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3.4 Generalisation to the r—largest order statistics

Given a sequence of IID random variables X, X5, ... we have shown how the generalised
extreme value distribution (expression 6) can be used to model the set of normalised
annual maxima. This approach is highly inefficient since all but the maximum in each
year (or block) are discarded — other observations which could be considered extreme are
simply thrown away because they are not as extreme as the maximum value in that year.
A generalisation of the result in expression (6) attempts to overcome this, by incorporating
the largest r order statistics from each year, where r is any positive integer. If we denote
the r largest order statistics in an IID sample by M > M@ > . > M) for r > 1,
then the technique here is to obtain the limiting joint distribution of
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It can be shown that the complete class of limiting non—degenerate joint distributions is
in fact given by the probability density function
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for j =1,...,r. As before, the case £ = 0 is taken as the limit as £ — 0 in (14), to give
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Obviously, the case where r = 1 is equivalent to the annual maxima approach, for which
the GEV holds as the limiting distribution. The increased precision over the traditional
annual maxima approach (due to more extremes being incorporated into the analysis) has
obvious appeal; however, Smith (1986) shows that as r increases, the rate of convergence
to the limiting distribution decreases rapidly, and so the number of order statistics to
include must be considered carefully. Such methods must also take account of serial
correlation, and are vulnerable to the effects of seasonal variation. Papers in the Journal
of Hydrology by Smith (1986) and Tawn (1988b) illustrate the use of r—largest methods;
in Section 3.5.6, we apply the technique to the 10 largest sea levels observed each year in
Venice.

30



4 The basic model for threshold exceedances: the
Generalised Pareto distribution

4.1 History and theoretical motivation

Generalisation of the classical annual maxima approach for modelling extreme values to
the r—largest order statistics method was discussed in Section 3.4, the main advantage be-
ing the inclusion of more extreme data in the analysis, leading to more precise inferences
on the extremal behaviour of the process under study. However, only the r largest values
within each year (or block) are used, and any other extremes discarded. In the present
chapter, we discuss an approach which aims to include all extreme values in the analysis,
extreme in the sense that they exceed some pre—determined high level, or threshold.

Threshold methods developed rapidly during the 1980s, culminating in the Davison and
Smith (1990) paper which applied these techniques to an environmental data set that
displayed short—term serial dependence and seasonal variation (see Chapter 5 for more
detail on such modelling issues). Since then, threshold methods have become the standard
tool for many practitioners involved in modelling extreme values. Relative to the tradi-
tional annual maxima and r—largest approaches, threshold methods attempt to maximise
efficiency by using all extreme values in their analysis; however, as we shall discuss in
Chapter 5 (and Section 4.1.2 below), the fact that we use all extremes can itself create
problems (though, as Davison and Smith (1990) illustrate, pragmatic solutions to these
problems can be found).

4.1.1 The generalised Pareto distribution

Ignoring, for now, the practical implications of using all our extreme data, again consider
a sequence of IID random variables X;, X5, ..., X,, with common distribution function
F. Then for a sufficiently large threshold w, the distribution of (X — u), conditional on
X > u, is approximately

G(y;0,§) = 1— (1 + Efy)l/g, (15)
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where ¢ (> 0) and £ (—oo < £ < 00) are scale and shape parameters respectively. The
shape parameter £ in the GPD takes exactly the same value as that for the corresponding
GEV distribution; the scale parameter & is equal to o + £(u — p), where o and p are the
scale and location parameters (respectively) in the corresponding GEV distribution (see
expression 6). Specifically, G is defined on 0 < y < 00 if £ > 0, and 0 < y < —a/£if £ < 0.
The case £ = 0 is interpreted as the limit £ — 0, and is the exponential distribution with
rate 1/0. This is known as the generalised Pareto distribution, or GPD. The GPD is a
limiting distribution for excesses over thresholds if, and only if, the parent distribution lies
in the domain of attraction of one of the three extreme value distributions (see Theorem
3.1). However, since the limiting distribution of sample maxima follows one of the distri-
butions given in Theorem 3.1 no matter what the parent distribution, the GPD is the only
non—degenerate limiting distribution for excesses over thresholds of 1ID sequences. Until
this point we have used the notation & to denote the scale parameter for the GPD, so as to
distinguish it from the corresponding parameter of the GEV distribution. For notational
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convenience we now drop this distinction, using o to denote the scale parameter within
either family.

The GPD yields several important properties. One first of these, known as the ‘threshold
stability property’, is that if (X — wg) follows a generalised Pareto distribution (condi-
tional on X > wg), then (X — u) also follows a generalised Pareto distribution for any
u > ug. In other words, once a suitably high enough threshold has been found such that
the GPD may be assumed a valid model for excesses over that threshold, then the GPD
holds for excesses over any higher threshold too. Another property unique to the GPD
is that if N ~ Poisson, and Xi, ..., X are IID random variables following a GPD, then
max {Xi,..., Xy} has the GEV distribution. As will be demonstrated, the threshold
stability property can be exploited in graphical procedures for threshold selection and
assessing the fit of the GPD. The second property suggests that, if the exceedances of u
occur as a Poisson process with threshold excesses which are IID and generalised Pareto
distributed, then the maximum value over any block size has a generalised extreme value
distribution. Thus, if we assume extreme events occur over time as a Poisson process,
models which fit the GEV to sets of block maxima are consistent with models which fit
the GPD to sets of threshold excesses.

As with fitting the GEV, most practitioners use numerical maximum likelihood estima-
tion to fit (15) to a set of threshold excesses. For —1 < ¢ < —0.5, maximum likelihood
estimators exist (in large enough samples), though in general (as before) do not possess all
of the standard asymptotic properties; when £ < —1, maximum likelihood estimators do
not, in general, exist. For £ > —0.5, maximum likelihood estimators are asymptotically
normal and efficient (Smith, 1985). Luckily, in most environmental applications, values
of £ < —0.5 are rare, but do occur from time to time. Again, the Bayesian methodology
provides a framework within which this problem can be avoided. However, in a Bayesian
setting, use of the GPD(o, £) model may be restrictive since the scale parameter o is
dependent on the choice of threshold level u; an uninformative prior for o then becomes
informative at higher thresholds. To overcome this, the GPD can be reparameterised
with scale and shape parameters ¢ and £ (respectively, ¢ remaining unchanged), where
6 = o —¢&u. Under this parameterisation, both parameters are threshold-independent. As
demonstrated in Chapter 3 for the GEV, estimates of extreme quantiles can be obtained
through inversion of (15).

4.1.2 When should we model threshold exceedances?

Since extremes are — by their very nature — scarce, any modelling approach that increases
precision has obvious appeal. The r—largest approach attempts to increase precision
through the inclusion of more data, but could still be considered rather wasteful. The
aim of threshold methods is to maximise precision by analysing all extremes. However,
we might not have access to the entire dataset; it might be the case that we only have
the set of derived block maxima — in which case the most appropriate method of analysis
would be to fit the GEV to our data directly.

As we shall discuss in Section 4.3 of this Chapter, and Chapter 5, there might also

be various modelling issues to address arising as a direct consequence of using threshold
exceedances, not least the problem of short term temporal dependence. Shown in Figure
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9 is the autocorrelation function, and partial autocorrelation function, for the entire series
of daily rainfall measurements discussed in Chapter 3 (recall that we analysed the set of
rainfall annual maxima in Chapter 3). These plots were produced using the commands:

> acf(rain)
> pacf(rain)

where, as in Chapter 3, the series of daily rainfall measurements are stored in the vector
rain.
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Figure 9: Autocorrelation function, and partial autocorrelation function, for the rainfall
data

Both plots in Figure 9 indicate the presence of short term autocorrelation in the series,
particularly the plot of partial autocorrelations which eliminates the effect of interme-
diate autocorrelations. For example, a process that is truly first—order Markov might
have significant autocorrelations at lag 2 and beyond owing wholly to the temporal ef-
fects induced by the strength of dependence between successive observations. However,
the partial autocorrelation function would provide a better indication of the order of de-
pendence, showing only the first partial autocorrelation as significant. For the rainfall
data, we see significance in the partial autocorrelation function up to lag 4, suggesting
genuine short—term temporal dependence. The GPD in the form it is given in equation
(15) assumes our series is IID, which is clearly not the case here. Though (as we shall
see in Chapter 5) various techniques have been developed to circumvent the problem of
temporal dependence, it is not always obvious how to implement these and parameter es-
timates can be sensitive to the technique chosen. When temporal dependence and other
modelling issues might arise as a direct consequence of using all threshold exceedances, it
might be considered preferable to work with a set of block maxima (or perhaps a set of
“cluster maxima” — see Section 4.3.3).

4.1.3 How is the GPD used?

Once we have identified our set of threshold exceedances, a typical application would
fit the model in (15) via maximum likelihood (perhaps) to obtain estimates of the scale
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and shape parameters o and £ (the problems associated with maximum likelihood for
particular values of &, for example, are discussed in Section 3.1.4 and also apply here).
We can then use our estimates of o and £ to obtain estimates of return levels by inversion
of (15). For example, suppose that a GPD with parameters o and ¢ is a suitable model
for exceedances of a threshold u by a variable X, i.e. for x > u,

Pr(X > z|X >u) = [1+§ (”j;“)}w.

+

Then

Pr(X >2z) = A, {1+§<x;u)}l/£7

+

where \, = Pr(X > u). Hence, the level z; that is exceeded on average once every t
observations is the solution of

Y
A [1+§(xt;u)} _ %
+

v = u—l—%[(t)\u)5—1],

Rearranging, we get

provided t is sufficiently large to ensure that x; > u, and £ # 0. If £ = 0, we have the
exponential case, and so

xy = u+olog(th,),

again provided ¢ is sufficiently large. By construction, z; is the t—observation return level,;
however, it is often more convenient to give return levels on an annual scale, so that the
r—year return level is the level expected to be exceeded once every r years. If there are n,
observations per year, this corresponds to the {—observation return level with ¢ = r x n,,.
Hence, the r—year return level ¢, is defined by

g = u +% [('r’ny)\u)5 — 1] , (16)

unless ¢ = 0, in which case
¢ = u+olog(rnyg\,). (17)

We can then estimate the r—year return level ¢, by substituting our estimates of o and
¢ (say 6 and €) into equation 16 (or equation 17 when & = 0); ), can be estimated
empirically as the proportion of threshold exceedances, and u is the threshold chosen to
identify extremes (see Section 4.2.1). The usual approach for estimating standard errors
for the GPD parameters can be used (i.e. inversion of the expected information matrix)
and, as in Chapter 3, the delta method can be used to obtain estimated standard errors for
return levels. We can also use profile likelihood to estimate more appropriate confidence
intervals for return levels.
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4.2 Simple case study

In this Section, we demonstrate a simple application of the GPD to a set of threshold
exceedances. We illustrate this by using a set of threshold exceedances from the full
rainfall series used in Chapter 3. Recall that this can be loaded into R by first installing
the ismev package:

> library(ismev)

and then typing:

> data(rain)

Typing

> help(rain)

gives a description of the rainfall series. In this Section, we will

e exploit the threshold stability property of the GPD to produce a graphical tool for
identifying a suitable threshold w;

e maximise the log-likelihood function for the GPD in R;

e use R to obtain the expected information matrix, and then invert this to obtain the
estimated variance-covariance matrix for (\,,,&)7;

e use the fitted values of the GPD parameters to estimate some return levels ¢., along
with standard errors for these;

e use R to plot the profile log-likelihood for some return levels and obtain profile
likelihood confidence intervals;

e use R to check the goodness—of-fit of the GPD to our series of threshold exceedances,

4.2.1 Identifying a suitable threshold: the mean residual life plot

In a mean residual life (MRL) plot we make use of the fact that if the GPD is the correct
model for all exceedances x; above some high threshold ug, then the mean excess, i.e. the
mean value of (z; — u), plotted against u > wug, should give a linear plot. This is because
E[X; — ug] is a linear function of u : u > ug. By producing such a plot for values of u
starting at zero, we can select reasonable candidate values for ug. In R, the following code
sets up a vector of possible thresholds, starting at zero and going up to the maximum
value in our dataset in steps of 0.1:

> u<-seq(0,max(rain),0.1)

The vector x will now be set up to take the corresponding values for the mean excess over
each value in u:

> x<-vector(‘numeric’, length(u))

Then the following code computes the mean excess for each value in u and stores it in x:

35



> for(i in 1:length(x))
{
threshold.exceedances<-rain[rain>ul[i]]
x[i]<-mean(threshold.exceedances-ulil)

}
The MRL plot is then produced using the following code, giving the plot in Figure 10:

> plot(x~u,type=‘1’, main=‘MRL plot’,ylab=‘mean excess’)

MRL Plot

15

10

Mean excess

Figure 10: Mean residual life plot for the rainfall data

Though interpretation of these plots can be subjective, linearity in Figure 10 might be
suggested at about uy = 30mm (information in the far right-hand-side of these plots is
unreliable; here, variability is high due to the limited amount of data above such high
thresholds). Using ug = 30 as our threshold for identifying extremes, we can then obtain
our set of threshold exceedances for modelling with the generalised Pareto distribution:

> above.threshold<-rain[rain>30]
> threshold.exceedances<-above.threshold-30

We can look at our set of threshold exceedances by typing:

> threshold.exceedances

(1] 1.8 2.5 1.814.5 0.5 13.2 5.6 8.1 2.0 1.8 3.0 9.1 0.5 1
[(16] 3.0 0.5 2.5 18.5 5.3 10.6 0.5 4.3 2.8 0.5 15.7 1.8 3.5 3
[31] 4.8 5.3 7.8 46.7 2.3 4.0 3.8 6.6 0.5 15.7 56.6 5.6 17.8 17
[46] 18.5 0.7 13.4 29.4 5.1 23.3 3.5 0.5 0.2 10.9 12.7 53.3 24.9 29
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[61] 7.3 2.5 4.037.3 1.2 0.2 6.1 6.8 8.4 1.0 3.3 17.0 2.0 3.
[76] 0.5 42.4 4.3 7.1 3.0 10.9 9.9 17.0 6.3 0.5 0.5 25.9 1.8 21
[91] 11.9 0.5 3.0 5.6 25.9 14.2 8.1 4.3 1.8 2.0 1.8 5.6 15.2 0.
[106] 0.2 14.5 1.8 3.8 21.6 5.3 29.4 3.5 5.3 0.5 6.8 17.8 12.9 7.
[121] 5.3 12.4 3.0 3.0 10.1 4.8 8.1 9.4 4.0 5.6 4.3 3.5 1.0 6.
[136] 8.4 8.1 17.0 1.0 0.5 1.2 5.6 18.8 11.9 1.7 1.2 21.3 3.5 7.
[151] 9.4 15.7

Thus, we have identified 152 observations as being extreme.

4.2.2 Fitting the GPD

The GPD log-likelihood function can be derived in the same way that the log-likelihood
for the GEV was derived in Section 3.2.1; this is left as an exercise for the reader, but
can be shown to be:

152
Uo,&y) = —15210ga—(1+1/§)210ge (1+%) , (18)
o
i=1 +
where y = (y1, ..., Yy152) are the set of exceedances above threshold ug = 30. For the case

¢ = 0, interpreted as & — 0, we have the log—likelihood for an exponential distribution
with rate 1/0. We thus define the GPD log-likelihood in R in the following way:
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