bn
an

, . . . ,
M

(r)
n − bn
an

)

.

It 
an be shown that the 
omplete 
lass of limiting non�degenerate joint distributions is

in fa
t given by the probability density fun
tion

f(x1, x2, . . . , xr;µ, σ, ξ) = σ−r
exp

{

−

[

1 + ξ

(
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σ

)]

−1/ξ

+

−

(

1 +
1

ξ

) r
∑

j=1

log

[

1 + ξ

(

x(j) − µ

σ

)]

+

}

(14)

for j = 1, . . . , r. As before, the 
ase ξ = 0 is taken as the limit as ξ → 0 in (14), to give

f(x1, x2, . . . , xr;µ, σ, ξ) = σ−r
exp

{

− exp

[

−

(

x(r) − µ

σ

)]

−

r
∑

j=1

(

x(j) − µ

σ

)

}

.

Obviously, the 
ase where r = 1 is equivalent to the annual maxima approa
h, for whi
h

the GEV holds as the limiting distribution. The in
reased pre
ision over the traditional

annual maxima approa
h (due to more extremes being in
orporated into the analysis) has

obvious appeal; however, Smith (1986) shows that as r in
reases, the rate of 
onvergen
e

to the limiting distribution de
reases rapidly, and so the number of order statisti
s to

in
lude must be 
onsidered 
arefully. Su
h methods must also take a

ount of serial


orrelation, and are vulnerable to the e�e
ts of seasonal variation. Papers in the Journal

of Hydrology by Smith (1986) and Tawn (1988b) illustrate the use of r�largest methods;

in Se
tion 3.5.6, we apply the te
hnique to the 10 largest sea levels observed ea
h year in

Veni
e.
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4 The basi
 model for threshold ex
eedan
es: the

Generalised Pareto distribution

4.1 History and theoreti
al motivation

Generalisation of the 
lassi
al annual maxima approa
h for modelling extreme values to

the r�largest order statisti
s method was dis
ussed in Se
tion 3.4, the main advantage be-

ing the in
lusion of more extreme data in the analysis, leading to more pre
ise inferen
es

on the extremal behaviour of the pro
ess under study. However, only the r largest values
within ea
h year (or blo
k) are used, and any other extremes dis
arded. In the present


hapter, we dis
uss an approa
h whi
h aims to in
lude all extreme values in the analysis,

extreme in the sense that they ex
eed some pre�determined high level, or threshold.

Threshold methods developed rapidly during the 1980s, 
ulminating in the Davison and

Smith (1990) paper whi
h applied these te
hniques to an environmental data set that

displayed short�term serial dependen
e and seasonal variation (see Chapter 5 for more

detail on su
h modelling issues). Sin
e then, threshold methods have be
ome the standard

tool for many pra
titioners involved in modelling extreme values. Relative to the tradi-

tional annual maxima and r�largest approa
hes, threshold methods attempt to maximise

e�
ien
y by using all extreme values in their analysis; however, as we shall dis
uss in

Chapter 5 (and Se
tion 4.1.2 below), the fa
t that we use all extremes 
an itself 
reate

problems (though, as Davison and Smith (1990) illustrate, pragmati
 solutions to these

problems 
an be found).

4.1.1 The generalised Pareto distribution

Ignoring, for now, the pra
ti
al impli
ations of using all our extreme data, again 
onsider

a sequen
e of IID random variables X1, X2, . . . , Xn with 
ommon distribution fun
tion

F . Then for a su�
iently large threshold u, the distribution of (X − u), 
onditional on
X > u, is approximately

G(y; σ̄, ξ) = 1−

(

1 +
ξy

σ̄

)

−1/ξ

+

, (15)

where σ̄ (> 0) and ξ (−∞ < ξ < ∞) are s
ale and shape parameters respe
tively. The

shape parameter ξ in the GPD takes exa
tly the same value as that for the 
orresponding

GEV distribution; the s
ale parameter σ̄ is equal to σ + ξ(u− µ), where σ and µ are the

s
ale and lo
ation parameters (respe
tively) in the 
orresponding GEV distribution (see

expression 6). Spe
i�
ally, G is de�ned on 0 < y < ∞ if ξ > 0, and 0 < y < −σ̄/ξ if ξ ≤ 0.
The 
ase ξ = 0 is interpreted as the limit ξ → 0, and is the exponential distribution with

rate 1/σ̄. This is known as the generalised Pareto distribution, or GPD. The GPD is a

limiting distribution for ex
esses over thresholds if, and only if, the parent distribution lies

in the domain of attra
tion of one of the three extreme value distributions (see Theorem

3.1). However, sin
e the limiting distribution of sample maxima follows one of the distri-

butions given in Theorem 3.1 no matter what the parent distribution, the GPD is the only

non�degenerate limiting distribution for ex
esses over thresholds of IID sequen
es. Until

this point we have used the notation σ̄ to denote the s
ale parameter for the GPD, so as to

distinguish it from the 
orresponding parameter of the GEV distribution. For notational
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onvenien
e we now drop this distin
tion, using σ to denote the s
ale parameter within

either family.

The GPD yields several important properties. One �rst of these, known as the `threshold

stability property', is that if (X − u0) follows a generalised Pareto distribution (
ondi-

tional on X > u0), then (X − u) also follows a generalised Pareto distribution for any

u > u0. In other words, on
e a suitably high enough threshold has been found su
h that

the GPD may be assumed a valid model for ex
esses over that threshold, then the GPD

holds for ex
esses over any higher threshold too. Another property unique to the GPD

is that if N ∼ Poisson, and X1, . . . , XN are IID random variables following a GPD, then

max {X1, . . . , XN} has the GEV distribution. As will be demonstrated, the threshold

stability property 
an be exploited in graphi
al pro
edures for threshold sele
tion and

assessing the �t of the GPD. The se
ond property suggests that, if the ex
eedan
es of u
o

ur as a Poisson pro
ess with threshold ex
esses whi
h are IID and generalised Pareto

distributed, then the maximum value over any blo
k size has a generalised extreme value

distribution. Thus, if we assume extreme events o

ur over time as a Poisson pro
ess,

models whi
h �t the GEV to sets of blo
k maxima are 
onsistent with models whi
h �t

the GPD to sets of threshold ex
esses.

As with �tting the GEV, most pra
titioners use numeri
al maximum likelihood estima-

tion to �t (15) to a set of threshold ex
esses. For −1 < ξ ≤ −0.5, maximum likelihood

estimators exist (in large enough samples), though in general (as before) do not possess all

of the standard asymptoti
 properties; when ξ ≤ −1, maximum likelihood estimators do

not, in general, exist. For ξ > −0.5, maximum likelihood estimators are asymptoti
ally

normal and e�
ient (Smith, 1985). Lu
kily, in most environmental appli
ations, values

of ξ ≤ −0.5 are rare, but do o

ur from time to time. Again, the Bayesian methodology

provides a framework within whi
h this problem 
an be avoided. However, in a Bayesian

setting, use of the GPD(σ, ξ) model may be restri
tive sin
e the s
ale parameter σ is

dependent on the 
hoi
e of threshold level u; an uninformative prior for σ then be
omes

informative at higher thresholds. To over
ome this, the GPD 
an be reparameterised

with s
ale and shape parameters σ̃ and ξ (respe
tively, ξ remaining un
hanged), where

σ̃ = σ−ξu. Under this parameterisation, both parameters are threshold�independent. As

demonstrated in Chapter 3 for the GEV, estimates of extreme quantiles 
an be obtained

through inversion of (15).

4.1.2 When should we model threshold ex
eedan
es?

Sin
e extremes are � by their very nature � s
ar
e, any modelling approa
h that in
reases

pre
ision has obvious appeal. The r�largest approa
h attempts to in
rease pre
ision

through the in
lusion of more data, but 
ould still be 
onsidered rather wasteful. The

aim of threshold methods is to maximise pre
ision by analysing all extremes. However,

we might not have a

ess to the entire dataset; it might be the 
ase that we only have

the set of derived blo
k maxima � in whi
h 
ase the most appropriate method of analysis

would be to �t the GEV to our data dire
tly.

As we shall dis
uss in Se
tion 4.3 of this Chapter, and Chapter 5, there might also

be various modelling issues to address arising as a dire
t 
onsequen
e of using threshold

ex
eedan
es, not least the problem of short term temporal dependen
e. Shown in Figure
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9 is the auto
orrelation fun
tion, and partial auto
orrelation fun
tion, for the entire series

of daily rainfall measurements dis
ussed in Chapter 3 (re
all that we analysed the set of

rainfall annual maxima in Chapter 3). These plots were produ
ed using the 
ommands:

> a
f(rain)

> pa
f(rain)

where, as in Chapter 3, the series of daily rainfall measurements are stored in the ve
tor

rain.
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Figure 9: Auto
orrelation fun
tion, and partial auto
orrelation fun
tion, for the rainfall

data

Both plots in Figure 9 indi
ate the presen
e of short term auto
orrelation in the series,

parti
ularly the plot of partial auto
orrelations whi
h eliminates the e�e
t of interme-

diate auto
orrelations. For example, a pro
ess that is truly �rst�order Markov might

have signi�
ant auto
orrelations at lag 2 and beyond owing wholly to the temporal ef-

fe
ts indu
ed by the strength of dependen
e between su

essive observations. However,

the partial auto
orrelation fun
tion would provide a better indi
ation of the order of de-

penden
e, showing only the �rst partial auto
orrelation as signi�
ant. For the rainfall

data, we see signi�
an
e in the partial auto
orrelation fun
tion up to lag 4, suggesting

genuine short�term temporal dependen
e. The GPD in the form it is given in equation

(15) assumes our series is IID, whi
h is 
learly not the 
ase here. Though (as we shall

see in Chapter 5) various te
hniques have been developed to 
ir
umvent the problem of

temporal dependen
e, it is not always obvious how to implement these and parameter es-

timates 
an be sensitive to the te
hnique 
hosen. When temporal dependen
e and other

modelling issues might arise as a dire
t 
onsequen
e of using all threshold ex
eedan
es, it

might be 
onsidered preferable to work with a set of blo
k maxima (or perhaps a set of

�
luster maxima� � see Se
tion 4.3.3).

4.1.3 How is the GPD used?

On
e we have identi�ed our set of threshold ex
eedan
es, a typi
al appli
ation would

�t the model in (15) via maximum likelihood (perhaps) to obtain estimates of the s
ale

33



and shape parameters σ and ξ (the problems asso
iated with maximum likelihood for

parti
ular values of ξ, for example, are dis
ussed in Se
tion 3.1.4 and also apply here).

We 
an then use our estimates of σ and ξ to obtain estimates of return levels by inversion

of (15). For example, suppose that a GPD with parameters σ and ξ is a suitable model

for ex
eedan
es of a threshold u by a variable X , i.e. for x > u,

Pr(X > x|X > u) =

[

1 + ξ

(

x− u

σ

)]

−1/ξ

+

.

Then

Pr(X > x) = λu

[

1 + ξ

(

x− u

σ

)]

−1/ξ

+

,

where λu = Pr(X > u). Hen
e, the level xt that is ex
eeded on average on
e every t
observations is the solution of

λu

[

1 + ξ

(

xt − u

σ

)]

−1/ξ

+

=
1

t
.

Rearranging, we get

xt = u+
σ

ξ
[(tλu)

ξ − 1],

provided t is su�
iently large to ensure that xt > u, and ξ 6= 0. If ξ = 0, we have the

exponential 
ase, and so

xt = u+ σlog(tλu),

again provided t is su�
iently large. By 
onstru
tion, xt is the t�observation return level;

however, it is often more 
onvenient to give return levels on an annual s
ale, so that the

r�year return level is the level expe
ted to be ex
eeded on
e every r years. If there are ny

observations per year, this 
orresponds to the t�observation return level with t = r × ny.

Hen
e, the r�year return level qr is de�ned by

qr = u+
σ

ξ

[

(rnyλu)
ξ − 1

]

, (16)

unless ξ = 0, in whi
h 
ase

qr = u+ σlog(rnyλu). (17)

We 
an then estimate the r�year return level qr by substituting our estimates of σ and

ξ (say σ̂ and ξ̂) into equation 16 (or equation 17 when ξ = 0); λu 
an be estimated

empiri
ally as the proportion of threshold ex
eedan
es, and u is the threshold 
hosen to

identify extremes (see Se
tion 4.2.1). The usual approa
h for estimating standard errors

for the GPD parameters 
an be used (i.e. inversion of the expe
ted information matrix)

and, as in Chapter 3, the delta method 
an be used to obtain estimated standard errors for

return levels. We 
an also use pro�le likelihood to estimate more appropriate 
on�den
e

intervals for return levels.
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4.2 Simple 
ase study

In this Se
tion, we demonstrate a simple appli
ation of the GPD to a set of threshold

ex
eedan
es. We illustrate this by using a set of threshold ex
eedan
es from the full

rainfall series used in Chapter 3. Re
all that this 
an be loaded into R by �rst installing

the ismev pa
kage:

> library(ismev)

and then typing:

> data(rain)

Typing

> help(rain)

gives a des
ription of the rainfall series. In this Se
tion, we will

• exploit the threshold stability property of the GPD to produ
e a graphi
al tool for

identifying a suitable threshold u;

• maximise the log�likelihood fun
tion for the GPD in R;

• use R to obtain the expe
ted information matrix, and then invert this to obtain the

estimated varian
e�
ovarian
e matrix for (λ̂u, σ̂, ξ̂)
T
;

• use the �tted values of the GPD parameters to estimate some return levels qr, along
with standard errors for these;

• use R to plot the pro�le log�likelihood for some return levels and obtain pro�le

likelihood 
on�den
e intervals;

• useR to 
he
k the goodness�of��t of the GPD to our series of threshold ex
eedan
es,

4.2.1 Identifying a suitable threshold: the mean residual life plot

In a mean residual life (MRL) plot we make use of the fa
t that if the GPD is the 
orre
t

model for all ex
eedan
es xi above some high threshold u0, then the mean ex
ess, i.e. the

mean value of (xi − u), plotted against u > u0, should give a linear plot. This is be
ause

E[Xi − u0] is a linear fun
tion of u : u > u0. By produ
ing su
h a plot for values of u
starting at zero, we 
an sele
t reasonable 
andidate values for u0. In R, the following 
ode

sets up a ve
tor of possible thresholds, starting at zero and going up to the maximum

value in our dataset in steps of 0.1:

> u<-seq(0,max(rain),0.1)

The ve
tor x will now be set up to take the 
orresponding values for the mean ex
ess over

ea
h value in u:

> x<-ve
tor(`numeri
', length(u))

Then the following 
ode 
omputes the mean ex
ess for ea
h value in u and stores it in x:
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> for(i in 1:length(x))

{

threshold.ex
eedan
es<-rain[rain>u[i℄℄

x[i℄<-mean(threshold.ex
eedan
es-u[i℄)

}

The MRL plot is then produ
ed using the following 
ode, giving the plot in Figure 10:

> plot(x~u,type=`l', main=`MRL plot',ylab=`mean ex
ess')
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Figure 10: Mean residual life plot for the rainfall data

Though interpretation of these plots 
an be subje
tive, linearity in Figure 10 might be

suggested at about u0 = 30mm (information in the far right�hand�side of these plots is

unreliable; here, variability is high due to the limited amount of data above su
h high

thresholds). Using u0 = 30 as our threshold for identifying extremes, we 
an then obtain

our set of threshold ex
eedan
es for modelling with the generalised Pareto distribution:

> above.threshold<-rain[rain>30℄

> threshold.ex
eedan
es<-above.threshold-30

We 
an look at our set of threshold ex
eedan
es by typing:

> threshold.ex
eedan
es

[1℄ 1.8 2.5 1.8 14.5 0.5 13.2 5.6 8.1 2.0 1.8 3.0 9.1 0.5 1.8 2.3

[16℄ 3.0 0.5 2.5 18.5 5.3 10.6 0.5 4.3 2.8 0.5 15.7 1.8 3.5 3.5 1.8

[31℄ 4.8 5.3 7.8 46.7 2.3 4.0 3.8 6.6 0.5 15.7 56.6 5.6 17.8 17.5 4.3

[46℄ 18.5 0.7 13.4 29.4 5.1 23.3 3.5 0.5 0.2 10.9 12.7 53.3 24.9 29.2 1.8
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[61℄ 7.3 2.5 4.0 37.3 1.2 0.2 6.1 6.8 8.4 1.0 3.3 17.0 2.0 3.0 8.1

[76℄ 0.5 42.4 4.3 7.1 3.0 10.9 9.9 17.0 6.3 0.5 0.5 25.9 1.8 21.3 55.3

[91℄ 11.9 0.5 3.0 5.6 25.9 14.2 8.1 4.3 1.8 2.0 1.8 5.6 15.2 0.5 9.4

[106℄ 0.2 14.5 1.8 3.8 21.6 5.3 29.4 3.5 5.3 0.5 6.8 17.8 12.9 7.6 25.4

[121℄ 5.3 12.4 3.0 3.0 10.1 4.8 8.1 9.4 4.0 5.6 4.3 3.5 1.0 6.6 6.3

[136℄ 8.4 8.1 17.0 1.0 0.5 1.2 5.6 18.8 11.9 1.7 1.2 21.3 3.5 7.6 9.4

[151℄ 9.4 15.7

Thus, we have identi�ed 152 observations as being extreme.

4.2.2 Fitting the GPD

The GPD log�likelihood fun
tion 
an be derived in the same way that the log�likelihood

for the GEV was derived in Se
tion 3.2.1; this is left as an exer
ise for the reader, but


an be shown to be:

ℓ(σ, ξ;y) = −152logσ − (1 + 1/ξ)

152
∑

i=1

loge

(

1 +
ξyi
σ

)

+

, (18)

where y = (y1, . . . , y152) are the set of ex
eedan
es above threshold u0 = 30. For the 
ase
ξ = 0, interpreted as ξ → 0, we have the log�likelihood for an exponential distribution

with rate 1/σ. We thus de�ne the GPD log�likelihood in R in the following way:
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